

Storage Resource Sharing with CASTOR

Olof Barring, Benjamin Couturier, Jean-Damien Durand, Emil Knezo, Sebastien Ponce (CERN)

Vitali Motyakov (IHEP)

ben.couturier@cern.ch

NASA/IEEE MSST 2004

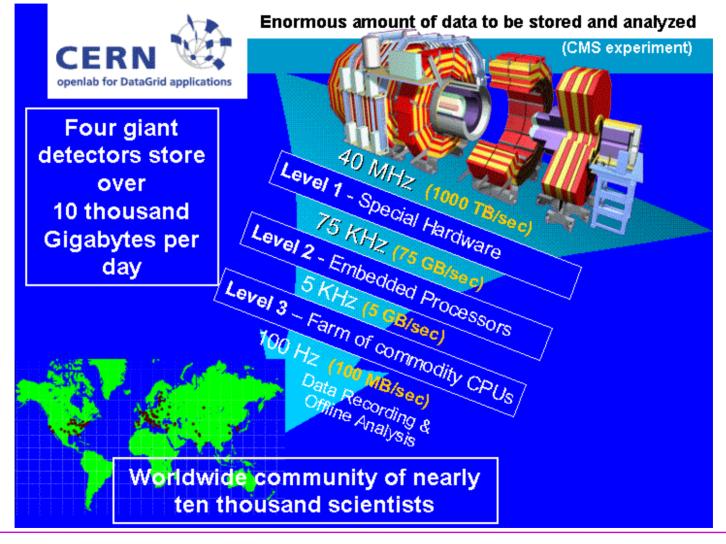
12th NASA Goddard/21st IEEE Conference on Mass Storage Systems & Technologies The Inn and Conference Center University of Maryland University College Adelphi MD USA

April 13-16, 2004

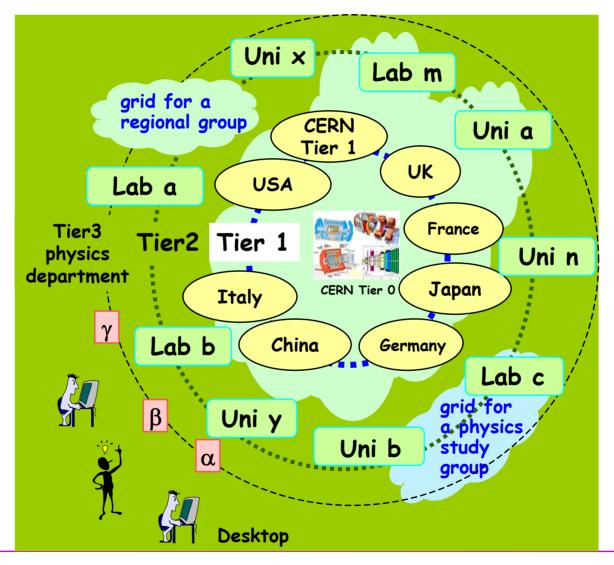
Introduction

CERN

European Laboratory for particle physics (Geneva)
(Celebrating its 50th anniversary)


- 2007: The Large Hadron Collider (LHC)
 - 4 International Experiments: Alice, Atlas, CMS, LHCb
 - High energy proton or heavy ions collisions (energy up to 14 TeV for proton beams and 1150 TeV for lead ion beams).
 - Bigger amounts of data to store/analyze compared to previous experiments (Up to 4 GB/s, 10 Petabytes per year in 2008)

A LHC Experiment

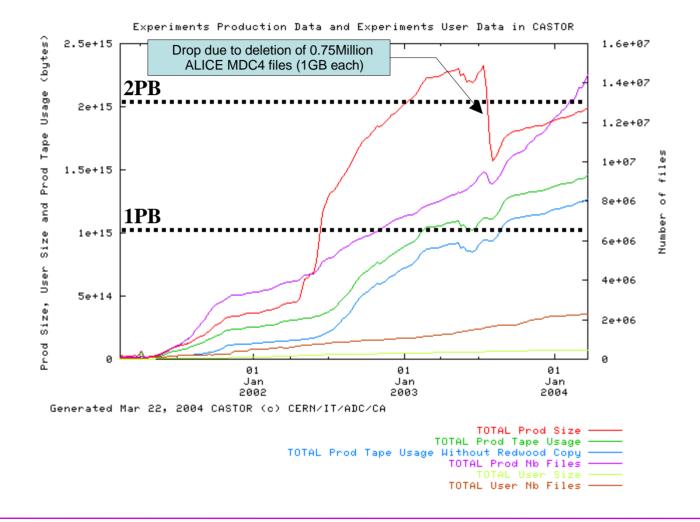


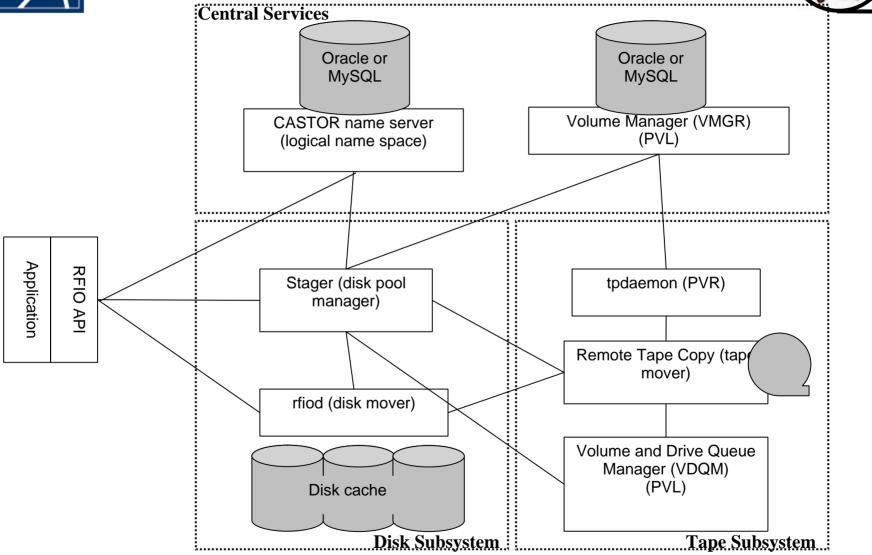
The LHC Computing Grid

CASTOR

- CERN Advanced STORage Manager
 - Hierarchical Storage Manager (HSM) used to store user and physics files
 - Manages the secondary and tertiary storage
- History
 - Development started in 1999 based on SHIFT, CERN's tape and disk management system since beginning of 1990s (SHIFT was awarded a 21st Century Achievement Award by Computerworld in 2001)
 - In production since the beginning of 2001
- http://cern.ch/castor/

CASTOR deployment


- CASTOR teams at CERN
 - Dev team (5)
 - Operations team (4)
- HW Setup at CERN
 - Disk servers
 - ~ 370 disk servers
 - ~ 300 TB of staging pools
 - ~ 35 stagers (disk pool managers)
 - Tapes and Libraries
 - ~ 90 tapes drives (50 9940B)
 - 2 sets of 5 Powderhorn silos (2 x 27500 cartridges)
 - 1 Timberwolf (1 x 600 cartridges)
 - 1 L700 (1 x 288 cartridges)
- Deployed in other HEP institutes
 - PIC Barcelona
 - CNAF Bologna


CASTOR Data Evolution

CASTOR Architecture

Main Characteristics

- POSIX-like client interface
 - Use of RFIO in the HEP community
- Modular / Highly Distributed
 - A set of central servers
 - Disk subsystem
 - Tape subsystem
- Allows for tape resource sharing
- Grid Interfaces
 - GridFTP
 - Storage Resource Manager (V1.1)
 (Cooperation between CERN/FNAL/JLAB/LBNL;
 c.f. http://sdm.lbl.gov/srm-wg/)

Platform/Hardware Support

- Multiplatform support
 - Linux, Solaris, AIX, HP-UX, Digital UNIX, IRIX
 - The clients and some of the servers run on Windows NT/2K
- Supported drives
 - DLT/SDLT, LTO, IBM 3590, STK 9840, STK 9940A/B (and old drives already supported by SHIFT)
- Libraries
 - SCSI Libraries
 - ADIC Scalar, IBM 3494, IBM 3584, Odetics, Sony DMS24, STK Powderhorn (with ACSLS), STK L700 (with SCSI or ACSLS)

Requirements for LHC (1)

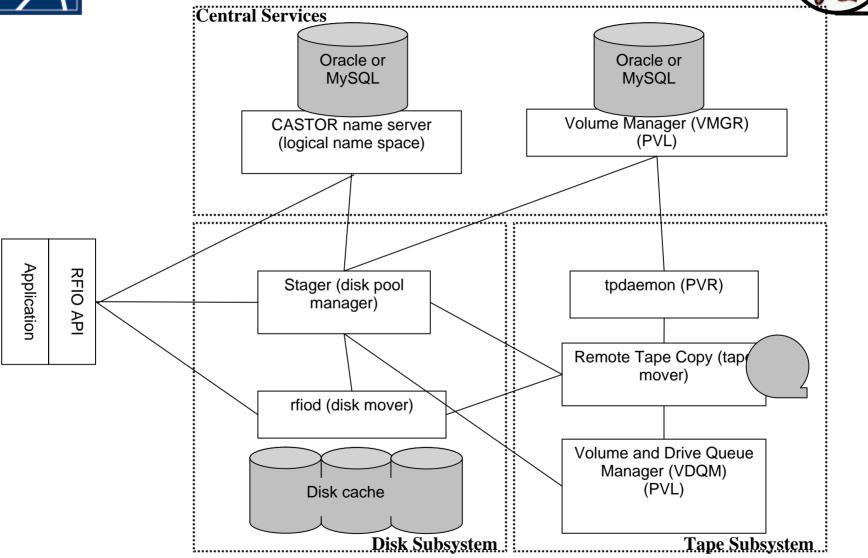
CASTOR currently performs satisfactorily:

- Alice Data Challenge: 300 MB/s for a week. 600 MB/s maintained for a half day.
- High request load: 10s of thousands of requests per day per TB of disk cache.

However, when LHC starts in 2007

- A single stager should scale up to 500/1000 requests per second
- Expected system configuration
 - ~ 4PB of disk cache
 - 10 PB stored on tapes per year (peak rate of 4GB/s)
 - ~ 10000 disks, 150 tape drives

Requirements for LHC (2)



Various types of Workload

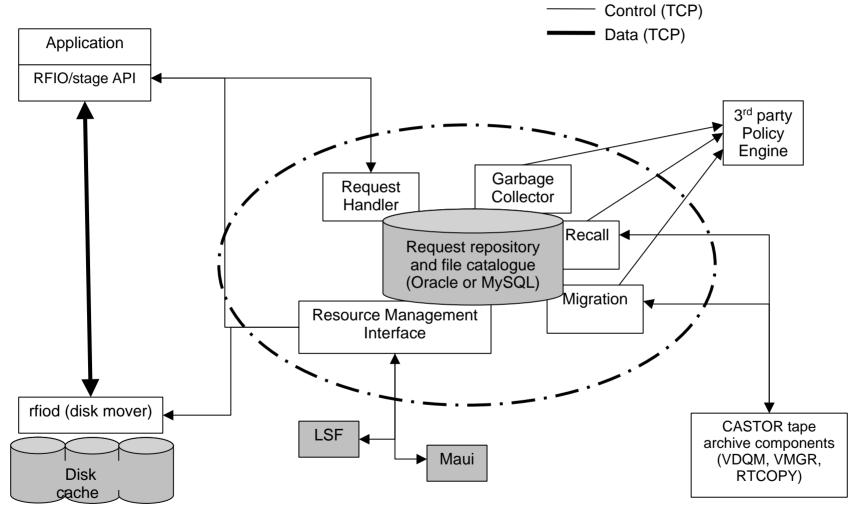
	Access Pattern	Amount of Data Involved	Quality of Service ?	Frequency
TIER 0				
Data Recording	Sequential Write	Up to 1 GB/s for Alice (2 GB/s total)	Necessary to avoid loosing data	Once
Reconstruc tion	Sequential RW	Complete data- set (up to 2 GB/s as well)	-	A few times per year
Data to Tier 1 centers	Sequential Read	Part of data set	-	Once per tier
TIER 1				
Analysis	Random	Random	_	Always runnning

Stager Central Role

Limitations of the current system

- The CASTOR stager has a crucial role: but the current version limits CASTOR performance
 - CASTOR stager catalogue limited in size (~100 000 files in cache)
 - The Disks resources have to be dedicated to each stager which leads to:
 - Sub-optimal use of disk resources
 - Difficult configuration management. It is difficult to switch disk resources quickly when the workload changes
 - Not very resilient to disk server errors
 - Current stager design does not scale
- Tape mover API not flexible enough to allow dynamic scheduling of disk access

Vision...


- With clusters of 100s of disk and tape servers, the automated storage management faces more and more the same problems as CPU clusters management
 - (Storage) Resource management
 - (Storage) Resource sharing
 - (Storage) Request scheduling
 - Configuration
 - Monitoring
- The stager is the main gateway to all resources managed by CASTOR

Vision: Storage Resource Sharing Facility

New CASTOR Stager Architecture

Database Centric Architecture

- Set of stateless multithreaded daemons accessing a DB
 - Request state stored in RDMS
 - Support for Oracle and MySQL
 - Allows for big stager catalogs with reasonable performance
 - Locking/transactions handled by the RDBMS
- Stager as scalable as the database it uses
 - Use of DB clustering solutions if necessary
- Easier administration
 - Standard backup procedures
 - less problems to restart in case of problems

Resource Scheduling

- Externalized Scheduling Interface
 - Currently developed for
 - MAUI (version 3.2.4) (http://supercluster.org/maui)
 - LSF 5.1 (Platform Computing http://www.platform.com)
 - Leverage the advanced features from CPU scheduling:
 - Fair share
 - Advanced reservations
 - Load balancing
 - Accounting...

→This will allow to:

- Share of all disk resources, with a fair share between the LHC experiments
- Exploit all resources at the maximum of their performance (avoid hotspots on disk servers...)
- follow the evolution of scheduling systems...

Other improvements

- Improved Request Handling
 - Request throttling possible
- Improved security
 - Strong authentication using GSI or Kerberos
- Modified tape mover interface
 - Allows for just-in-time scheduling of the disk resources when copying to/from tape
- Controlled Access to disk resources
 - All user access to disk resources will have to be scheduled though the stager, so as to control the IO on disk servers

Conclusion

- Current stager at CERN has shown its limitations
- New CASTOR stager proposal aims for
 - A pluggable framework for intelligent and policy controlled file access scheduling
 - Evolvable storage resource sharing facility framework rather than a total solution
 - File access request running/control and local resource allocation delegated to disk servers
- Currently In development...
 - Proof of concept/prototype implemented