Clotho: Transparent Data Versioning
at the Block 1/O Level

Michail Flouris Angelos Bilas
Dept. of Computer Science ICS- FORTH &
University of Toronto University of Crete
flouris@cs.toronto.edu bilas@ics.forth.gr

NASA/IEEE MSST 2004
th NASA Goddard/21st IEEE Conference on

Mass Storage Systems & Technologies
The Inn and Conference Center _
University of Maryland University College R .
Adelphi MD USA COMPUTER

April 13-16, 2004 SOCIETY

Advanced Storage Functionality

e Applications have increased requirements
from storage systems

e Storage systems are required to provide
advanced functionality in several areas

— Reliability

— Encryption

— Compression

— Quality Guarantees
— Backup

MSST ‘04

Online Storage Versioning

o Applications need to preserve many
versions of data

e Advanced backup functionality motivated
by current large & inexpensive disks

e Online versioning:
— Perform continuous real-time versioning
— Keep backup repositories on-line using disks

e Potential for lower administration overhead

MSST ‘04 3

Previous Work

e Filesystem-level:

— Elephant [SOSP '99], Plan 9 [Pike'90],
CVFS [FAST 03], WAFL [Usenix’94],
3DFS [Usenix "92], Inversion FS [Usenix ‘93]

e Block-level: Petal [ASPLOS "96]

e Commercial Products:

— EMC SnapView, Veritas FlashSnap,
Sun Instant Image, etc.

e Not general-purpose and transparent
— Require special filesystem or custom hardware

MSST ‘04 4

Our goal

e Transparent & general-purpose versioning
— Filesystem-agnostic versioning
— Based on commodity hardware

e High performance (essential for online use)

e Provide versioning mechanisms not policies
— Higher layers (e.g. daemons) implement policies:
e Create new storage versions (when ?)
e Delete storage versions (which ? when ?)
e Compress storage versions (which ? when ?)

MSST ‘04 5

Our approach:
Examine versioning at block-level

e Satisfies our goal

e Timely & in-line with technology trends
— Pushes functionality closer to disk
e Can offload processing to storage back-end

— Low-level
e Less complexity

o Facilitates firmware implementations
(e.qg. self-versioned disks)

— Storage systems operate at block-level

MSST ‘04

Clotho: Issue Overview

v Motivation
e System Design
— Transparency & Flexibility
— Performance
— Overheads: Memory & Disk Space
— Snapshot consistency

e Evaluation
e Conclusions

MSST ‘04

Transparency & Flexibility (I)

e Clotho is a versioning layer in the OS I/0
hierarchy

e Appears as a virtual block device
e Versions whole block volumes (snapshots)

e Read-only old volume versions
— Appear as new virtual block devices
— Accessible in parallel with the latest version
— Practically unlimited versions

MSST ‘04

Transparency & Flexibility (II)

e Clotho can be inserted arbitrarily in an I/O
hierarchy over any other block device

Higher layers
(filesystem, database, etc.)

AAA

Versioning Layer _
YYYVY

Block Device
(Disk, RAID, etc.)

MSST ‘04

Disk Space Management

-— [nput Layer Capacity —

Backup
I 1 Data

I Primary I Segment
| +=—— Data Segment ——» | +—»

- H

| |
| «—— Qutput Layer Capacity ————»|

Metadata

Input Capacity
Logical Segments

Output Device Capac.

e Reserving backup capacity from higher layer
e Data Capacity guaranteed
e Need metadata to index backup blocks

MSST 04

10

Volume Evolution

_ Latest
Time . Volume
Version
<
@
0,
. @]
<
o)
_)
Version 2 —> S
: : Version 3
Version capture triggered ~__,

by any system event

MSST ‘04 11

Clotho: Issue Overview

v Motivation

v’ System Design
v'Transparency & Flexibility

— Performance
— Overheads: Memory & Disk Space

— Snapshot consistency
e Evaluation
e Conclusions

MSST ‘04

12

Low Overhead Snapshots

e [ssue: Creating volume snapshots fast !

e Clotho services a stream of I/O requests

— Need to make a versioning decision per write
request (read requests do not modify data)

e Clotho uses a "“latest version” counter and a
version humber per block
— On writes check the two counters to decide

— Create new snapshot: simply increase the “latest
version” counter

— No overhead : simple pointer manipulation

MSST ‘04 13

Handling Writes (I)

e Issue: Creating new block versions fast !

e First method: Copy-on-write

— No layout change for user volume
— Slow (introduces a copy)

Write to Block 10

*

Copy of old block 10

in block X

A

Data ‘

New data in block 10

MSST ‘04

Algorithm:
Copy old data,
then overwrite

the old block
in place

Backup

14

Handling Writes (II)

e Second method: Remapping-on-write (Clotho)
— Low overhead (no copy)
— Changes block layout (use own layout algorithm)
e Augmenting existing logical-to-physical block
translation table

Write to Block 10 Algorithm:
Redirect new

data to free
block, keep old
block in place

Old data remain _ Redirect new
in block 10 data in block Y

Physical Blocks New data in block Y

MSST ‘04 15

Block Translation
Requests from higher layer (e.g. FS)

0 y | z | Logical blocks
0 V. | r | Block version numbers
LXT
2 ¥ | £ | Physical blocks
Latest Version
Remapped to lower device (e.g. Disk) Counter: 2

eExtending existing block translation table
e\/ersioning granularity: One block
oClotho uses scan-based layout algorithm

MSST ‘04 16

Clotho: Issue Overview

v Motivation

v’ System Design
v'Transparency & Flexibility

v'Performance
— Overheads: Memory & Disk Space

— Snapshot consistency
e Evaluation
e Conclusions

MSST ‘04

17

Memory Overhead

Clotho services I/O requests with the OS block size

Issue: Small OS block size increases metadata size
— Metadata are cached in memory

— Metadata size depends on capacity & block size

— 4KByte blocks require 4MB RAM per GByte of disk

Solution: Clotho uses internal blocks (“extents”) to
transparently minimize metadata memory usage

Large “extents” reduce the metadata size

— 32KB extents require 500KB per GByte of disk space
(for keeping all the metadata in memory)

MSST ‘04 18

Partial Update Issue

e Issue: external (OS) block size smaller than
the “extent” size causes data copy

e Solution: use “'sub-extents” equal to the
external block size and valid bitmap

Data copy Writing small OS_ Using
needed for block by remapping Sub-extents
partial extent ! to a new extent

/\i New extent

Large extents _ 0 _1 0
Valid Bitmap for extent

MSST ‘04 19

Disk Space Overhead

e Storing many or all data versions requires
much disk space (naturally !)

e Clotho minimizes disk usage by applying
differential compression

— Deltas/diffs between consecutive block versions

e Compact versions are accessible on-line
— Full blocks reconstructed dynamically on reads

e Issue: Need new block mapping
e Solution: Storing many diffs in @ normal block

MSST ‘04 20

Snapshot consistency (I)

e Snapshots are raw volume images at a
point in time

e [ssue: OS & higher layer buffering may lead
to snapshot inconsistencies

— E.g. Unsynchronized system or filesystem
buffers at snapshot capture time

e Solution: Clotho flushes all system and
filesystem buffers before snapshot capture

MSST ‘04 21

Snapshot Consistency (II)

o Filesystem specific issue
— Some files are open at snapshot capture time
— Clotho stores open file list on snapshot

e Application buffer issue
— When block-level applications cache I/O buffers

— When applications use specialized consistency
rules (e.g. atomic set of I/O operations)

— Versioning must be triggered by applications or
recovery mechanisms applied

MSST ‘04 22

Clotho: Issue Overview

v Motivation

v’ System Design
v Transparency & Flexibility
v'Performance
v Overheads: Memory & Disk Space
v'Shapshot consistency

e Evaluation
e Conclusions

MSST ‘04

23

Implementation

e Linux 2.4 block device driver (~6,000 lines)
e | oadable kernel module

e Implementation uses kernel I/O request
remapping techniques

— As in LVM and Linux RAID
e JToctl() interface for custom commands
e EXxposes state through the /proc interface

MSST ‘04 24

Evaluation

e Interested in:
— Common path performance (I/O + versioning)
— Read performance on compact versions
e Platform: 2x P3 866MHz, 768MB RAM,
100MBps NIC, IBM 45GB (7200rpm) disk
e OS: Linux 2.4.18

e Filesystems measured on top of Clotho:
— Linux Ext2 FS
— Reiser FS

e FS Benchmarks: Bonnie, SPEC SFS 3.0

MSST ‘04 25

Bonnie++ I/O Performance - Write, Rewrite & Read

4500 |- O S |
Disk Write ——

4000 [s Clotho Read ke T

3500 Lo e DiSk REWH{E e]
| i ’ Clotho Rewrite ---e--

3000 e SR S— S ———— —— - -

Throughput (KBytes/sec)

Block Size (KBytes)

2GB data, No versions, 4KB extents, Ext2 FS

MSST ‘04 26

Measured Throughput (Operations/Sec)

MSST 04

900

800

700

600

500

400

300

Linux Ext2 FS Results

SPEC SFS 3.0 - Req. Load vs. Meas. Load (32KB /w sub-extents)

Clotho Ext2 5min Ver. ———

| Clotho Ext2 No Ver. - _
Disk Ext2 FS - o

200 300 400 500 600 700 800 900 1000

Requested Load (NFS V3 operations/second)

27

Measured Throughput (Operations/Sec)

MSST 04

900

800

700

600

500

Linux Reiser FS Results
SPEC SFS 3.0 - Req. Load vs. Meas. Load (32KB /w sub-extents)

Clotho RFS 5min Ver, —+— ' ' . .
B Disk Reiser FS ---- Woeeem |
ClDthD RFS NO \/erl o

200 300 400 500 600 700 800 900 1000

Requested Load (NFS V3 operations/second)

28

3072

2048

1024

Read Throughput (KBytes/sec)

512

MSST 04

Packed vs. Unpacked Snapshots -- Random Read Throughput

O% Packed Snapshot

50% Packed Snapshot - |
75% Packed Snapshot -~ }I
o S N S N S A

X

| 5 !
e e Ry i i o e -

; .5
o SR NPt = N A]

PP b .‘.‘1*.:::

e T R Ry i m :| | i ;

Read Buffer Size (KBytes)

64

29

Limitations

e [ssue if higher layer (e.g. FS) assumes
certain disk layout

e No support for multiple devices
(version capture must be synchronized
across devices)

MSST ‘04

30

Conclusions

e On-line storage versioning at the block level
— Feasible and efficient

e Main advantage
— Transparent and general-purpose

e Challenges
— Flexibility & Transparency
— Performance
— Main memory & Disk overheads
— Snapshot consistency

MSST ‘04 31

Questions ?

Paper title:
“Clotho: Transparent Data Versioning at the Block I/O Level”

Authors:
—Michail Flouris, flouris@cs.toronto.edu
Web: www.eecg.toronto.edu/~flouris

—Angelos Bilas, bilas@ics.forth.gr
Web: www.ics.forth.gr/~Dbilas

MSST ‘04 32

