

QoS Provisioning Framework for an OSD-based Storage System*

Yingping Lu
University of Minnesota

lu@cs.umn.edu

David H. C. Du
University of Minnesota

du@cs.umn.edu

Tom Ruwart
IOPerformance Inc.

tmruwart@ioperformance.com

Abstract*

Quality of Service (QoS) is crucial for certain
applications such as multimedia. As the Object-based
Storage Device (OSD) protocol emerges as the next
generation storage technology, QoS provisioning for
OSD-based systems has also received a great deal of
attention. In this paper, we propose a QoS framework for
OSD-based storage system that integrates both the
network QoS and storage QoS. We examine the existing
OSD specification and analyze the QoS requirements for
applications on OSD clients. Based on the QoS
requirements analysis, we propose a three-level QoS
specification. We further elaborate on extensions to the
existing OSD and iSCSI protocol to support our QoS
specification. These extensions are then incorporated with
the current OSD reference implementation. Finally, we
discuss both the implementation structure and issues
encountered as part of this study.

1. Introduction

With the ubiquity of TCP/IP networks and the
increased popularity of network applications, Quality of
Service (QoS) has been extensively studied. QoS is
crucial for real-time applications running on a network,
such as streaming video and voice over IP, which demand
certain guarantees of network bandwidth and delay
variance. Generally speaking, QoS is an end-to-end issue,
i.e. from application to application [8]. The QoS
enforcement involves transport, network and end system.
There has been plethora of QoS research in the TCP/IP
network transmission domain [9-14], as well as disk
scheduling in end-systems [15-25] to satisfy different QoS
requirements in storage data transfers. However, these two
aspects of QoS (network QoS and storage QoS) are often
studied separately [8]. For example, the storage
scheduling schemes rarely consider the effect of network’s
condition.

* This work is supported by StorageTek, Veritas, Engenio, and Sun
Microsystems through their memberships in the University of
Minnesota Digital Technology Center Intelligent Storage Consortium
(DISC).

Recent advances in storage technology have brought
about the Object-based Storage Device (OSD) protocol
[1][2]. The Storage Networking Industry Association
(SNIA) OSD Standard [1] and the Lustre Project [3]
represent two OSD-centric efforts. The first deals with the
development of a standard OSD protocol that is part of the
SCSI standard and implies interoperability with any
standard SCSI disk drive that implements the OSD SCSI
command extensions. On the other hand, Lustre, is
focused on the development of a file system that
communicates with object devices rather than traditional
block devices over an OSD-like protocol. This is an
important aspect of the evolution of OSD as a protocol as
Lustre represents an “application” that can fully utilize an
OSD hence making it a good platform for testing and
validating OSD concepts such as QoS.

Compared to traditional block-level data access, OSD
offloads storage management functions (such as space
allocation) from a traditional file system to the object
device, and consequently offers object-level data access to
its clients. As a result, the OSD protocol imposes new
challenges and opportunities for QoS provisioning to its
clients.

In most of the previous QoS studies it was assumed
that the server had a dedicated storage system with a
direct I/O connection. In this study, we assume the OSD
device is shared by a number of clients connected through
network rather than directly attached to a single server.
Furthermore, not only will each server have different QoS
requirements for their object access, but each server
and/or object access may also have quite different network
access characteristics, For example, each server and/or
object device connection may have a different data path,
thus implying different available network bandwidth,
variable delay characteristics, … etc. The intelligence
embedded on object devices can be used to assess the
QoS (and other) requirements of its data objects, monitor
the current condition and capacity of storage devices, and
to measure the existing networking conditions on its
interface to its clients. The focus of our study is to explore
the integration of both the storage QoS and network QoS
for QoS provisioning and guarantees in this new
environment.

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE

In this paper, we propose a QoS framework for this
OSD-based storage system. We first analyze the QoS
requirements in an OSD-based storage system. Based on
the analysis of these QoS requirements, we present a
three-level QoS specification. We then propose extensions
to the existing OSD and iSCSI protocol to address the
QoS specification requirements. After addressing the QoS
specification, we investigate integrating the QoS
framework within an OSD. We discuss the framework
components and challenges encountered in this integration
effort. To demonstrate the effectiveness of the proposed
framework, we are working on a reference implementation
of the SNIA OSD protocol with the incorporation of the
proposed extensions and framework. Finally, we discuss
both the implementation structure and issues encountered
in this study.

2. Data Access QoS Requirements in OSD
Storage System

In this section, we discuss the data access QoS
requirements in an OSD storage system. We begin with a
brief description of the OSD Storage Architecture and
follow with a more in depth description of the
requirements as they relate to QoS.

2.1. OSD Storage Architecture

Figure 1 shows a typical OSD-based storage
configuration that includes both an OSD hardware
infrastructure and OSD-based file system software. The
system in general consists of three main components:
Clients (a.k.a servers and/or initiators), a Metadata server,
and OSDs. Clients initiate access requests to object
storage devices. The Metadata server makes the
connection between human-readable file names and the
objects that compose those files. Its primary responsibility
is to maintain metadata information (such as creation time,
size, location, security, authentication and access control
etc.) for the files and the associated objects in the OSDs.
It decouples the metadata processing (control information)
from regular data access to improve client data access
performance. In other words, no file data travels through
the Metadata server. All data transfers are directly
between the client and the OSD containing the object of
interest. The OSD stores data objects and provides object
data access (read/write) to its client. Normally, these
components are connected through a TCP/IP network but
they can also use other networks as required (i.e. IB, FC,
…etc.)

2.2. QoS Requirements for OSD

As an emerging storage access protocol, OSD provides
a generic framework to store and deliver data objects for
diverse applications. Data can be accessed by applications
on the client through a TCP/IP network. Considering the
diversity of clients and applications running on clients, we
have defined three-levels of QoS requirements:

Level 1: Object-level QoS, (i.e. the QoS attributes
pertaining to a particular object). This is largely driven by
real-time applications that require QoS for data access
(i.e. playout). For example, an MPEG-4 video object
requires 4Mbits/s bandwidth with very low jitter when
streaming the data from the storage device to the client.
These attributes (BW and jitter) are characteristics of the
object that describe how the object should be delivered to
a client unless otherwise stated. In the event that these
access characteristics are not required for a particular
access, they can be over-ridden on a per-session or per-
operation basis as described in the following levels.

Level 2: A QoS session. A “session” is defined as the
amount of time that a particular client needs to access the
contents of any particular object (generally between the
time the object is opened and closed). For example, this is
important within the context of data storage consolidation
where a corporation may place its data remotely but needs
to maintain the QoS requirements for access to objects on
the remote storage system. Paper [15] proposed a
virtualized storage with QoS attributes to address these
QoS requirements. In this environment, the QoS goals
should be applied to all requests through out this session.
Another example of session-level QoS is related to the
MPEG-4 example given for Level-1 above. Even though
an MPEG-4 object may have an access bandwidth of
4Mbits/sec during playout, it may also be necessary to
access that object at a much higher bandwidth during a
copy operation. Therefore, a copy “session” would
override the default access attributes with temporary
access attributes that exist only for the life of the session
and only for that particular client and application program.

Client 2
(initiator)

Metadata
Server

TCP/IP
Network

OSD

Client 1
(initiator)

OSD/SCSI
iSCSI

TCP/IP

Figure. 1 OSD-based system

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE

Level 3: A QoS operation. At this level a QoS attribute
only applies to one specific operation. For example, when
an application on a client requires immediate access to a
certain amount of data within an object, a QoS attribute
can be specified for this single request.

These three scenarios represent QoS at three different
levels, with the object-level QoS most generic and
operation-level QoS most specific. In practice most object
access will have only one level of QoS specified. If there
are QoS requirements at multiple levels associated with an
object session, the operational-level QoS takes
precedence, followed by the session-level, and then the
object-level QoS.

It is important to note that the QoS levels are
independent of the QoS attributes. For example, the QoS
attributes for an MPEG-4 data stream (BW and jitter) are
different than the QoS attributes for a gaming object
(latency). QoS-levels can be applied to any set of access
attributes.

Finally, some clients may have statistical QoS
requirements rather than explicit requirements as
described above. For example, when a client accesses a
storage device at a remote data center the QoS
requirements may be specified as guaranteed bandwidth
averaged over some period of time (i.e. 1 day), a lower
average response time, or an extremely low level of data
loss (i.e. dropped frames). In this paper we examine the
following two performance metrics:

• Bandwidth: the number of bytes transmitted per
second. The data delivery system (i.e. the network)
and storage subsystem should provide the required
bandwidth to the client.

• Delay: the elapsed time between when a command
is issued and the first byte of data is received. The
bandwidth will determine when the last byte is
received in any particular transmission. Delays
within a particular transmission are represented in
the delivered bandwidth.

3. Proposed QoS Enhancements to the OSD
and iSCSI Specifications

Based on the above analysis of QoS requirements, we
propose several extensions to the current SNIA OSD
specification and the iSCSI standard to address the needs
of these requirements.

3.1. Object-level QoS Specification

The first extension we propose is the addition of a QoS
attributes page. This page defines the fundamental QoS
attributes and values used on a per-object basis. Since
these attributes apply to a specific object independent of
which client accesses it, this page defines the Object-level

QoS for the associated object. Therefore, an object that
requires specific QoS access characteristics should have
its QoS attribute values set in its QoS attributes page. The
QoS attributes page is defined as follows:

Table 1. The extended QoS attributes Page

Attribute
Number

Length
(bytes) Attribute

Client
Settable

OSD
logical

unit
0h 40 Page

Identification
No Yes

1h 20 Bandwidth Yes No

2h 20 Delay Yes No

3h to
FFFFFE
h

Reserved No

We define two attributes in this page: bandwidth and

delay. The bandwidth attribute can be either a hard
guarantee or soft guarantee. A hard bandwidth guarantee
ensures that each operation will achieve the bandwidth
specified in the bandwidth attribute. A soft bandwidth
guarantee is more flexible. It ensures that the average
bandwidth over some period of time will meet the
bandwidth specified in the bandwidth attribute. In
addition, the bandwidth requirement can also be specified
at several levels. Each level specifies a range of
bandwidth. For example, three levels of bandwidth can be
specified as high, medium, and low.

The delay attribute can also specify a particular value
for a specific delay requirement or for a range of delays.
Table 1 shows these attributes and associated parameters.
Compared to other types of attributes, the QoS attributes
will be enforced by the object storage device runtime
environment when an object with a QoS attribute page is
delivered.

For our implementation we use 8000h as the page
number for QoS attributes page for a user object. In the
numbers allocated for use with user object attributes
pages, 8000h-EFFFh are reserved for other standard
attribute page definitions like the QoS attribute page. We
expect QoS requirements for future applications to allow
this attribute page to be included in a future version of the
OSD protocol specification much like security
requirements.

3.2. Transient QoS Attribute Specification and
Object Sessions

In addition to the QoS attribute page, which is stored
permanently in the object device, we propose the concept
of “transient QoS attributes”. In contrast to permanent
attributes, transient attributes only affect the behavior of
the I/O operations for a given period of time. We define
this “period of time” as an object “session”. In addition to

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE

the QoS parameters (like bandwidth and delay) previously
described, we define a parameter to specify a “session ID”
that is used to distinguish different applications either
running on one client machine or on several client
machines. Figure 2 shows the proposed QoS attributes. To
define an object session to the object storage device, one
of three methods can be used:

1) A Time To Live (TTL) value can be used to
specify the length of time that session-level QoS
attributes of the object should be observed for
I/O operations associated with a specific session
ID. The TTL starts upon the receipt of the
Transient QoS Attribute for an object. Once the
specified time expires, the default QoS
parameters for the object are used.

2) An Operation Count (OC) can be used to specify
the number of I/O operations that the object
device should apply the Transient QoS Attributes
to. After this number of operations has been
executed on the associated object, the default
QoS parameters for the object are used.

3) An explicit method of starting and ending a QoS
session involves a parameter within the Transient
QoS Attribute called “SessionActive”. To denote
the start of an object QoS session, SessionActive
would be set to a non-zero value. Conversely, to
end an object QoS session the SessionActive
would be set to 0.

Table 2. Get/Set CDB Format values (offset 11)

Value Description

00b Attributes involved only affect the current
operation

01b Attributes involved only affect the current
object session

10b Get an attributes page and set an attribute
value

11b Get and set attributes using list

To distinguish permanent attribute from transient
attributes, we propose to extend the semantics of field
Get/Set CDBFMT in the CDB (at offset 11). This field
contains two bits. The values 10b and 11b were already
defined. We propose a value 00b for this field to indicate
that the included QoS attributes are used only for the

current operation, and a value 01b that indicates the
included QoS attributes be used for object session. The
Table 2 shows the format of this field and its semantics.

3.3. iSCSI Session-level QoS Specification

In addition to the proposed OSD extensions, we
propose extending the iSCSI specification [4] to
accommodate QoS for storage-centric network traffic. The
reason for this is because OSD will be run over iSCSI and
deliver data through a TCP/IP network. In order to
support the QoS specification we have proposed, the
underlying iSCSI transport needs to be extended.

In iSCSI, there is a rich set of predefined QoS-related
parameters that are related specifically to the network (as
opposed to the storage device). For example,
MaxConnections defines the maximum number of
connections that can be used for a session. ImmediateData
specifies whether data is allowed to be attached to an
iSCSI command Protocol Data Unit (PDU). In order to
support QoS for a session, we propose adding storage-
centric QoS parameters to the iSCSI specification. The
proposed parameters are as follows:

• MaxBandwidth: This is the maximum bandwidth
required for this iSCSI session. The unit is
Kilobits/second. The bandwidth is the data rate as
seen by the initiator.

iS C S I S e s s io n
m a n a g e r

R e s o u rc e
M o n ito r

R e s o u rc e
a l lo c a t io n

D is k
s c h e d u lin g

A d m is s io n
c o n t r o l

d2

C l ie n t
R e q u e s t

O S D S e s s io n
M a n a g e r

d3 d4d1

O S D
C o m m a n d

H a n d le r

Figure 3. QoS framework in OSD

TCP/IP
Network

Client 1
(initiator)

OSD

App 1

App 2

App N

Client M
(initiator)

App 1

App 2

Object
permanent
attributes

Object
temporary
attributes

Sess QoS

Oper QoS

QoS
(default)

MPEG-4 Streaming
4 Mbits/sec

Backup
100 Mbits/sec

Figure 2. The proposed QoS attributes

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE

• MinBandwidth: the minimum bandwidth required
for this iSCSI session. The unit is also
Kilobits/second. The bandwidth is the data rate as
seen by the initiator. The Target must provide a
delivered bandwidth between MaxBandwidth and
MinBandwidth. If the target cannot provide the
required bandwidth, the returned status will report
a denial of the QoS requirement with the reason
“ insufficient resources in the target”.

• MaxDelay: the maximum response time for
requests in the iSCSI session. The unit is
nanoseconds. This delay includes the two-way
network transmission time and the delay within the
target. The MaxDelay time is the time from when
the client issues the command until the first byte of
data is received by the client.

• MinDelay: the minimum response time for
requests in the iSCSI session. The unit is
nanoseconds. Parameters MaxDelay and
MinDelay designate the expected response time
range for requests in this session. The MinDelay
time is the time from when the client issues the
command until the first byte of data is received by
the client.

These QoS related parameters are exchanged and
negotiated during the iSCSI session setup phase. In iSCSI,
all communications (command request, data transferred
and response of execution status) occur in the context of
session. Each iSCSI session has at least one TCP
connection. Initially, when a client connects to a target, an
“iSCSI session setup” phase starts. During the iSCSI
session setup phase, an initiator goes through a discovery
phase to locate the target. Once the target is located, a
“login” phase is initiated. In the login phase, security
parameters are negotiated and the authentication and
authorization methods are determined. After a successful
login phase completes, the operational parameters are
negotiated during the “operational parameter” phase.
During this phase the iSCSI QoS parameters would be
negotiated between the client and target. Once the iSCSI
QoS parameters are determined, the target will enforce
these QoS requirements.

4. QoS Enforcement in OSD

The previous section addresses the specification of
QoS requirements from a client’s point of view. In this
section, we discuss how to enforce the network and
storage QoS requirements by the object storage device.

4.1. QoS Framework in an Object Storage
Device

Figure 3 shows the proposed QoS framework in an
Object Storage Device. This framework consists of seven
components that reside in the Object Storage Device:

1. OSD Command Handler: processes incoming
OSD commands

2. The iSCSI Session Manager: manages QoS in the
context of an iSCSI session

3. The Object Session Manager: manages QoS in the
context of an individual object session

4. Admission Control: determines when incoming
commands will be processed given the current
resource availability as determined by the
Resource Usage Monitor.

5. Resource Usage Monitor: maintains a current view
of resource usage on the object storage device and
network channels. It provides this information to
the disk scheduler and resource allocator. The
Resource Usage Monitor not only receives
resource allocation information from other
modules, it can also proactively probe the resource
usage in certain situations. For example, when a
session has been idle for a while, the resource
monitor can actively probe the initiator to collect
the available network bandwidth and network
round-trip time.

6. Disk Scheduling: schedules operations to be
performed on the disk storage subsystem on the
back-end of the object storage device. The
operations are scheduled based on their QoS
requirements

7. Resource Allocation: allocates and relinquishes
disk storage space, disk bandwidth, disk access
windows, and front-end host interface bandwidth
based on the QoS requirements.

4.2. Admission Control

Due to limited resources in the object storage device it
is possible that not all clients’ QoS requirements can be
satisfied as the workload increases beyond the capabilities
of the object storage device. Admission control is used to
govern whether a new request can be satisfied based on
the existing resource usage and workload.

For a new incoming request, an admission control
check will be applied to determine if adequate resources
are available to provide the required QoS. If the required
QoS can be satisfied, the request will be accepted.
Otherwise, the request will be rejected. The corresponding
response message will indicate that insufficient resources
were available to satisfy the QoS for this request.

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE

Admission control occurs at two levels: OSD command
level and the iSCSI session negotiation phase. At the OSD
command level the QoS requirements can be retrieved
from either the QoS attribute page of the requested object
(implicit QoS), or embedded in the command as described
in Table 2 (explicit QoS).

During the iSCSI session negotiation phase the iSCSI
QoS parameters will be established between the client and
OSD target. At this point, the admission control
mechanism needs to check the current available resources
and QoS requirements to determine whether the QoS
requirements (implicit and explicit QoS) can be met. In
addition, for the session-level QoS requirements, the
session workload will be tracked so that it will not violate
the QoS requirements. If the QoS requirements cannot be
met then the request will either be rejected or treated as
best-effort request depending on the requestor.

4.3. Disk Scheduling

Disk scheduling is an important mechanism in OSD to
enforce the QoS requirements for multiple clients. Our
disk scheduling scheme considers the disk
characterizations such as disk I/O bandwidth and data
placement as well as available host-side network
bandwidth for each session and takes network round-trip
delay time into consideration. It is very challenging to
obtain available network bandwidth for a given path since
the network is shared and the traffic/congestion is difficult
to predict. There is a great deal of existing research in this
area [26-28]. Paper [28] demonstrates an active probing
scheme where a sequence of back-to-back packets is sent
out and the available bandwidth is discovered based on
the gaps between received packets. The OSD environment
is similar but more challenging. We have a number of
different sessions to maintain, and consequently many
different paths exist essentially from the various objects to
their associated clients. In our design, we take advantage
of the existing approach and adapt them to our OSD
environment.

We apply two techniques to disk scheduling in order to
maximize the aggregate performance. First, we break
down large requests to sub-requests to allow more
parallelism between disk I/O and network I/O. However,
there is tradeoff here: the split of requests allows more
parallelism, but may worsen disk utilization due to the
added seek time. Secondly, we implement two-level
scheduling: logical level and physical level. At the
physical level, we take the data delivery order requirement
into consideration. This can reduce the resource such as
buffer usage and improve the delivery efficiency because
this essentially becomes a FIFO pipeline. At the logical
level, requests are scheduled based on the QoS
requirement of each request, their request size, and

available network bandwidth. The details about the
scheduling schemes will be presented in a separate paper.

5. Reference Implementation

In order to demonstrate the proposed QoS extensions
we are working on an OSD reference implementation
(based on Intel version 20) that will incorporate these
extensions. We will then write associated drivers and
applications that will exploit the QoS capabilities and run
a variety of experiments to determine the effectiveness of
these extensions.

Figure 4 shows the software architecture of the
reference implementation. On the initiator side, there are
three drivers:

1. The OSD file system intercepts and processes file
I/O requests from the application and sends them
to the object storage device driver

2. The object storage device driver builds an
extended SCSI command data block for each I/O
request to an object and passes the SCSI CDB to
the iSCSI driver

3. The iSCSI driver handles session establishment
and encapsulates the SCSI commands and data in
an iSCSI PDU format and sends them to the object
storage device over a TCP connection

On the target side, the OSD Command Handler
receives commands from the underlying iSCSI layer and
processes the commands. It invokes the storage
management component to locate an object and passes the
command to disk scheduling to execute the disk I/O
operation.

The QoS requirements are specified by the initiator. An
application can specify the QoS attributes of an object or a
particular operation through ioctl call. For a session level
QoS specification, a client can specify the QoS parameters
in configuration files that will be extracted during the
object session setup time.

The target is responsible for QoS enforcement. The
Admission Control manager is used to check whether the
available resource in the object storage device and the
network can deliver the required QoS. The Resource
Allocation Manager and Resource Usage Monitor are
responsible for the resource management. They monitor
the I/O bandwidth usage, the network usage and memory
usage and allocate these resources as required and as
available. Finally, the disk scheduler partitions and
schedules the actual disk I/O requests from different
sessions based on their individual QoS requirements.

6. Conclusion

As OSD emerges as the next significant storage
protocol, the QoS guarantee for applications running on

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE

OSD Driver
(so)

TCP/IP Protocol Stack

iSCSI Driver

OSD File System (osdfs)

Application

Client

OSD Command
Handler

(OSD Target)

TCP/IP Protocol
Stack

iSCSI Protocol
Services

OSD Storage Unit

TCP/IP
Network

OSD/SCSI Protocol

iSCSI Protocol

TCP/IP Protocol

iSCSI Session

OSD Interface

iSCSI Interface

TCP/IP Transport

VFS

OSD
dev ice

Disk Scheduling

Storage
management

Admission
control

Resource
allocation
& monitor

Figure 4. The software architecture

multiple clients accessing shared storage devices is
becoming more important than it was when every
application had essentially a direct connection to a
storage device. In this paper, we have examined the
current SNIA OSD and iSCSI protocols and presented a
three-level model for QoS requirements that apply to the
OSD protocol: object-level, operation-level and session-
level. Based on our analysis, we have proposed
extensions to the existing OSD and iSCSI protocol
specifications to address QoS requirements in a storage-
centric application. In addition to the QoS extensions,
we have also presented a QoS framework for use within
an OSD device. Finally, we are working on a reference
implementation that will incorporate our extensions in
an iSCSI OSD. We have discussed the architecture of
the reference implementation and associated issues. Our
future work will involve studying the resource allocation
and scheduling in an object storage device that will
enforce the QoS requirements.

References

[1] J. Satran, et.al., “Object-based Storage Device
Commands”, http://www.t10.org/drafts/osd/,
Oct. 2004.

[2] M. Mesnier, G. R. Ganger, E. Riedel, “Object-
Based Storage,” IEEE Communications
Magazine, Vol. 41, No.8, pp 84-90, August
2003

[3] Lustre project, http://www.lustre.org
[4] J. Satran, K. Meth, C. Sapuntzakis, M.

Chadalapaka, E. Zeidner. “Internet Small

Computer Systems Interface (iSCSI),” RFC
3720, IETF, April 2004.

[5] K.Z. Meth and J. Satran, “Design of the iSCSI
Protocol,” IEEE/NASA MSST 2003, Apr. 2003.

[6] Y. Lu, D. H.C. Du, “Performance Study of
iSCSI-based Storage Subsystem,” IEEE
Communications Magazine, Vol. 40, No. 8,
2003

[7] Y. Lu, F. Noman, and D. H.C. Du, “Simulation
Study of iSCSI-based Storage System,”
IEEE/NASA MSST 2004, Apr. 2004

[8] C. Aurrecoechea, A. Campbell, and L. Hauw, A
survey of QoS architectures, Multimedia
Systems, Vol. 6, No. 3, pp: 138-151, 1998

[9] R. Braden, D. Clark, and S. Shenker, “Integrated
services in the Internet architecture: An
overview,” RFC 1633, IETF, July 1994

[10] R. Braden, L. Zhang, S. Berson, S. Herzog, and
S. Jamin, “Resource ReSerVation Protocol
(RSVP) –Version 1 functional specification,”
RFC 2205, IETF, Sept. 1997

[11] S. Shenker, C. Partridge, and R. Guerin,
“Specification of guaranteed quality of service,”
RFC 2212, IETF, Sept. 1997

[12] M. Carlson, W. Weiss, S. Blake, Z. Wang, D.
Black, and E. Davies. “An Architecture for
Differentiated Services,” RFC 2475, IETF, Dec.
1998

[13] R. Guerin and V. Peris, “Quality-of-service in
packet networks: basic mechanisms and
directions,” Computer Networks Journal, Vol.
31, No. 3, Feb. 1999

[14] I. Stoica and H. Zhang, “Providing guaranteed
services without per flow management,” in

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE

Proc. ACM SIGCOMM 99, (Cambridge, MA),
Sept. 1999

[15] E. Borowsky, E. Borowsky, R. Golding, A.
Merchant, L. Schrier, E. Shriver, M. Spasojevic,
and J. Wilkes, “Using attribute-managed storage
to achieve QoS”, in Proc. of 5th Intl. Workshop
on Quality of Service, 1997

[16] P. Shenoy and H. Vin, “Cello: A disk scheduling
framework for next-generation operating
systems,” in Proc. of ACM Sigmetrics, 1998

[17] J. Bruno, J. Brustoloni, E. Gabber, B. Ozden, A.
Silberschatz, “Disk scheduling with quality of
service guarantees,” in Proc. of the IEEE Intl.
Conf. On Multimedia Computing and Systems,
1999

[18] R. Wijayaratne and A.L.N. Reddy, “Integrated
QoS management for disk I/O,” in Proc. of
IEEE Int. Conf. on Multimedia Computing and
Systems (ICMCS'99), (Florence, Italy), June
1999

[19] P. Bosch, S. J. Mullender, “Real-Time Disk
Scheduling in a Mixed-Media File System,”
Sixth IEEE Real Time Technology and
Applications Symposium (RTAS 2000),
(Washington, D.C.), Jun. 2000

[20] J. Wilkes, Traveling to Rome: QoS
specifications for automated storage system
management, In International Workshop on
Quality of Service (Karlsruhe, Germany), pp:
75-91, Jun. 2001

[21] W. G. Aref, K. E. Bassyouni, I. Kamel, M. F.
Mokbel, “Scalable QoS-Aware Disk-
Scheduling,” International Database

Engineering and Applications Symposium
(IDEAS'02), pp. 256-265, (Edmonton, Canada),
Jul. 2002

[22] Z. Dimitrijevic and R. Rangaswami, “Quality of
service support for real-time storage systems,”
in Proc. of Intl. IPSI-2003 Conference, (Stefan,
Montenegro), October 2003

[23] K. Kim, J. Hwang, S. Lim, J. Cho, and K. Park,
“A real-time disk scheduler for multimedia
integrated server considering the disk internal
scheduler,” in Proc. of the International
Parallel and Distributed Processing
Symposium, Apr. 2003

[24] S. Brandt, S. Banachowski, C. Lin, and T.
Bisson. “Dynamic integrated scheduling of hard
real-time, soft real-time and non-real-time
processes,” in Proc. of the IEEE Real-Time
Systems Symposium (RTSS ’03), Dec. 2003.

[25] C. R. Lumb, A. Mrchant, G. A. Alvarez, Façade:
virtual storage devices with performance
guarantees, In Conference on File and Storage
Technology (FAST 03), (San Francisco, CA),
Mar. 2003

[26] R. Carter and M. Crovella, “Measuring
bottleneck link speed in packet-switched
networks,” TR BU-CS-96-006, Boston
University, 1996

[27] K. Lai and M. Baker, “Measuring link
bandwidths using a deterministic model of
packet delay,” in ACM SIGCOMM, 2000

[28] C. Dovrolis, P. Ramanathan, and D. Moore,
What do packet dispersion techniques measure,
IEEE INFOCOM, Apr. 2001.

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE

