

MAID for Active Archive Data

Aloke Guha

CTO, COPAN Systems

aloke.guha@copansys.com

Panel on Emerging Technologies

NASA/IEEE MSST 2004 12th NASA Goddard/21st IEEE Conference on Mass Storage Systems & Technologies The Inn and Conference Center University of Maryland University College Adelphi MD USA April 13-16, 2004

Today's Hierarchy: Go Slow or Pay Up

Primary Storage

Secondary Storage Disk Cache Tape Library Bulk storage

MAID Power-Managed Disk

- Large number of power-managed drives
 - More than 50% drives powered OFF
 - Power-cycling by policy for application
- Benefits
 - Scale
 - Cost
 - Service life
 - Energy
- Ref: Colarelli and Grunwald, FAST 2002, SC 2002
 - Tradeoff of disk power vs. performance
 - Virtualization of ON (cache) and OFF drives, RAID-0
 - Caching not beneficial for archive workload

MAID Applicability

Content Type	Write	Update	Read	Technology	Metric
Dynamic	Many	Yes	Many	Disk	IOPs
Active Archive	Once	No	0 to n	MAID	Bandwidth
Deep Archive	Once	No	Rarely	Таре	Cost

Scale: Storage Capacity

- Benefit
 - -Large Number of Drives/Single System Footprint
 - O(1000) drives \Rightarrow 250TB 400TB
- Needs
 - High-Density Interconnect Architecture
 - Manage environmental conditions

Disk and Tape Pricing Guidelines

Source: Horison Information Strategies

www.horison.com

Storage. New Game. New Rules

Understanding Storage Costs

- Non-media storage cost far exceeds media \$/GB
- Cost Efficiency: <u>Media Cost</u> Storage System Cost
 - Disk Example
 - 250GB SATA ~\$1/GB vs Storage: \$5-\$15/GB
 - Cost Efficiency: 0.07 0.2
 - Tape Example
 - 200GB LT02 ≤ \$0.5/GB vs Storage: \$0.75-\$3.5/GB*
 - Cost Efficiency: 0.14 0.67
- Traditional disk systems 3x or more cost of tape*
- MAID levels playing field between Disk and Tape!

*Native uncompressed capacity: cost/GB depends on ratio of cartridges to drives, typ. 20:1 – 80:1 Assume same compression applied to data on disk or tape

Reliability: Drive Service Life

- Effective drive service life
 - MTBF \propto 1/Annual Failure Rate
 - AFR \propto Power On Hours
- Service life \propto 1/(Power Duty Cycle)
- Data Rel. $\propto 1/(Power Duty Cycle)^2$
- Needs
 - Manage start stops \leq 50K
 - Data protection and integrity

Power duty cycle = # of powered-ON drives/# of powered-OFF drives

Managing Start Stops

- Bandwidth/capacity limits SS to 3% of max¹
- Archive #mounts/volume limits SS to <5 % of max^{1, 2}

	Industry	Volumes Used	Daily #Mounts/Volumes Used		
			Average	Max	Median
1	Telco	373	0.0	0.1	0.0
2	Telco	1,015	0.1	0.4	0.0
3	Telco	688	0.1	0.5	0.0
4	Telco	1,189	0.0	0.0	0.0
33	Utility	278	2.6	4.9	3.5
34	Govt	3,393	0.4	0.7	0.5
35	Govt	84	0.1	0.4	0.1
· · · · · · · · · · · · · · · · · · ·					
	Average	1,122	0.6	1.1	0.6

Ave # Start-Stops over 5 yr. ops

	Capacity (TB)		
Bandwidth (TB/hr)	150	200	250
2	584	438	350
3	876	657	526
4	1168	876	701

Typical Specified Limit: 50K

¹Over 5-year period

²Source: SW Vendor - data from 43 archives on tape: Volumes_Used excludes tape volumes not allocated in ATL

Performance Implications

- Bandwidth increases as power duty cycle
- Access time depends drive state, power duty cycle
- Needs
 - Limit duty cycle, else increase device failure rates
 - Optimize overall architecture for performance wrt cost

Device Type	Load	First Byte	File Access	Unload	Total/File*
	(secs)	(secs)	(secs)	(secs)	(secs)
Single Drive	<10	0.1 s	10-12	0.1	12
RAID(n)	<10*n	4s	14-15	0.1	≥15
Tape Drive	18	41	59	18	77

* Transfer time depends on size of RAID set

Optimized MAID Fills the Gap in Hierarchy

