
Storage-Based Intrusion Detection
for Storage Area Networks (SANs)

Mohammad Banikazemi Dan Poff Bulent Abali
Thomas J. Watson Research Center

IBM Research
Yorktown Heights, NY 10598
{mb, poff, abali}@us.ibm.com

Abstract

Storage systems are the next frontier for providing
protection against intrusion. Since storage systems see
changes to persistent data, several types of intrusions
can be detected by storage systems. Intrusion detec-
tion (ID) techniques can be deployed in various stor-
age systems. In this paper, we study how intrusions can
be detected at the block storage level and in SAN en-
vironments. We propose novel approaches for storage-
based intrusion detection and discuss how features of
state-of-the-art block storage systems can be used for
intrusion detection and recovery of compromised data.
In particular we present two prototype systems. First
we present a real time intrusion detection system (IDS)
which has been integrated within a storage manage-
ment and virtualization system. In this system incom-
ing requests for storage blocks are examined for signs
of intrusions in real time. We then discuss how intru-
sion detection schemes can be deployed as an appliance
loosely coupled with a SAN storage system. The major
advantage of this approach is that it does not require
any modification and enhancement to the storage sys-
tem software. In this approach, we use the space and
time efficient point-in-time copy operation provided by
SAN storage devices. We also present performance re-
sults showing that the impact of ID on the overall stor-
age system performance is negligible. Recovering data
in compromised systems is also discussed.

1. Introduction

Intrusion detection systems (IDSs) are mainly either
host-based or network-based. Host-based IDSs oper-

ate as a part of the host operating environment [2, 13,
16] and monitor local activities for signs of intrusion.
Network-based IDSs monitor network traffic for signs
of suspicious activities [3, 14]. Storage systems are
the next frontier for providing protection against intru-
sion [15]. Storage systems see changes to persistent
data and can therefore detect several types of intrusions,
especially those persisting across boots. Storage sys-
tems are particularly suited for this purpose because
they continue operating even after the host system is
compromised. Furthermore, since they provide a nar-
row interface to the outside world (such as the SCSI
command set), they are more difficult to be compro-
mised themselves. Intrusion detection techniques can
be deployed in a diverse group of storage systems. In
this paper, we study how intrusions can be detected in
environments with SAN block storage systems. These
systems include a large number of commercial systems
such as IBM ESS, SVC, and DS4000 series, EMC Sym-
metrix, and Hitachi TagmaStore.

We propose two approaches for storage-based in-
trusion detection and discuss how existing features of
block storage systems can be used for intrusion detec-
tion and for recovery of compromised data. In particu-
lar we present two storage-based IDSs which we have
built in our labs. First we present a real time intrusion
detection system which has been integrated within the
IBM SVC, a storage management and virtualization en-
gine for Storage Area Networks (SANs). In this system
file-based ID access rules are converted to block-based
rules such that incoming requests for storage blocks are
examined for any sign of intrusion. When there is a
possible sign of intrusion, the content of the data block
is inspected if necessary. Whenever an intrusion is de-
tected, various actions such as informing the system ad-
ministrators, rejecting suspicious IO requests, or delay-

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE

ing them. Furthermore, we show that the performance
impact of the integration of the IDS into IBM SVC stor-
age system is negligible.

We then discuss a second IDS which can be deployed
as an intrusion detection appliance loosely coupled with
the storage system. The major advantage of this ap-
proach over the first IDS is that it does not require any
modification and enhancement to the storage system
software. In this approach, we use the space and time
efficient point-in-time copy operation provided by the
IBM DS4000 series storage controllers, called Flash-
Copy. These operations are used to create copies of
the logical volumes of interest. These copies are then
mounted for inspection and necessary operations are
performed on them to detect signs of intrusion. We use
the last known good copy volumes to recover compro-
mised data if an intrusion is detected. We also discuss
how a minor enhancement to storage systems, for pro-
viding a list of modified blocks to the IDS, can improve
the scalability of such a scheme.

The major contributions of this paper are as follows.

• Design and implementation issues for building an
IDS as an integrated part of a block storage system
are discussed.

• Performance results show that the performance im-
pact of using such an IDS on the storage system is
negligible.

• Another storage-based IDS is presented which
uses features of modern SAN storage systems such
as point-in-time copy to provide intrusion detec-
tion schemes without requiring any changes in
storage devices.

• Recovering data in compromised systems is also
discussed.

The rest of this paper is organized as follows. We
briefly discuss Storage Area Networks in Section 2. The
main components of rule base IDSs are discussed in
section 3. Then we describe the environment in which
we have developed our prototypes in Section 4. Sec-
tion 5 presents our prototype implementation. The per-
formance results are presented in Section 6. Related
work is discussed in Section 7. Future work and our
conclusions are presented in Section 8.

2. Storage Area Networks (SANs)

The networked storage market has been growing as
a result of growing demand for storage capacity. Net-
worked storage systems can be divided into two major

groups: Network Attached Storage (NAS) and Storage
Area Networks (SAN). NAS systems typically provide
a file system interface while SANs provide block stor-
age services. NAS systems are usually Ethernet-based
while SAN systems mostly rely on the Fibre Channel
interconnect. Introduction of iSCSI and Object Store
Devices are blurring the line between SAN and NAS.
In this paper we focus on SANs.

SAN systems are made of storage devices, special-
ized networks for connecting data storage devices to
servers and the required management layer for setting
up and maintaining connections between these servers
and data storage devices. Fibre Channel interconnect
is the primary interconnect used in SAN environments.
Similar to direct attached disks, SAN systems provide a
simple block level (fixed size) interface for storing and
retrieving data [5]. Figure 1 shows a SAN environment
with multiple storage devices.

Even though SANs have gained a wide acceptance,
the problem of managing a heterogeneous storage sys-
tem is still a major challenge [6]. Block virtualization
approach is used to address some of the complexities
involved in managing such systems by aggregating the
storage into a common pool. Storage units are assigned
to host systems (i.e., servers) from this common pool.
Furthermore, SAN storage virtualization and manage-
ment systems may provide performance enhancing ser-
vices such as caching, and other services such as copy
services. In the rest of this paper we refer to the storage
area network and the storage devices attached to it as
the SAN system.

Storage Devices

Host Systems

Storage Network
(switches, bridges, hubs, etc.)

St
or

ag
e

A
re

a
N

et
w

or
k

(S
A

N
)

Figure 1. Storage Area Network (SAN).

3. Intrusion Detection in SAN Environ-
ments

Rule-based (policy-based) IDSs are one of the major
kinds of IDSs. In this paper we focus on such IDSs. A

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE

rule-based Intrusion Detection system has three major
components: 1) access rules and mechanisms for spec-
ifying rules, 2) mechanisms for monitoring for rule vi-
olations, and 3) actions taken in response to rule viola-
tions. Storage-based IDSs have the same major compo-
nents. In this section we discuss these components for
IDSs in SAN environments.

3.1. Access Rules

Since files are what system users and administrators
mostly deal with, it is desirable and perhaps required to
define the IDS access rules with respect to files rather
than storage data blocks. File-based access rules can be
used to monitor accesses to the content of a file and/or
the corresponding metadata, such as the file access per-
mission fields. Access rules specify which files and
which parts of their metadata are to be monitored and
what types of access to these fields constitute a rule vi-
olation. Tripwire [11] is a file system integrity checker
and a host-based IDS which uses such a scheme. A
similar approach can be used for storage-based IDSs.
In such systems, a configuration file containing access
rules for files (or groups of files) is used. By the use of a
selection mask, each entry in this file defines how a file
can be accessed.

3.2. Detecting Intrusions

Even though access rules are defined with respect to
files, block storage devices have no notion of files or
how different blocks are associated with each other to
create a file. Therefore, SAN-based IDSs should be
able to bridge this gap. To this end, SAN-based IDSs
can take two main approaches: 1) converting file-based
access rules to storage block-based rules by understand-
ing file system data structures or 2) using file system
implementations to monitor/evaluate files at file system
level.

When file-based rules are translated to storage block
access rules, access to storage devices can be monitored
in real time. We call this type of IDS a real time IDS.
The translation can be performed by the block storage
system itself if it incorporates file system smarts or by
using a different system and feeding the translation to
the block storage system. In order to have a real time
IDS, the IDS needs to update block-based rules in a real
time fashion whenever it is needed.

If real time intrusion detection (ID) is not a require-
ment, file system level ID techniques can be deployed.
We call these systems delayed IDSs. Several features

provided by modern SAN systems can be used to facil-
itate the ID task. In particular, copy services provided
by block storage systems can be used to create a copy of
volumes of interest for mounting file systems and mon-
itoring and evaluating the system at file system level. In
Section 5, we will discuss two implementations where
each deploys one of these approaches.

3.3. Response to Intrusions

A set of potential methods for responding to intru-
sion has been discussed in [7, 15]. These methods in-
clude generating alerts, preventing requests from com-
pleting, and slowing storage requests while awaiting
response from system administrators. These methods
can be deployed by storage-based IDSs. In addition to
these schemes, operations such as block level version-
ing [4], point-in-time copy and continuous copy can be
employed whenever a possible violation is detected to
preserve a copy of data while the situation is being an-
alyzed. For delayed IDSs, it is important to provide
mechanisms for recovering data by rewinding the whole
disk to a point in time when no intrusions had occurred.
Point-in-time copy operations can be used to keep a
good copy of the volumes of interest available. These
copies can then be used for recovering individual files
or the whole volume.

In the next section we briefly discuss the character-
istics of two typical SAN systems. Then, we show how
IDSs discussed in this section can be built on these stor-
age systems.

4. Implementation Environment

In this section, we present the description of two
storage systems used in our prototypes: IBM TotalStor-
age SAN Volume Controller (SVC) and IBM TotalStor-
age DS4000 (DS4000).

IBM SVC is a storage management and virtual-
ization system built on a cluster of Pentium-based
servers [6]. SVC provides redundancy, modularity and
scalability and manages SAN-attached block devices. A
cluster-based approach is used in order to provide a bet-
ter scalability and also higher availability. SVC virtual-
izes storage devices into a common pool and allocates
storage to host systems from that common pool. Fur-
thermore, deployment of SVC in enterprises enhances
the manageability of enterprise storage systems by pro-
viding a single point of management for all of storage
devices in the system.

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE

SVC uses an in-band approach which means that all
I/O traffic as well as the management and configuration
requests is directed to it and are serviced by it. SVC
is designed such that it only uses off-the-shelf compo-
nent and can support different SAN fabrics by using
appropriate adapters. SVC software runs almost en-
tirely in user mode for better performance and avoid-
ing kernel-mode/user-mode switching. This character-
istic also makes the development and debugging of new
features much easier making SVC the perfect platform
for development and evaluation of new ideas and tech-
niques.

SVC supports advanced functions such as data block
caching, fast-write cache, copy services, and quality of
service metering and reporting [6]. Figure 2 shows a
pair of SVC nodes with different storage devices and
host systems. In such an environment Fibre Channel
zoning is used to zone host systems with the SVC on
one hand and storage devices and SVC on the other
hand. Fibre Channel zoning is performed such that host
systems cannot see the storage devices directly. All re-
quests from host systems is sent to SVC and SVC per-
forms the operation and returns the response to the host.
SVC caches data blocks for better performance.

Hosts

SVC
Storage Network

Hosts Zone

Storage Zone

Storage
Devices

Figure 2. Using the SVC storage system.

The other storage system we used for developing one
of our prototypes is an IBM DS4000 [9] system. IBM
DS4000 series is a family of mid-level storage con-
trollers capable of supporting terabytes of SAN attached
disks and hundreds of logical volumes (LUNs). In the
rest of this paper we refer to any of the members of
DS4000 series as a DS4000 system. DS4000 systems
use dual redundant components for high availability.
They also support multiple RAID levels for data protec-
tion. Similar to SVC, DS4000 systems use the in-line
design and provide data block caching. The DS4000
management software is used for creating LUNs and
mapping them to appropriate host systems.

DS4000 systems provide various copy services such
as a space and time efficient point-in-time copy called
FlashCopy. This operation provides a method for copy-
ing LUNs instantaneously because during the Flash-
Copy operation, content of the source LUN is not physi-
cally copied. Only control data structures for the newly
created LUN are created such that accesses to its data
blocks are referred to the corresponding physical data
blocks in the source LUN. Only when a block in either
source (original) or target (copy) LUN is modified is
the relation between corresponding data blocks in two
LUNs broken, affected blocks copied, and future ac-
cesses referred to different physical data blocks.

5. Prototype Implementations

In this section we discuss two prototype systems we
have developed. We first present a real time intrusion
detection system (IDS) built as an integrated part of
IBM SVC. Then we present the second prototype which
is a delayed intrusion detection (ID) appliance working
with IBM DS4000 systems. It should be noted that the
IDSs described here are research prototypes and do not
exist as parts of any IBM product.

5.1. Real Time Storage-Based (RTSB) IDS

We have built a real time IDS which monitors ac-
cesses to storage devices at storage block level. This
system is built as an integrated part of the IBM SVC
storage system. As mentioned in Section 3, for per-
forming ID techniques at storage block level, we need to
convert the file-based access rules, to block-based rules.
In our prototype, file-based rules are converted to block-
based rules by an enhanced SVC. The storage system is
provided with file-based access rules through the same
secure channels used for accessing it for administrative
purposes. SVC then converts these rules to block level
rules. A schematic of RTSB is shown in Figure 3. In
this figure we have omitted the storage network compo-
nents (such as Fibre Channel switches) for simplicity.
It can be seen that all incoming requests go through the
ID component first for inspection.

Currently in our prototype, the block storage system
identifies file system blocks associated with files in the
Linux ext2 file system by traversing the storage data
blocks and interpreting the super block and i-node in-
formation. In particular, for any given file in a Tripwire-
like access rule, corresponding file data blocks (and
then storage data blocks) are identified. These blocks
include both data and metadata blocks. Metadata blocks

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE

Hosts

SVC

Cache

RTSB

Storage
Devices

Figure 3. The RTSB IDS.

consist of not only the file metadata itself (that is the
block containing the file i-node) but also blocks asso-
ciated with the directories in the file path. For exam-
ple, metadata blocks for the file /xyz/abc consist of the
i-node block for the file abc and also the data blocks
for / and /xyz directories. Then, the file access rule is
converted to access rules for these blocks which specify
what types of access to a block or parts of a block are
permitted.

Once file-based rules are converted to block-based
rules, incoming requests to the storage system are mon-
itored. If there is any access rule associated with a
given block, the access is further examined to verify if
any of the access rules are violated. In the current im-
plementation, for each LUN a bitmap is used to keep
track of blocks with access rules. Whenever an access
rule gets associated with a block the corresponding bit
in the bitmap is set. This way, figuring out if an ac-
cess needs further scrutiny can be performed efficiently.
Obviously, more space efficient schemes such as using
hash tables for keeping track of data blocks with ac-
cess rules can be deployed. We have also implemented
another scheme which is more space efficient than the
bitmap approach. We will discuss this scheme in Sec-
tion 6.

If a block is not shared by multiple files, and in cases
where any write and/or read access to the block results
in a violation of an access rule, appropriate action can
be immediately initiated. Cases where a block is shared
by more than one file, and/or only accesses to certain
portions of the block causes a violation are more com-
plicated. For read accesses, there is no way for the stor-
age system to see which portion of the block is being
used and therefore if there is a rule which prohibits read
access to a block or parts of it, appropriate action should
be taken as if a violation has occurred. This feature is
used for implementing honey pot schemes for detecting
intruders. For write accesses, IDS needs to examine the
content of the block and compare it with the old content
to determine which part of the block is being modified

and if an access rule is being violated. In our imple-
mentation, whenever a write request to a block with re-
stricted write access is received, the current content of
the block is first read and then compared with the new
data in order to determine which part of the block is
being modified and if any rules are being violated.

The access rules are checked in a layer above the
SVC cache layer. Therefore, in cases where a compar-
ison between the current and new content is necessary,
the old content may be residing in the storage cache.
In these cases, the overhead of accessing the old con-
tent is very low. Storage blocks corresponding to files
which are being monitored can be given higher priority
for caching purposes. This feature is not implemented
in the current prototype. In Section 6 we investigate
the performance impact of the inspection of content of
data blocks. In current implementation, any rule viola-
tions triggers an email to the system administrator. The
violation is not only identified by the storage block but
also file(s) and file-based rules which have resulted in
the block level rule. In order to do this, each block level
rule has a pointer to the list of file level rules from which
it has been created.

5.2. File Level Storage-based (FLSB) IDS

The scheme presented in the previous section re-
quires modification of the storage system software and
firmware. Furthermore, it requires the conversion of
file-based rules to block-based rules by the storage sys-
tem. This requires that the storage system have the
smarts to interpret the metadata of file systems resid-
ing on its LUNs. This becomes a more challenging re-
quirement when a file system of interest is not supported
by the native operating system/environment of the stor-
age controller. In this section, we present a second
storage-based IDS we have built which addresses these
issues by operating at the file system level. The IDS
described here can be trivially implemented using any
storage controller supporting space/time efficient point-
in-time copy operation without requiring any changes
to the storage system.

A schematic of the FLSB system is shown in Fig-
ure 4. The storage used by upper host system(s) is being
monitored for signs of intrusion. FLSB in this figure is
made of the lower host system(s). The FLSB system
can be made arbitrarily secure by locating it in a secure
location and disconnecting it from the network. FLSB
can be made of multiple host systems each possibly run-
ning different operating systems such that the file sys-
tems used by host systems which are being monitored
can be easily monitored. FLSB can also be running on

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE

FAStT

Continuous
Flash Copy

Linux or
Windows
Server
Being
Protected

Intrusion Detection
and Recovery

(FLSB) Secure
Perimeter

Network attack:
e.g. worms, viruses

SAN
Local attacks or mistakes
(e.g. disgruntled
employees, accidental
deletes, etc)

Figure 4. The FLSB IDS.

virtual machines even though we have not used FLSB
in such environments.

The FLSB system uses the time and space efficient
point-in-time copy operation provided by modern block
storage systems. In our implementation, FLSB peri-
odically creates a space efficient point-in-time copy of
the LUN(s) of interest by using the DS4000 FlashCopy
operation and performs necessary operations on them
to determine if any storage volumes has been compro-
mised. The newly created copy LUN is mounted and
examined at file system level. Therefore, file-based ID
techniques can be easily applied. In our implemen-
tation, the Tripwire software is used for this purpose.
During the initialization of the system or when the IDS
configuration is modified, files of interest are scanned
and various signatures are created. These signatures are
stored in a different LUN where they cannot be mapped
to (or zoned with) any host machine and therefore can-
not be compromised by them. Then, periodically point-
in-time copies of LUNs of interest are created and the
ID software is run against them to create new signa-
tures. The original signatures are used to determine if
any file has been compromised. Since the point-in-time
copy operation is space efficient, the copy LUN is cre-
ated almost instantaneously and with a small overhead
and minimal storage IO traffic. Frequency of copy op-
erations depends on the number of LUNs (and the num-
ber of files in each of them) which are being monitored.
Multiple machines can be used in a FLSB system as the
number of LUNs being monitor increases. Therefore,
this scheme scales easily. In the current implementa-
tion by default the copy operation is executed every five
minutes. We will discuss a method for improving the
scalability of the system in Section 8.

Considering that in this system, intrusions are de-
tected with a delay, necessary measures are considered
for providing the capability of recovering compromised
data. In the prototyped system, at least one good copy
of the LUNs of interest are saved such that if and when
an intrusion is detected, compromised data can be re-
covered. A copy is called good when it passes the ID
examination and no violation is detected. Keeping such
a copy requires that the FLSB system can create at least
two copies of a LUN. When a copy is recognized as
good, it is not deleted until the next periodic copy is
created, examined and recognized as good. Once a vio-
lation is detected, the good copy is protected for future
reference and recovery of compromised data.

Similar to original signatures, the periodic copies are
created such that they are not accessible by the host ma-
chines or any entity other than the FLSB system. Fibre
Channel software zoning can be directly used for this
purpose. In our implementation, we use the mapping
feature of the DS4000 storage system through which the
hosts can access a given LUN.

Modern SAN storage systems which support point-
in-time copy operations usually support the notion of
consistency groups. A consistency group is made of
two or more LUNs and operations such as point-in-time
copy on any of the LUNs operate on all members of
the group. This provides the added benefit of support
for file systems which consist of more than one LUN.
It should be noted that journal file systems are partic-
ularly suitable for use with FLSB systems as they do
not require coordination between host systems and the
storage system for performing the FlashCopy operation
such that the copy is in a consistent state.

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE

In the implemented prototype, once a violation is de-
tected, the good copy is saved permanently until the ad-
ministrator chooses to remove it. This copy is then used
to recover a copy of the file or files which have been
compromised. These files are then stored in a separate
folder for inspection by the administrator. Alternatively,
these copies could be transferred to the LUN of interest
replacing the compromised version of files.

6. Performance Evaluation

We performed several experiments in order to deter-
mine the impact of adding ID to the storage system.
We ran synthetic benchmarks and performed worst case
analysis. In order to determine the impact of the incor-
poration of the ID software into the storage system, we
measured the performance of our block storage system
with and without our additions. As discussed in Sec-
tion 5, the RTSB IDS inspects all incoming requests to
determine if they may be violating one or more access
rules. The software overhead comes from two compo-
nents: the inspection of block numbers in incoming re-
quests, and then examining the content of write opera-
tions when need be.

We used Iometer[12] to access multiple LUNs (up
to 12 16-Gigabyte LUNs) through our storage system.
We used a variety of request sizes with varying percent-
age of reads and writes. We also changed the distribu-
tion of requests from 100% sequential to 100% random.
For all measurements we waited for the reading to sta-
bilize and reported the average of three readings. In
order to determine if an access to a data block violates
any access rules, we used a bitmap lookup scheme. In
order to reduce the memory requirement for storing the
bitmap, we maintained the bitmap only for LUNs which
required monitoring. We also divided LUNs into re-
gions and avoided keeping the bitmap for regions which
did not contain any blocks to be monitored. We only
maintained a list of LUNS and their regions of inter-
est which require a much smaller data structure. For the
first set of experiments none of the accesses required the
inspection and comparison of old and new content. We
measured the peak bandwidth under various conditions
as described earlier and noticed no measurable change
in our readings when this component of our software
was deployed. In other words, the change in sustained
storage bandwidth was negligible.

In order to measure the impact of comparing the cur-
rent content of data blocks with that of incoming write
requests, we marked various percentage of blocks as
blocks to watch for any modification of their content.

We also performed the comparison with the current con-
tent for the whole request even when requests spanned
across multiple file system blocks. In order to quantify
the results easily, we first made all the requests write
requests. Figures 5 and 6 show the results for 16-KB
and 128-KB message sizes. In these figures, the peak
bandwidth for Sequential and Random access patterns
can be seen. We report the results for cases where the
content of 1, 10, and 100 percent of blocks where being
inspected.

The results show that when the content of all ac-
cessed blocks is monitored, the performance is reduced
by a factor of 2. For example it can be seen that with
12 disks the peek observed bandwidth reduces from 90
to 44 for the 128KB writes with random access pattern.
This is expected as now each write requests results in
two accesses to disk: one to read the current content and
one to write back the data. It can be observed that, when
the percentage of inspections reduces, the performance
gets closer to the performance of the original system.
A previous study has shown that the percentage of ac-
cesses which require inspection of the content of data
blocks is well below 1% [7].

Figures 7 and 8 show the results for 30-70 write-
read access type distribution with 1%requests being in-
spected. The results show the peek bandwidth for two
cases: 1) where all disk blocks are accessed and 2)
where only a fraction of disk blocks are accessed and
the whole working set fits in the storage system cache.
It can be seen that in all cases the impact of our ID soft-
ware is negligible.

7. Related Work

An extensive survey of ID systems was performed
by Stefan Axelsson [2]. In this survey, ID systems were
classified into three groups according to the detection
methods they used: anomaly detection-based, policy-
based, and hybrid IDSs. Our prototype IDSs fall into
the policy-based category. Hybrid systems combine
both above approaches. A large number of ID systems
from each of these categories are discussed in this sur-
vey.

Another approach for classifying IDSs is based on
the part of the system in which the IDS operates. In
such a classification most IDSs are classified into one of
two groups: network-based IDSs and host-based IDSs.
Host-based IDSs such as those presented in [2, 13, 16]
operate as a part of the host operating environment and
monitor local activities for signs of intrusion. Network-

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE

 0

 10

 20

 30

 40

 50

 60

 70

 0 2 4 6 8 10 12

B
an

dw
id

th
 (

M
B

/s
ec

)

Number of Disks

16K request Sequential Access

Original
Original+ID

Original+ID 10%
Original+ID 1%

 0

 10

 20

 30

 40

 50

 60

 70

 0 2 4 6 8 10 12

B
an

dw
id

th
 (

M
B

/s
ec

)

Number of Disks

16K request Random Access

Original
Original+ID

Original+ID 10%
Original+ID 1%

Figure 5. Peak bandwidth for 16-KB data transfers.

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12

B
an

dw
id

th
 (

M
B

/s
ec

)

Number of Disks

128K request Sequential Access

Original
Original+ID

Original+ID 10%
Original+ID 1%

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12

B
an

dw
id

th
 (

M
B

/s
ec

)

Number of Disks

128K request Random Access

Original
Original+ID

Original+ID 10%
Original+ID 1%

Figure 6. Peak bandwidth for 128-KB data transfers.

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12

B
an

dw
id

th
 (

M
B

/s
ec

)

Number of Disks

16K 30-70 request Seq Access

Original 3070
Original+ID 3070

Original+ID 3070 in cache
Original+ID 3070 in cache

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12

B
an

dw
id

th
 (

M
B

/s
ec

)

Number of Disks

16K 30-70 request Random Access

Original 3070
Original+ID 3070

Original+ID 3070 in cache
Original+ID 3070 in cache

Figure 7. Peak bandwidth for 16-KB data transfers.

based IDSs such as [3, 14] monitor network traffic for
signs of suspicious activities.

Storage-based IDSs constitute a new class of IDSs in
this classification. These systems and their benefits are
discussed extensively in [15]. Furthermore, the imple-
mentation and evaluation of a prototype storage-based

IDS, embedded in an NFS server, are discussed in this
paper. Feasibility of performing ID inside disks is dis-
cussed in [7]. Implementation of a disk-based IDS pro-
totype on top of a storage device emulator is presented
in this paper. This prototype is similar to the RTSB
system with the major difference being that RTSB is

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12

B
an

dw
id

th
 (

M
B

/s
ec

)

Number of Disks

128K 30-70 request Seq Access

Original 3070
Original+ID 3070

Original+ID 3070 in cache
Original+ID 3070 in cache

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12

B
an

dw
id

th
 (

M
B

/s
ec

)

Number of Disks

128K 30-70 request Random Access

Original 3070
Original+ID 3070

Original+ID 3070 in cache
Original+ID 3070 in cache

Figure 8. Peak bandwidth for 128-KB data transfers.

implemented as part of a real storage system while the
prototype in [7] is implemented in an emulator.

Tripwire [11] is a file system integrity checker that
we have used in one of our prototypes. The FLSB sys-
tem uses Tripwire for detecting signs of any intrusion.
FLSB uses features of SAN storage systems in order
to perform intrusion detection independent of host sys-
tems. It should be also noted that the RTSB system uses
rules similar to those used by Tripwire.

Embedding ID techniques into storage systems is in
a way similar to other efforts for moving more pro-
cessing power into storage systems and devices. Ac-
tive Disks [1, 17, 18], Intelligent Disks [10], and Wise
Drives [8] are among efforts advocating storage devices
and systems with a higher degree of processing capa-
bility in comparison with that of current commercially
available disks and storage systems.

8. Conclusions and Future Work

In this paper we presented two storage-based IDSs
for block storage environments. We showed that the
impact on storage system performance is negligible. We
used two different approaches for performing ID. One
which is real time and acts at block storage level and
another system which does not operate in a real time
manner and performs at file system level.

We are working on several approaches to improve on
presented systems. We are working on providing sup-
port for more file systems by RTSB. We plan to perform
more performance analysis for both IDSs. We also plan
to extend the work presented in this paper to other types
of storage systems such as iSCSI storage systems.

We are also working on improving the scalability of
the FLSB by enhancing the storage system to provide
an interface through which the IDSs can obtain the list

of modified blocks from a particular point in time such
as the last time a copy for ID purposes was created.
Modern storage systems have certain data structures for
their point-in-time copies which can be enhanced for
this purpose.

This feature can be implemented by providing the
means for creating and initializing a bitmap correspond-
ing to all or certain blocks of LUNs. In the proposed
system, before a new flash copy is created, a bitmap data
structure is created and initialized. Whenever a block is
modified the corresponding bit is set. After each copy,
the list of modified blocks (since the previous copy) is
obtained and sent to the IDS. Such bitmaps can be cre-
ated and kept with minimal impact on the performance
of the storage system.

When a LUN is being examined by the IDS, the cor-
responding bitmap is examined to see what files require
examination. This of course requires that IDS can per-
form the file to block translation. The IDS unit can be
running on one or more hosts with support for the file
systems of interest such that the file to block transla-
tion can be performed more easily. In this scheme, files
whose corresponding data and metadata blocks are not
modified are not checked at all. Those with modified
blocks are checked for signs of intrusion. Minimiz-
ing the amount of data read for ID purposes also re-
duces the storage system cache pollution. Furthermore,
many storage systems provide the capability of mark-
ing LUNs as uncachable. By using such a feature, the
impact of accessing copy LUNs for ID on the storage
system cache can be kept at a minimum.

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE

Acknowledgments

We would like to thank our shepherd Ahmed Amer
as well as the anonymous reviewers for their valuable
feedback and insights.

References

[1] A. Acharya, M. Uysal, and J. Saltz. Active Disks:
Programming model, algorithms and evaluation. In
Proceedings of Architectural Support for Programming
Languages and Operating Systems, pages 81–91, 1998.

[2] S. Axelsson. Research in intrusion-detection systems:
a survey. Technical Report 98-17, Chalmers University
of Technology, 1998.

[3] B. Cheswick and S. Bellovin. Firewalls and Internet
Security: Repelling the Wily Hacker. Addison-Wesley,
1994.

[4] M. D. Flouris and A. Bilas. Clotho: Transparent data
versioning at the block I/O level. In Proceedings of
NASA/IEEE Conference on Mass Storage Systems and
Technologies, 2004.

[5] G. A. Gibson and R. V. Meter. Network attached storage
architecture. Communications of the ACM, 43(11):37–
45, 2000.

[6] J. S. Glider, C. F. Fuente, and W. J. Scales. The software
architecture of a SAN storage control system. IBM Sys-
tems Journal, 42(2):232–249, 2003.

[7] J. L. Griffin, A. G. Pennington, J. S. Bucy,
D. Choundappan, N. Muralidharan, and G. R. Ganger.
On the feasibility of intrusion detection inside work-
station disks. Technical Report CMU-PDL-03-106,
Carnegie Mellon University, 2003.

[8] G. F. Hughes. Wise drives. IEEE Spectrum, pages 37–
41, August 2002.

[9] IBM. IBM Total Storage DS4000 Series.
http://www.storage.ibm.com/disk/fastt.

[10] K. Keeton, D. A. Patterson, and J. M. Hallerstein. A
case for intelligent disks (IDISKs). SIGMOD Record,
27(3):42–52, 1998.

[11] G. H. Kim and E. H. Spafford. The design and imple-
mentation of Tripwire: A file system integrity checker.
In Proceedings of the 2nd ACM Conference on Security,
1994.

[12] O. S. D. Lab. Iometer. http://www.iometer.org.
[13] T. F. Lunt and R. Jagannathan. A prototype real-time

intrusion-detection expert system. In Proceedings of
IEEE Symposium on Security and Privacy, 1988.

[14] NFR. NFR Security. http://www.nfr.net/.
[15] A. G. Pennington, J. D. Stunk, J. L. Griffin, C. A.

Soules, G. R. Goodson, and G. R. Ganger. Storage-
based intrusion detection: Watching storage activity
for suspicious behavior. In Proceedings of the 12th
USENIX Security Symposium, 2003.

[16] P. A. Porras and P. G. Neumann. Emerald: Event
monitoring enabling responses to anomalous live distur-
bances. In Proceedings of National Information Systems
Security Conference, 1997.

[17] E. Riedel, C. Faloutsos, G. A. Gibson, and D. Nagel.
Active disks for large-scale data processing. IEEE Com-
puter, pages 368–74, June 2001.

[18] E. Riedel, G. A. Gibson, and C. Faloutsos. Active stor-
age for large-scale data mining and multimedia appli-
cations. In Proceedings of International Conference on
Very Large Databases, pages 62–73, 1998.

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE

