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Advanced Storage Functionality

• Applications have increased requirements 
from storage systems

• Storage systems are required to provide 
advanced functionality in several areas
– Reliability
– Encryption
– Compression
– Quality Guarantees
– Backup
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Online Storage Versioning

• Applications need to preserve many 
versions of data

• Advanced backup functionality motivated 
by current large & inexpensive disks

• Online versioning:
– Perform continuous real-time versioning
– Keep backup repositories on-line using disks

• Potential for lower administration overhead
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Previous Work
• Filesystem-level:

– Elephant [SOSP ’99], Plan 9 [Pike’90],                
CVFS [FAST ’03], WAFL [Usenix’94],                   
3DFS [Usenix ’92], Inversion FS [Usenix ’93]

• Block-level: Petal [ASPLOS ’96]

• Commercial Products:
– EMC SnapView, Veritas FlashSnap,                                   

Sun Instant Image, etc.

• Not general-purpose and transparent
– Require special filesystem or custom hardware
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Our goal
• Transparent & general-purpose versioning

– Filesystem-agnostic versioning
– Based on commodity hardware

• High performance (essential for online use)
• Provide versioning mechanisms not policies

– Higher layers (e.g. daemons) implement policies:
• Create new storage versions (when ?)
• Delete storage versions (which ? when ?)
• Compress storage versions (which ? when ?)
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Our approach:
Examine versioning at block-level

• Satisfies our goal
• Timely & in-line with technology trends

– Pushes functionality closer to disk
• Can offload processing to storage back-end

– Low-level
• Less complexity
• Facilitates firmware implementations                

(e.g. self-versioned disks)
– Storage systems operate at block-level
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Clotho: Issue Overview
Motivation

• System Design
– Transparency & Flexibility
– Performance
– Overheads: Memory & Disk Space
– Snapshot consistency

• Evaluation
• Conclusions
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Transparency & Flexibility (I)

• Clotho is a versioning layer in the OS I/O 
hierarchy

• Appears as a virtual block device
• Versions whole block volumes (snapshots)
• Read-only old volume versions

– Appear as new virtual block devices
– Accessible in parallel with the latest version
– Practically unlimited versions
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Transparency & Flexibility (II)

• Clotho can be inserted arbitrarily in an I/O 
hierarchy over any other block device

Clotho

Block Device 
(Disk, RAID, etc.)

Versioning Layer

Higher layers     
(filesystem, database, etc.)
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Disk Space Management

• Reserving backup capacity from higher layer
• Data Capacity guaranteed
• Need metadata to index backup blocks

Logical Segments

Output Device Capac.

Input Capacity
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Volume Evolution
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Clotho: Issue Overview
Motivation
System Design

Transparency & Flexibility
– Performance
– Overheads: Memory & Disk Space
– Snapshot consistency

• Evaluation
• Conclusions
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Low Overhead Snapshots
• Issue: Creating volume snapshots fast !
• Clotho services a stream of I/O requests

– Need to make a versioning decision per write 
request (read requests do not modify data)

• Clotho uses a “latest version” counter and a 
version number per block
– On writes check the two counters to decide
– Create new snapshot: simply increase the “latest 

version” counter
– No overhead : simple pointer manipulation
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• Issue: Creating new block versions fast !
• First method: Copy-on-write

– No layout change for user volume
– Slow (introduces a copy)

Handling Writes (I)

Algorithm:    
Copy old data, 
then overwrite 
the old block  

in place

Write to Block 10

New data in block 10

Copy of old block 10 
in block X

Data Backup
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Handling Writes (II)
• Second method: Remapping-on-write (Clotho)

– Low overhead (no copy)
– Changes block layout (use own layout algorithm)

• Augmenting existing logical-to-physical block 
translation table

Write to Block 10

New data in block Y

Redirect new 
data in block Y

Physical Blocks

Algorithm:     
Redirect new 
data to free 

block, keep old 
block in place

Old data remain 
in block 10
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Block Translation

0 1 0 1 0 2 1 v r…

Logical blocks

Block version numbers

2 1 4 5 6 3 10 x t… Physical blocks
LXT

Requests from higher layer (e.g. FS)

Remapped to lower device (e.g. Disk)
Latest Version

Counter: 2

•Extending existing block translation table
•Versioning granularity: One block
•Clotho uses scan-based layout algorithm

0 1 2 3 4 5 6 y z…
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Clotho: Issue Overview
Motivation
System Design

Transparency & Flexibility
Performance

– Overheads: Memory & Disk Space
– Snapshot consistency

• Evaluation
• Conclusions
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Memory Overhead

• Clotho services I/O requests with the OS block size
• Issue: Small OS block size increases metadata size

– Metadata are cached in memory
– Metadata size depends on capacity & block size
– 4KByte blocks require 4MB RAM per GByte of disk

• Solution: Clotho uses internal blocks (“extents”) to 
transparently minimize metadata memory usage

• Large “extents” reduce the metadata size
– 32KB extents require 500KB per GByte of disk space  

(for keeping all the metadata in memory)
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Partial Update Issue

• Issue: external (OS) block size smaller than 
the “extent” size causes data copy

• Solution: use “sub-extents” equal to the 
external block size and valid bitmap

Writing small OS 
block by remapping 
to a new extent

Large extents

New extent

0   1  0
Valid Bitmap for extent

Data copy 
needed for 
partial extent !

Using
Sub-extents
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Disk Space Overhead
• Storing many or all data versions requires 

much disk space (naturally !)
• Clotho minimizes disk usage by applying 

differential compression
– Deltas/diffs between consecutive block versions

• Compact versions are accessible on-line
– Full blocks reconstructed dynamically on reads

• Issue: Need new block mapping
• Solution: Storing many diffs in a normal block
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Snapshot consistency (I)

• Snapshots are raw volume images at a 
point in time

• Issue: OS & higher layer buffering may lead 
to snapshot inconsistencies
– E.g. Unsynchronized system or filesystem

buffers at snapshot capture time

• Solution: Clotho flushes all system and 
filesystem buffers before snapshot capture
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Snapshot Consistency (II)

• Filesystem specific issue
– Some files are open at snapshot capture time
– Clotho stores open file list on snapshot

• Application buffer issue
– When block-level applications cache I/O buffers
– When applications use specialized consistency 

rules (e.g. atomic set of I/O operations)
– Versioning must be triggered by applications or 

recovery mechanisms applied
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Clotho: Issue Overview
Motivation
System Design

Transparency & Flexibility
Performance
Overheads: Memory & Disk Space

Snapshot consistency

• Evaluation
• Conclusions
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Implementation

• Linux 2.4 block device driver (~6,000 lines)
• Loadable kernel module
• Implementation uses kernel I/O request 

remapping techniques
– As in LVM and Linux RAID

• Ioctl() interface for custom commands
• Exposes state through the /proc interface
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Evaluation
• Interested in:

– Common path performance (I/O + versioning)
– Read performance on compact versions

• Platform: 2x P3 866MHz, 768MB RAM, 
100MBps NIC, IBM 45GB (7200rpm) disk

• OS: Linux 2.4.18
• Filesystems measured on top of Clotho:

– Linux Ext2 FS
– Reiser FS

• FS Benchmarks: Bonnie, SPEC SFS 3.0
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2GB data, No versions, 4KB extents, Ext2 FS
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Linux Ext2 FS Results
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Linux Reiser FS Results
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Limitations

• Issue if higher layer (e.g. FS) assumes 
certain disk layout

• No support for multiple devices        
(version capture must be synchronized 
across devices)
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Conclusions
• On-line storage versioning at the block level

– Feasible and efficient

• Main advantage
– Transparent and general-purpose

• Challenges
– Flexibility & Transparency
– Performance
– Main memory & Disk overheads
– Snapshot consistency
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