
MSST ’04 1

Clotho: Transparent Data Versioning
at the Block I/O Level

Michail Flouris
Dept. of Computer Science

University of Toronto
flouris@cs.toronto.edu

Angelos Bilas
ICS- FORTH &

University of Crete
bilas@ics.forth.gr

MSST ’04 2

Advanced Storage Functionality

• Applications have increased requirements
from storage systems

• Storage systems are required to provide
advanced functionality in several areas
– Reliability
– Encryption
– Compression
– Quality Guarantees
– Backup

MSST ’04 3

Online Storage Versioning

• Applications need to preserve many
versions of data

• Advanced backup functionality motivated
by current large & inexpensive disks

• Online versioning:
– Perform continuous real-time versioning
– Keep backup repositories on-line using disks

• Potential for lower administration overhead

MSST ’04 4

Previous Work
• Filesystem-level:

– Elephant [SOSP ’99], Plan 9 [Pike’90],
CVFS [FAST ’03], WAFL [Usenix’94],
3DFS [Usenix ’92], Inversion FS [Usenix ’93]

• Block-level: Petal [ASPLOS ’96]

• Commercial Products:
– EMC SnapView, Veritas FlashSnap,

Sun Instant Image, etc.

• Not general-purpose and transparent
– Require special filesystem or custom hardware

MSST ’04 5

Our goal
• Transparent & general-purpose versioning

– Filesystem-agnostic versioning
– Based on commodity hardware

• High performance (essential for online use)
• Provide versioning mechanisms not policies

– Higher layers (e.g. daemons) implement policies:
• Create new storage versions (when ?)
• Delete storage versions (which ? when ?)
• Compress storage versions (which ? when ?)

MSST ’04 6

Our approach:
Examine versioning at block-level

• Satisfies our goal
• Timely & in-line with technology trends

– Pushes functionality closer to disk
• Can offload processing to storage back-end

– Low-level
• Less complexity
• Facilitates firmware implementations

(e.g. self-versioned disks)
– Storage systems operate at block-level

MSST ’04 7

Clotho: Issue Overview
Motivation

• System Design
– Transparency & Flexibility
– Performance
– Overheads: Memory & Disk Space
– Snapshot consistency

• Evaluation
• Conclusions

MSST ’04 8

Transparency & Flexibility (I)

• Clotho is a versioning layer in the OS I/O
hierarchy

• Appears as a virtual block device
• Versions whole block volumes (snapshots)
• Read-only old volume versions

– Appear as new virtual block devices
– Accessible in parallel with the latest version
– Practically unlimited versions

MSST ’04 9

Transparency & Flexibility (II)

• Clotho can be inserted arbitrarily in an I/O
hierarchy over any other block device

Clotho

Block Device
(Disk, RAID, etc.)

Versioning Layer

Higher layers
(filesystem, database, etc.)

MSST ’04 10

Disk Space Management

• Reserving backup capacity from higher layer
• Data Capacity guaranteed
• Need metadata to index backup blocks

Logical Segments

Output Device Capac.

Input Capacity

MSST ’04 11

Volume Evolution

/dev/vol

/dev/vol1

/dev/vol

/dev/vol2

/dev/vol

/dev/vol1

/dev/vol2

/dev/vol1

/dev/vol

/dev/vol3

Version 1

Time

Version 2

Version 3

Latest
Volume
Version

N
ew

 Ve rsi on

N
ew

 V e rsi on

N
ew

 V e rsi on

Version capture triggered
by any system event

MSST ’04 12

Clotho: Issue Overview
Motivation
System Design

Transparency & Flexibility
– Performance
– Overheads: Memory & Disk Space
– Snapshot consistency

• Evaluation
• Conclusions

MSST ’04 13

Low Overhead Snapshots
• Issue: Creating volume snapshots fast !
• Clotho services a stream of I/O requests

– Need to make a versioning decision per write
request (read requests do not modify data)

• Clotho uses a “latest version” counter and a
version number per block
– On writes check the two counters to decide
– Create new snapshot: simply increase the “latest

version” counter
– No overhead : simple pointer manipulation

MSST ’04 14

• Issue: Creating new block versions fast !
• First method: Copy-on-write

– No layout change for user volume
– Slow (introduces a copy)

Handling Writes (I)

Algorithm:
Copy old data,
then overwrite
the old block

in place

Write to Block 10

New data in block 10

Copy of old block 10
in block X

Data Backup

MSST ’04 15

Handling Writes (II)
• Second method: Remapping-on-write (Clotho)

– Low overhead (no copy)
– Changes block layout (use own layout algorithm)

• Augmenting existing logical-to-physical block
translation table

Write to Block 10

New data in block Y

Redirect new
data in block Y

Physical Blocks

Algorithm:
Redirect new
data to free

block, keep old
block in place

Old data remain
in block 10

MSST ’04 16

Block Translation

0 1 0 1 0 2 1 v r…

Logical blocks

Block version numbers

2 1 4 5 6 3 10 x t… Physical blocks
LXT

Requests from higher layer (e.g. FS)

Remapped to lower device (e.g. Disk)
Latest Version

Counter: 2

•Extending existing block translation table
•Versioning granularity: One block
•Clotho uses scan-based layout algorithm

0 1 2 3 4 5 6 y z…

MSST ’04 17

Clotho: Issue Overview
Motivation
System Design

Transparency & Flexibility
Performance

– Overheads: Memory & Disk Space
– Snapshot consistency

• Evaluation
• Conclusions

MSST ’04 18

Memory Overhead

• Clotho services I/O requests with the OS block size
• Issue: Small OS block size increases metadata size

– Metadata are cached in memory
– Metadata size depends on capacity & block size
– 4KByte blocks require 4MB RAM per GByte of disk

• Solution: Clotho uses internal blocks (“extents”) to
transparently minimize metadata memory usage

• Large “extents” reduce the metadata size
– 32KB extents require 500KB per GByte of disk space

(for keeping all the metadata in memory)

MSST ’04 19

Partial Update Issue

• Issue: external (OS) block size smaller than
the “extent” size causes data copy

• Solution: use “sub-extents” equal to the
external block size and valid bitmap

Writing small OS
block by remapping
to a new extent

Large extents

New extent

0 1 0
Valid Bitmap for extent

Data copy
needed for
partial extent !

Using
Sub-extents

MSST ’04 20

Disk Space Overhead
• Storing many or all data versions requires

much disk space (naturally !)
• Clotho minimizes disk usage by applying

differential compression
– Deltas/diffs between consecutive block versions

• Compact versions are accessible on-line
– Full blocks reconstructed dynamically on reads

• Issue: Need new block mapping
• Solution: Storing many diffs in a normal block

MSST ’04 21

Snapshot consistency (I)

• Snapshots are raw volume images at a
point in time

• Issue: OS & higher layer buffering may lead
to snapshot inconsistencies
– E.g. Unsynchronized system or filesystem

buffers at snapshot capture time

• Solution: Clotho flushes all system and
filesystem buffers before snapshot capture

MSST ’04 22

Snapshot Consistency (II)

• Filesystem specific issue
– Some files are open at snapshot capture time
– Clotho stores open file list on snapshot

• Application buffer issue
– When block-level applications cache I/O buffers
– When applications use specialized consistency

rules (e.g. atomic set of I/O operations)
– Versioning must be triggered by applications or

recovery mechanisms applied

MSST ’04 23

Clotho: Issue Overview
Motivation
System Design

Transparency & Flexibility
Performance
Overheads: Memory & Disk Space

Snapshot consistency

• Evaluation
• Conclusions

MSST ’04 24

Implementation

• Linux 2.4 block device driver (~6,000 lines)
• Loadable kernel module
• Implementation uses kernel I/O request

remapping techniques
– As in LVM and Linux RAID

• Ioctl() interface for custom commands
• Exposes state through the /proc interface

MSST ’04 25

Evaluation
• Interested in:

– Common path performance (I/O + versioning)
– Read performance on compact versions

• Platform: 2x P3 866MHz, 768MB RAM,
100MBps NIC, IBM 45GB (7200rpm) disk

• OS: Linux 2.4.18
• Filesystems measured on top of Clotho:

– Linux Ext2 FS
– Reiser FS

• FS Benchmarks: Bonnie, SPEC SFS 3.0

MSST ’04 26

2GB data, No versions, 4KB extents, Ext2 FS

MSST ’04 27

Linux Ext2 FS Results

MSST ’04 28

Linux Reiser FS Results

MSST ’04 29

MSST ’04 30

Limitations

• Issue if higher layer (e.g. FS) assumes
certain disk layout

• No support for multiple devices
(version capture must be synchronized
across devices)

MSST ’04 31

Conclusions
• On-line storage versioning at the block level

– Feasible and efficient

• Main advantage
– Transparent and general-purpose

• Challenges
– Flexibility & Transparency
– Performance
– Main memory & Disk overheads
– Snapshot consistency

MSST ’04 32

Questions ?

Paper title:
“Clotho: Transparent Data Versioning at the Block I/O Level”

Authors:
−Michail Flouris, flouris@cs.toronto.edu

Web: www.eecg.toronto.edu/~flouris

−Angelos Bilas, bilas@ics.forth.gr
Web: www.ics.forth.gr/~bilas

