

Rebuild Strategies for Redundant Disk Arrays

G. Fu, A. Thomasian, C. Han and S. Ng

Integrated Systems Laboratory

Department of Computer Science

New Jersey Institute of Technology

Newark, **NJ** 07012

NASA/IEEE MSST 2004

2th NASA Goddard/21st IEEE Conference on Mass Storage Systems & Technologies The Inn and Conference Center University of Maryland University College Adelphi MD USA April 13-16, 2004

Outline

- Introduction
- Parameters for Experiments
- Comparison of VSM and PCM
- Impact of Buffer Size
- Impact of Rebuild Unit Size
- Estimation of Rebuild Time
- Conclusions & Future Work

Introduction

	Disk 0 Disk 1		c 1	Disk 2		Disk 3		Disk 4		Disk 5	
0	D0	D1		D2		D3		D4		P0-4	
1	D6	D7		D8		D9		P5-9		D5	
2	D12	D1:	3	D14		P10-14		D10		D11	
3	D18	D19	9	P15-19		D15		D16		D17	
4	D24	P20-	24	D20		D21		D22		D23	
5	P25-29	D2	5	D26		D27		D28		D29	

$$P_{0-4} = D_0 \oplus D_1 \oplus D_2 \oplus D_3 \oplus D_4$$
$$d_0 = p_{0-4} \oplus d_1 \oplus d_2 \oplus d_3 \oplus d_4$$

Parameters for Experiments

- N = number of disks
- B = buffer size in tracks
- T = rebuild unit size (default one track)
- U = disk utilization in normal mode (default 45%)
- FCFS scheduling
- IBM18es, 9GB, 7200rpm

Vacationing Server Model (VSM)

Rebuild requests are processed at a lower priority than user requests

Rebuild requests are processed until a user request arrives.

Permanent Customer Model (PCM)

Rebuild requests are processed at the same priority as user requests.

A new rebuild request will be issued once the previous one is completed.

Performance Comparison VSM vs. PCM

Response Time Comparison

- VSM Response Time <PCM Response Time
- VSM rebuild requests are processed at a lower priority than user requests, while PCM rebuild requests are processed at the same priority as user requests.

Rebuild Time Comparison

- VSM Rebuild Time <PCM Rebuild Time
- In VSM more rebuild requests are processed consecutively, which shortens average seek time per rebuild request.

$$P_{interrupt}^{VSM} = 1 - e^{-\lambda X_{RU}}$$

$$P_{interrupt}^{PCM} = 1 - e^{-\lambda(W_{RU} + X_{RU})}$$

Impact of Buffer Size

Impact of Rebuild Unit Size

Estimation of Rebuild Time

Trebuild (0) is the time to read all the tracks on a disk continuously.

$$T_{rebuild}(\rho) = \frac{T_{rebuild}(0)}{1 - \alpha \rho}$$

Estimation of Rebuild Time

Conclusions and Future Work

- VSM is superior to PCM
 - Lower use response time
 - shorter rebuild time
- Buffer size
 - significant impact on rebuild time for high disk utilization
- Rebuild unit size
 - Tradeoff between user response time and rebuild time.
- More detailed analytical model for rebuild time is to be explored in the future.

Thank you!