
1

OBFS: File Systems for Object-Based Storage
Devices

Feng Wang, Scott A. Brandt, Ethan L. Miller,
Darrell D. E. Long

Storage Systems Research Center
University of California, Santa Cruz

2

The Storage Model is Changing
Extremely high storage capacity, bandwidth and scalability is
desired
• Scientific computing environment
• Visualization system

Existing storage systems cannot scale to this level
• Bottlenecks caused by centralized control mechanisms

Object-based storage is a promising alternative
• Scalable
• Supports parallel access
• Highly distributed metadata and data management

Storage management needs to adapt to this new model
• File and object storage are fundamentally different
• Need Object-Based File Systems (OBFS)

3

Object-Based Storage Model

Block I/O Manager

Object Interface

System Call Interface

File System
Client Component

File System
Storage Component

Applications

System Call Interface

File System
Storage Component

File System
Client Component

Sector/LBA Interface

Block I/O Manager

Applications

4

Different Storage Models In Action

Host/File
Server

Disk

HostHostHosts

File Server

Disk

HostHostHosts

Disk

Metadata
Servers

Blocks Files Objects

File Server
Storage

Object-Based
Storage

DiskOBSDs

Metadata
Servers

Blocks

File Info

Control
Info

DiskDisk
Locally

Attached
Storage

5

Workload Characteristics

•Data courtesy of Lawrence Livermore National Laboratory

0

50

100

150

200

250

300

350

400

1B 1K
B

2K
B

4K
B

8K
B

16
KB

32
KB

64
KB

12
8K

B
25

6K
B

51
2K

B
1M

B
2M

B
4M

B
8M

B
16

MB
32

MB
64

MB
12

8M
B

25
6M

B
51

2M
B

1G
B

2G
B

M
ea

n
N

um
be

r o
f F

ile
s

(X
10

00
)

 M
ea

n
C

ap
ac

ity
 o

f F
ile

s
(G

B
)

Mean Number of Files (X1000)

Mean Capacity of Files (GB)

6

LLNL File Access Pattern
Files are accessed in
parallel by multiple clients
• Up to 10,000 clients may

access a single file
Writes are deeply buffered
at the client main memory
Almost all data are
transferred by large
sequential requests
File accesses switch
between several typical
patterns

Simulation Stage
• Write intensive
• Very little read
• Multiple clients access one file
• Sequential and random

accesses
• Memory dump
Post Analysis Stage
• Read intensive
• Very little write
• Totally random accesses

•Typical Data Access Scenarios

7

Object Workload
A B C D

Object

File

OBSD

Large Uniformly-sized Objects Small Randomly-sized Objects

8

Object Workload Characteristics
Objects are more uniformly sized than files
• System stripe unit size provides upper bound.

Large objects dominate
• More than 80%

Weak inter-object locality
• Objects in a file tend to be distributed to different OBSDs

Strong intra-object locality
• Objects tend to be accessed as a whole

9

OBFS Design Principles
Flat object name space
• Fast mapping and retrieval of objects is essential

Data layout optimization for object workload
• Most objects are large and uniformly sized

High throughput

High reliability

Simple

10

Preliminary Design
Variably-sized blocks
• Large blocks optimized for large objects
• Small blocks guarantee efficient space usage

Region
• Keep blocks of the same size together
• Each object lives in a single region

Hash table to map and retrieve objects

Collocated objects and their metadata (Onode)

11

OBFS Design

Boot
Sector

Region 1

Region 2

Region n

…

Hash Table

Region
Head

Onode
Table

Free
Block
Bitmap

Free
Onode
Bitmap

Data Blocks

Region
Head

Free
Onode
Bitmap

Co-located
Data Blocks
and Onodes

Onode ID
Object ID Large Block Region

Disk

Small Block Region

12

OBFS Design – Region Structure and
Data Layout

Large Block Region

Region
Head

Free
Onode
Bitmap

Onode ID

Region ID Onode Index
0 15 31 Data Block Onode

13

OBFS Design – Region Structure and
Data Layout

Small Block Region

Region
Head

Free
Block
Bitmap

Onode Table

Free
Onode
Bitmap

Region ID Onode Index
0 15 31

Onode ID

14

OBFS Design – Allocation Policy
A large object is allocated to the nearest free large
block or nearest free region
A small object is allocated blocks from a single
region
• Start searching from the nearest small block region
• Calculate the minimal number of block extents that are

allocated to the object
• If the number of extents is smaller than a pre-defined

threshold, the object will be assigned to this region
• Else, find another small block region and repeat this

process

15

OBFS Design – File System Reliability,
Consistency and Recoverability

Synchronous object and object metadata writes
• Improve data reliability
• Simplify consistency checking scheme
• Simplify recovery scheme

Asynchronous file system data structure updates
• Hash table, free onode bitmap and free block bitmap

File system consistency
• The object metadata stores redundant information of the

file system data structures
• File system can be brought back to consistent state by

regenerating file system data structures through redundant
information maintained in the object metadata

16

Performance Evaluation
Experimental setup:
• Red Hat Linux, kernel version 2.4.0
• Executed on a PC with a 1 GHZ Pentium III CPU and 512

MB of RAM
• A dedicated 80 GB Maxtor D740X-6L disk
• Ext2, Ext3 and XFS synchronously mounted

OBFS compared against Linux Ext2, Ext3, and XFS
More experimental results in paper

17

Performance Evaluation – Object
Benchmarks

Derived from LLNL workload
Consist of sequence of object operations
• 80% of all objects are large objects (512 KB)
• Small object are uniformly distributed between 1KB and

512 KB
• Read, write, rewrite, and delete account for 56%, 15%,

14% and 15% of all requests respectively

18

Performance Evaluation – File System
Aging

Make the results of the file system benchmarking
more realistic
Our aging workload
• Sequence of write and delete requests
• Write/delete ratio is dynamically adjusted based on disk

usage
• 80% of all objects are Large objects (512KB)
• Small objects are uniformly distributed between 1KB and

512 KB
• Delete requests are randomly generated from the current

objects on disk

19

Benchmark Results – Write

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

Disk Usage (%)

Th
ro

ug
hp

ut
 (M

B
/s

)

OFS
Ext2
Ext3
XFS

20

Benchmark Results – Read

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

Disk Usage (%)

T
h

ro
u

g
h

p
u

t
(M

B
/s

)
OFS
Ext2
Ext3
XFS

21

Conclusions
Object workload characterization
• Large objects dominate
• Weak inter-object locality

OBFS design and implementation
• Variably-sized blocks
• Region structure
• Hash table for object naming space management
• Collocated objects and their metadata

Performance
• Much better than Ext2/3
• Comparable to XFS with 1/25 the code

22

Acknowledgements
This research was supported by Lawrence Livermore
National Laboratory, Los Alamos National
Laboratory, and Sandia National Laboratory.

We are also grateful to our sponsors: National
Science Foundation, USENIX Association, Hewlett
Packard Laboratories, IBM Research, Intel
Corporation, Microsoft Research, ONStar, Overland
Storage, and Veritas.

23

Thank You!
More information
• http://ssrc.cse.ucsc.edu
• http://ssrc.cse.ucsc.edu/obsd.shtml
• http://www.cse.ucsc.edu/~cyclonew

Questions?

24

On-Going Work
Object workload characterization
• Parallel file workload collection
• More general workload analysis
• Policies study

File-object mapping
Object placement
Replication
Client-side cache management

• Simulation approach

25

Benchmark Results – Overall

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

Disk Usage (%)

Th
ro

ug
hp

ut
 (M

B
/s

)
OFS
Ext2
Ext3
XFS

26

Traditional Storage Model
Applications

System Call Interface

File System
Storage Component

File System
Client Component

Sector/LBA Interface

Block I/O Manager

File system functionality
• Directory hierarchy management
• Access control
• Protection
• Data allocation
• Request Scheduling
• “Data Switch”

Sector/LBA interface
• Low-level knowledge of disk

characteristics and organization
used in file system

27

Workload Characteristics
Num of Bytes Distributed in Files

0.00E+00

2.00E+05

4.00E+05

6.00E+05

8.00E+05

1.00E+06

1.20E+06

1.40E+06

4K 16
K

64
K

25
6K 1M 4M 16

M

64
M

25
6M 1G 4G 16

G

64
G

51
2G

file size

G
ig

aB
yt

es

28

Object Workload
Files are striped into objects
(system-level design
decision)
• large objects: the stripe-unit

size objects
• small objects: all other

objects
• Objects are evenly distributed

across the cluster of OBSDs
Large objects dominate
Weak inter-object locality

•OBSD Cluster

•File •Small Object

29

Object Workload
Files are striped into objects
(system-level design
decision)
• large objects: the stripe-unit

size objects
• small objects: all other

objects
• Objects are evenly distributed

across the cluster of OBSDs
Large objects dominate
Weak inter-object locality

•OBSD Cluster

•File

Random
•Mapping
•Scheme

30

Large Scale Distributed Object-Based
Storage System (LSDOSS)

Currently being
developed at Storage
System Research Center
(SSRC), UCSC
Aim to scientific
computing environment
Build on Object-Based
Storage Devices (OBSDs)
Expect to deliver 100
GB/s throughput and 2 PB
capacity

M
eta

da
ta

ac
ce

ss

 Metadata
 Server

 Metadata
 Server

 Metadata
 Server

M
etadata update

Client

Client

Client

Direct data access

Object Based
Storage Device

Object Based
Storage Device

Object Based
Storage Device

Disk array

High speed
networks

Storage area network

Metadata Server Cluster

Disk array

Disk array

Disk array

Disk array

Disk array

High speed
networks

31

Current Status
Object workload characterization
• Preliminary analysis based on LLNL data
• Random object placement policy (RJ’s work)
• Fixed-size data striping scheme

Object interface
• Identify the basic command sets

Read/partial read, write/partial write, delete

OBFS design and implementation
• Optimize the data layout and object mapping scheme

based on the object workload analysis
• User-level implementation in Linux

32

Hypothesis
Significantly better OBSD system performance can
be obtained through OFSes specifically designed for
object workloads than can be obtained with general-
purpose file systems
Rationale
• Workload is different: sizes, locality, access patterns
• Interfaces are different: object-specific operations, lack of

file metadata
• Requirements are different: metadata, permissions, locking,

reliability, caching

UC Santa Cruz

File Systems For Object-Based
Storage Devices

Feng Wang
Scott Brandt
Ethan Miller
Darrell Long

Storage Systems Research Center
University of California, Santa Cruz

	The Storage Model is Changing
	Object-Based Storage Model
	Different Storage Models In Action
	Workload Characteristics
	LLNL File Access Pattern
	Object Workload
	Object Workload Characteristics
	OBFS Design Principles
	Preliminary Design
	OBFS Design
	OBFS Design – Region Structure and Data Layout
	OBFS Design – Region Structure and Data Layout
	OBFS Design – Allocation Policy
	OBFS Design – File System Reliability, Consistency and Recoverability
	Performance Evaluation
	Performance Evaluation – Object Benchmarks
	Performance Evaluation – File System Aging
	Benchmark Results – Write
	Benchmark Results – Read
	Conclusions
	Acknowledgements
	Thank You!
	On-Going Work
	Benchmark Results – Overall
	Traditional Storage Model
	Workload Characteristics
	Object Workload
	Object Workload
	Large Scale Distributed Object-Based Storage System (LSDOSS)
	Current Status
	Hypothesis
	File Systems For Object-Based Storage Devices

