

A New Approach to Disk-Based Scalable Mass Storage System Dr. Aloke Guha CTO, COPAN Systems

aloke.guha@copansys.com (303) 827 2500

NASA/IEEE MSST 2004 12th NASA Goddard/21st IEEE Conference on Mass Storage Systems & Technologies The Inn and Conference Center University of Maryland University College Adelphi MD USA April 13-16, 2004

Wishing Well: Best of Both Worlds

Application-Driven Approach

- Secondary Storage Needs
 - I/O: Sequential or Predictable Access
 - Performance: Mbytes/sec, not IOPs
 - Latency: msecs seconds
- Design Guidelines
 - No need for large RAM cache
 - No need to access all data at all time
 - No need for host-disk Non-blocking Interconnect
 - High Capacity/Bandwidth ratio
 - Data Availability/Integrity
 - Serviceability

Power-Managed Disk . . . MAID

- Large number of power-managed drives
 - More than 50% drives powered OFF*
 - Power-cycling by policy for application
- Benefits: Scale, Cost, Service Life
- Cost Benefits: Lower Cost/Drive
 - 1/3 to 1/4 of typical RAID systems
 - Lower management cost from consolidation
- Beyond MAID
 - Optimize scale and cost for RAS and Performance

*Colarelli and Grunwald, The Case for Massive Arrays of Idle Disks (MAID), Usenix FAST 2002

NASA/IEEE MSST 2004

3-Tier Architecture

- Capacity scaling: optimize tier dimensions
- Parallel modular RAID: bandwidth scales with capacity
- Interconnect to support I/O to and control large # of drives
- Flexibility to present different presentations: file/disk/tape

Functional Architecture

- Layer 2: Storage Personality: System

 Storage Network Protocols
 Logical Data Object Management
 Load Balancing

 Layer 1: Data Protection: Shelf

 RAID Acceleration
 Power Management
 Device Management

 Layer 0: Data Path Routing: Canister

 Protocol Router
 - Monitoring
 - Manage Environmental Attributes

7

Power-Managed RAID (PM-RAID)[™]

- Data protection with only subset of drives powered in RAID group
- Number of drives powered dictated by application needs
- Multiple options on data organization to support application

Device and System Reliability

- Effective drive service life, serviceability period
 - Improves with decreasing duty ratio*
- Manage start stops
 - \leq 50K over service life
 - Match to application need
- Use disk density for availability
 - Spares to replenish failed drives
 - Rebuild data transparently

*Power duty cycle ratio = # of powered-ON drives/# of powered-OFF drives

Increasing Data Reliability

- Device health monitoring
- Proactive data management: closed-loop control
- Revitalize data on disk for long-term data retention
- System data integrity mechanisms: ECC, CRC, Parity

Media Life versus Replacement Period

	Таре	Disk
Media Life	20+ yrs (40% RH, 20°C) ¹	5-7 yrs²
Drive Life	< 300 Khrs	400K-600 Khrs
Replacement Compatibility	Usually not backward compatible	NA
Replacement Period	5+ yrs	3-5 yrs

• Replacement in Practice

- Frequency driven by need for upgrading capacity and data rate
- Regulatory: 36 C.F.R. 1234.30(g)(4) replacement in 10 years
- Data reliability
 - RAID on disks: 15% better recovery with disk than tape³

¹Source: Enterprise Storage Group, Dec.'03; ²Source: National Media Laboratory, '95; ³Source: IBM NASA/IEEE MSST 2004 10

Increasing Performance

- Fraction of data on-line: ~10X tape
- Design: RAID processing, Interconnect Bandwidth, Disk Cache

Early Results: Data Rate

- Disk Drive bandwidth
 - 40 MBs+ media; 150 MBs SATA interface
- Power-managed RAID in shelf
 - Bandwidth increases with stripe size
 - I/O rate increases with block size
- Multiple streams/shelf: limited by interface
- Aggregate streams with multiple shelves
- Early Results
 - ~90 MBs/single stream uncompressed/shelf
 - Further Improvements: Tuning, Compression

Early Results: Access Time

- Access Time: leverage HDD access time
 - Powered ON Drive: access time is 10s of millisecs
 - Powered OFF Drive: spin-up time, data access 10s-15s

Conclusions

- Application-tuned, Optimized MAID
 - Storage Capacity and Cost
 - Reliability: Power-Managed RAID
 - Performance: Bandwidth, Access Time
 - Serviceability
- Early results meeting goals and expectations
- Filling the Gap in the Storage Hierarchy!