xyratex•

Low Level Simulation of Storage Systems Tim Courtney tim_courtney@xyratex.com

NASA/IEEE MSST 2004 12th NASA Goddard/21st IEEE Conference on Mass Storage Systems & Technologies The Inn and Conference Center University of Maryland University College Adelphi MD USA April 13-16, 2004

Simulation Environment

HASE

- Discrete event simulator
 - Written by University of Edinburgh for teaching of processor architectures
- Uses C++ for model components
 - Thread control and message passing dealt with by HASE environment
 - Allows control of what a message is and when they are passed
- Provides GUI
 - See model connectivity
 - See animation of model with message passing
 - To be extended to allow "drag and drop" model design

The model

3

Low Level Simulation of Storage Systems Tim Courtney & Franck Chevalier

Communication abstraction

- Modelling every fibre word too time consuming
- Statistical modelling insufficiently accurate
- Active word only abstraction
 - IDLEs not transmitted

4

- Only single ARB needed
- Assume model initialised & running
 - Undergoing change to model initialisation also
- Aim to accurately represent all the steps in FCP
- Allows many fewer events to be modelled whilst maintaining low-level accuracy

Initial Findings

5

- Uses 10 disks configured as two 4+1 RAID 5 sets
 Based on IOmeter style sequential I/O requests
 - Allows comparison with test data from RAID controller
 - Test of early silicon of controller
 - Test data assumes cache miss and so cache not modelled
 - Will be added and active in future models
 - Gives good comparison to test results (see next slide)
- Easily extended to SPC 1.0 benchmark I/O profile once comparison data is available
 - No comparison data available
 - Useful data flow in order of 110Mbyte/s bottlenecked by physical disk platter I/O appears reasonable

IOmeter style results

Operation performed is full strip read

Strip Size (Kbytes)	I/O per second from model	I/O per second from test data	% Error
8	13256	12500	4.4
16	7636	7500	1.8
64	2139	2200	-2.7

Further refinement needed

- Obviously too much dependence on the size of the operation
 - Possibly due to incorrect fibre channel L_PORT characteristics being used
- Undergoing correction to match model to data that is available

On-going Work

- Refinement of model
 - Include cache
 - Extend to multiple controllers
 - Generate SPC 1.0 benchmark figures from model
 - Compare with test data once available
 - Addition of errors to the data links
- Experimentation

7

- Performance implications of variation in cache size
- Performance implications of error rates with move to optical connectivity (10Gbit/s and beyond)
- Possible new topologies to allow reduction in cost of optically connected solution

Any Questions? E-mail: <u>tim_courtney@xyratex.com</u> <u>fcheval1@inf.ed.ac.uk</u>

Low Level Simulation of Storage Systems Tim Courtney & Franck Chevalier