Emerging Information Storage Technology A Technologist Viewpoint

Gordon Hughes, Associate Director, UCSD CMRR Center for Magnetic Recording Research

gfhughes@ucsd.edu 858-534-5317

IEEE MassStor 2005 1

New Technologies are Old Stuff

- 50 years of rivalry for the \$30B HDD market Bubbles, holography, spin echo, hot electrons...
- Critical enablers: F, bit access & density
- **F** = semiconductor lithography capability
 - F = minimum chip feature size, now 95 => 65 nm Magnetic HDD an exception, sidesteps F bit limit
- Technologies need density & bit access Making a few small research bits is not useful

Today's Competitor List

- Magnetic Disk 10⁷X, over half a century Moving target, doubles faster than Moore's Law
- Flash non volatile RAM
- MRAM Magnetic non volatile RAM
- Millipede IBM's MEMS probe arrays
- Rotating disk holography InPhase
- Molecular storage HP
- Many different MEMS memory cells Ferromagnetic, ferroelectric quantum dots, mechanical switches

Old (but New) Storage Technology

- PC Serial ATA drives in Enterprise Storage
- A new near-line disk hierarchy level: D2D2T "Disk-to-Disk-to-Tape" using near-line RAID disk No more overnight tape backup in 24x7 businesses Offload tape backup as a background task
- Use big, cheap, slow Serial ATA drives 400 GB, 7.2krpm, mostly serial HDD storage, MAID
- Enterprise-class reliability is possible

But there are a few traps to avoid...

G. F. Hughes, "Reliability and Security of RAID Storage Systems and D2D Archives using SATA Disk Drives" ACM Trans. on Storage, Dec 2004

Future Storage Technology "News Flashes":

- Flash is taking the < 1" HDD market! GByte flash chips today ⇒ 4 GB products
 0.85-inch HDDs have similar few-GB capacity But: is flash near its lithographic scaling limit?
- MRAM is not very dense chip storage!
 Only 4-8 Mbit chips << 1,000 MByte flash chips
- IBM Millipede demo at CeBit only 40 kbits!
- InPhase persistent at holographic WORM!

Storage Challenge is Dense Bits & Access

- Successful storage technology needs computer bit *access* technology too
- Need to get as *near* to bits as they are *small*
- **True of HDD, DRAM, Flash, MRAM** HDD heads close to disk bits; chip access lines close
- Holography struggles to be the exception But the leader is using rotating disk access

F: Flash vs. HDD vs. MRAM vs. Probe

- Bit density is set by semiconductor lithography
 - By the lithographic minimum feature size (line width)

F = 95 nm, going to F = 65 nm now

• Flash bit cell = $2F^2$

Flash chips may appear in HDDs, for Microsoft's "instant on" O/S

- Flash capacity now 1 GByte chips for \$70 (Toshiba) 6/60 MB/s Read/Write, F=70 nm
- MRAM bit cell = $20F^2$

Toshiba, NEC magnetic tunnel junction moving to 6-8F² Issues are power, yield, cost, device margins over wafer

• HDD bit cell = 0.15F² = (1.2FxF/8) = 13X denser than flash Only the *track* density is limited by minimum litho F (head width) The linear bit density is set by magnetic recording design

Bit length set by film thicknesses (~1nm), fly height (15 nm), magnetics

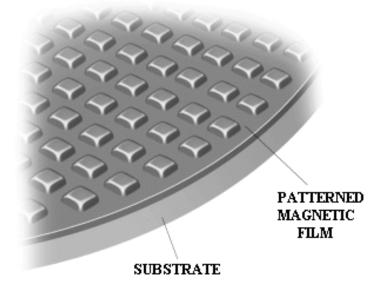
All are much smaller than F

Gordon Hughes April 2005

IEEE MassStor 2005

Companies Active in MRAM

- Cypress Semiconductor, San Jose Expects \$2 million MRAM sales this year.
- Current chips 4-8 Mbits << 8 Gbit flash
- **Commercial MRAM:** IBM, Infineon, Freescale, NEC, Toshiba, Samsung, Sony, Taiwan Semi, Hewlett-Packard, Philips
- Military MRAM: Honeywell, Motorola
- **Patents:** Motorola, Non Volatile Electronics

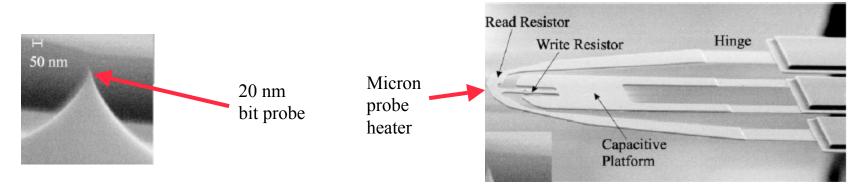

HP's Molecular Storage

- Molecular electronics Architecture
- Programmable crossbar circuit arrays, Two-terminal bit latch devices
- Goal is < 10 nanometer size bits
- Access problem not addressed: HP experimental line widths are 5–20 μm, active bit latch junction areas 5–200 μm² This is not high density storage

HDD Patterned Magnetic Media

- Today's HDD recording May limit at ≈150 Gbits/in²
- Patterned media May go to 1 Tbit/in² (24 nm patterning means F=12nm)
- Flash is patterned bit example
- First products: patterned tracks Side step bit litho limits Preserve 13X flash density

(Scientific American, May 2000)



The IBM 'Millipede'

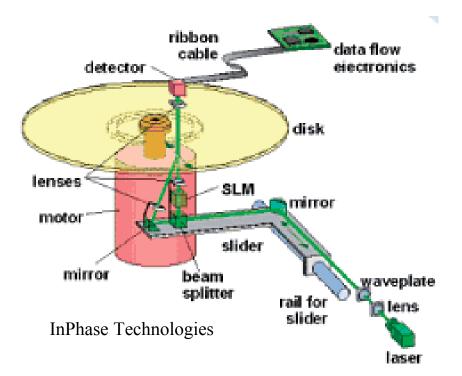
- Thermomechanical write/read process
- Must have HDD capacity, above flash
- Research demos, Mostly single probe
- 641 Gbit/in², 20 nm bits, 40 nm bit pitch
 400 user Gb/in² from (1,7, 2/3) modulation code
- Data Access problem: Need 20 nm pitch multi probe *arrays* But millipede single probe heater is 5 x 2 μm

Array Heads need Nanosize Structures

H. Pozidis et al, Demonstration of Thermomechanical Recording at 641 Gbit/in2, IEEE Trans Mag, 40, 4, July 2004

- Same problem with hard drive *array* heads 100 nm pole tips with 5 um head structures,
- Makes high density array heads impractical
- HDDs use one high speed channel per surface

Gordon Hughes April 2005


IEEE MassStor 2005 12

IBM exhibits Millipede prototype at CeBit

- 6.4x6.4 mm demo chips for SD Flash card
- Intended to compete with Flash
- **4096 silicon tips create 10 nm pits** Potentially 1,200 Gbit device?
- Millipede "tracks" only 100 nm long
 - ... Demo capacity only tens of kbits

Holographic Storage

Holographic Data Storage The wave of the future ...always has been ...always will be -Anonymous HDD skeptic

InPhase Technologies Holographic Drive

- Bell Labs Research work, spun off in Longmont CO
- Several decades of work may succeed
- A rotating WORM disk, like optical CD/DVD
- Suited for fast serial access, like CD/DVD-R
- Prototype 200 GB per 130 mm disk, 20 MB/sec
- 12 MB of data each 407 nm blue laser disk spot High fly head (mm), like optical disks
- InPhase currently selling media & test equipment
- **Partners:** Hitachi-Maxcell, Imation, ALPS

More Holographic Companies

Collosal Storage Corp

Atomic Holographic's Nanostorage Drive Entangled Particle Holographic NanoStorage

Opticom ASA

Bacteriorhodopsin organic protein molecules PC-card format polymer memory

• Other holographic WORM disk efforts: Aprilis, Holoplex, HGST, Optilink, Holostor, Matteris

Conclusions

- Use HDDs for 100's of GB Fastest writing, 100X lower cost, no bit wear
- Flash for <4 GB, moving up fast No moving parts, compact, plug & play
- Patterned media has serious F problem
- Is there a 4-8 Mbit for MRAM?
- Millipede & Molecular not close Both in early research stage

