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The Storage Model is Changing
Extremely high storage capacity, bandwidth and scalability is 
desired
• Scientific computing environment
• Visualization system

Existing storage systems cannot scale to this level
• Bottlenecks caused by centralized control mechanisms

Object-based storage is a promising alternative
• Scalable
• Supports parallel access
• Highly distributed metadata and data management

Storage management needs to adapt to this new model
• File and object storage are fundamentally different
• Need Object-Based File Systems (OBFS)



3

Object-Based Storage Model
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Different Storage Models In Action
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Workload Characteristics

•Data courtesy of Lawrence Livermore National Laboratory 
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LLNL File Access Pattern
Files are accessed in 
parallel by multiple clients
• Up to 10,000 clients may 

access a single file
Writes are deeply buffered 
at the client main memory
Almost all data are 
transferred by large 
sequential requests
File accesses switch 
between several typical 
patterns

Simulation Stage
• Write intensive
• Very little read
• Multiple clients access one file
• Sequential and random 

accesses
• Memory dump
Post Analysis Stage
• Read intensive
• Very little write
• Totally random accesses

•Typical Data Access Scenarios
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Object Workload
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Object Workload Characteristics
Objects are more uniformly sized than files
• System stripe unit size provides upper bound.

Large objects dominate
• More than 80%

Weak inter-object locality
• Objects in a file tend to be distributed to different OBSDs

Strong intra-object locality
• Objects tend to be accessed as a whole
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OBFS Design Principles
Flat object name space
• Fast mapping and retrieval of objects is essential

Data layout optimization for object workload
• Most objects are large and uniformly sized

High throughput

High reliability

Simple
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Preliminary Design
Variably-sized blocks
• Large blocks optimized for large objects
• Small blocks guarantee efficient space usage

Region
• Keep blocks of the same size together
• Each object lives in a single region

Hash table to map and retrieve objects

Collocated objects and their metadata (Onode)



11

OBFS Design
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OBFS Design – Region Structure and 
Data Layout
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OBFS Design – Region Structure and 
Data Layout
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OBFS Design – Allocation Policy
A large object is allocated to the nearest free large 
block or nearest free region
A small object is allocated blocks from a single 
region
• Start searching from the nearest small block region
• Calculate the minimal number of block extents that are 

allocated to the object
• If the number of extents is smaller than a pre-defined 

threshold, the object will be assigned to this region
• Else, find another small block region and repeat this 

process
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OBFS Design – File System Reliability, 
Consistency and Recoverability

Synchronous object and object metadata writes
• Improve data reliability
• Simplify consistency checking scheme
• Simplify recovery scheme

Asynchronous file system data structure updates
• Hash table, free onode bitmap and free block bitmap

File system consistency
• The object metadata stores redundant information of the 

file system data structures 
• File system can be brought back to consistent state by 

regenerating file system data structures through redundant 
information maintained in the object metadata
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Performance Evaluation
Experimental setup:
• Red Hat Linux, kernel version 2.4.0
• Executed on a PC with a 1 GHZ Pentium III CPU and 512 

MB of RAM
• A dedicated 80 GB Maxtor D740X-6L disk
• Ext2, Ext3 and XFS synchronously mounted

OBFS compared against Linux Ext2, Ext3, and XFS
More experimental results in paper



17

Performance Evaluation – Object 
Benchmarks

Derived from LLNL workload
Consist of sequence of object operations
• 80% of all objects are large objects (512 KB)
• Small object are uniformly distributed between 1KB and 

512 KB
• Read, write, rewrite, and delete account for 56%, 15%, 

14% and 15%  of all requests respectively
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Performance Evaluation – File System 
Aging

Make the results of the file system benchmarking 
more realistic
Our aging workload
• Sequence of write and delete requests
• Write/delete ratio is dynamically adjusted based on disk 

usage
• 80% of all objects are Large objects (512KB)
• Small objects are uniformly distributed between 1KB and 

512 KB
• Delete requests are randomly generated from the current 

objects on disk



19

Benchmark Results – Write 
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Benchmark Results – Read 
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Conclusions
Object workload characterization
• Large objects dominate
• Weak inter-object locality

OBFS design and implementation
• Variably-sized blocks
• Region structure
• Hash table for object naming space management
• Collocated objects and their metadata

Performance
• Much better than Ext2/3
• Comparable to XFS with 1/25 the code
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Thank You!
More information
• http://ssrc.cse.ucsc.edu
• http://ssrc.cse.ucsc.edu/obsd.shtml
• http://www.cse.ucsc.edu/~cyclonew

Questions?
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On-Going Work
Object workload characterization
• Parallel file workload collection
• More general workload analysis
• Policies study

File-object mapping
Object placement
Replication
Client-side cache management

• Simulation approach
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Benchmark Results – Overall 
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Traditional Storage Model
Applications
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Workload Characteristics
Num of Bytes Distributed in Files
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Object Workload
Files are striped into objects 
(system-level design 
decision)
• large objects: the stripe-unit 

size objects
• small objects: all other 

objects
• Objects are evenly distributed 

across the cluster of OBSDs
Large objects dominate
Weak inter-object locality

•OBSD Cluster

•File •Small Object
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Object Workload
Files are striped into objects 
(system-level design 
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Large Scale Distributed Object-Based 
Storage System (LSDOSS)

Currently being 
developed at Storage 
System Research Center 
(SSRC), UCSC 
Aim to scientific 
computing environment
Build on Object-Based 
Storage Devices (OBSDs)
Expect to deliver 100 
GB/s throughput and 2 PB 
capacity
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Current Status
Object workload characterization
• Preliminary analysis based on LLNL data
• Random object placement policy (RJ’s work)
• Fixed-size data striping scheme

Object interface
• Identify the basic command sets

Read/partial read, write/partial write, delete

OBFS design and implementation
• Optimize the data layout and object mapping scheme 

based on the object workload analysis
• User-level implementation in Linux
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Hypothesis
Significantly better OBSD system performance can 
be obtained through OFSes specifically designed for 
object workloads than can be obtained with general-
purpose file systems
Rationale
• Workload is different: sizes, locality, access patterns
• Interfaces are different: object-specific operations, lack of 

file metadata
• Requirements are different: metadata, permissions, locking, 

reliability, caching
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