

High Performance Storage System Scalability: Architecture,

Implementation and Experience

Richard W. Watson

Lawrence Livermore National Laboratory

dwatson@llnl.gov

Abstract

The High Performance Storage System (HPSS)

provides scalable hierarchical storage management

(HSM), archive, and file system services. Its design,

implementation and current dominant use are focused on

HSM and archive services. It is also a general-purpose,

global, shared, parallel file system, potentially useful in

other application domains. When HPSS design and

implementation began over a decade ago, scientific

computing power and storage capabilities at a site, such

as a DOE national laboratory, was measured in a few 10s

of gigaops, data archived in HSMs in a few 10s of

terabytes at most, data throughput rates to an HSM in a

few megabytes/s, and daily throughput with the HSM in a

few gigabytes/day. At that time, the DOE national

laboratories and IBM HPSS design team recognized that

we were headed for a data storage explosion driven by

computing power rising to teraops/petaops requiring data

stored in HSMs to rise to petabytes and beyond, data

transfer rates with the HSM to rise to gigabytes/s and

higher, and daily throughput with a HSM in 10s of

terabytes/day. This paper discusses HPSS architectural,

implementation and deployment experiences that

contributed to its success in meeting the above orders of

magnitude scaling targets. We also discuss areas that

need additional attention as we continue significant

scaling into the future.

1. Introduction

The High Performance Storage System (HPSS)

provides scalable hierarchical storage management

(HSM), archive, and file system services. Its design,

implementation and current dominant use are focused on

HSM and archive services. It is also a general-purpose,

global, shared, parallel file system, potentially useful in

other application domains. When HPSS design and

implementation began over a decade ago, scientific

computing power and storage capabilities at a site, such as

a DOE national laboratory, was measured in a few 10s of

gigaops, data archived in HSMs in a few 10s of terabytes

at most, data throughput rates to an HSM in a few

megabytes/s, and daily throughput with the HSM in a few

gigabytes/day. At that time, the DOE national laboratory1

and IBM HPSS design team recognized that we were

headed for a data storage explosion driven by computing

power rising to teraops/petaops requiring data stored in

HSMs to rise to petabytes and beyond, data transfer rates

with the HSM to rise to gigabytes/s and higher, and daily

throughput with a HSM in 10s of terabytes/day.

Therefore, we set out to design and deploy a system that

would scale and evolve from the base above toward these

expected targets. These targets have been successfully

met.

While the rapid increase in both computational power

and memory, storage device capacity, and networking

bandwidth have made these increases in storage system

capacity and performance possible, without proper

attention to software architecture, implementation and

deployment, this hardware potential can not be fully

realized or exploited. Even assuming new faster hardware

and a properly designed and implemented storage system,

successful scaling, particularly for data transfer, is not just

a matter of plugging in the new hardware, changing a few

configuration settings and running the system. It requires

careful attention to all phases of the end-to-end process.

There are many dimensions of scalability to which a

storage system architecture and implementation must pay

attention. This paper discusses those dimensions and

illustrates the architectural approach and some of the

implementation choices and deployment experiences that

have facilitated achieving scalability in these dimensions.

It also discusses some areas where further work is

required as the system continues to scale across these

dimensions in the future.

1
 Lawrence Livermore (LLNL), Los Alamos (LANL), Lawrence

Berkeley - National Energy Research Supercomputer Center (NERSC),

Oak Ridge (ORNL), and Sandia (SNL) National Laboratories.

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE

Scalable data throughput: This dimension focuses on
end-to-end I/O throughput, for both single files and for
the aggregate throughput of many simultaneous file
transfers or I/O operations.

Scalable storage capacity and storage space

management: This dimension includes scaling storage
capacity, numbers and types of storage devices, and files
and file sizes. It also includes scalable space management
for migration and purge of disk cache.

Scalable robustness: This dimension includes the ability
of the system to (1) tolerate or recover from hardware
failures without loss of user data or system metadata and
(2) to maintain the consistency of both user data and
system metadata in the face of concurrent accesses during
normal operation.

Scalable name service: This dimension for HPSS
involves a scalable hierarchical directory service with
virtually unlimited numbers of directories and directory
entries, and a global name space spanning multiple
distributed HPSS systems. It also includes scaling the
number of simultaneous directory accesses and access
performance.

Scalable numbers of clients: This dimension includes
both increasing numbers of end users and internal clients
and associated concurrent operations.

Scalable deployment across geographical distances

and multiple cooperating institutions: This dimension
involves distribution of data storage devices and metadata
for performance and robustness, and integration of
multiple storage systems into a global namespace and
secure environment.

Scalable storage system management: This dimension
enables system administrators to manage and configure
hundreds of devices at a time with ease and convenience,
obtain tuning information and set tuning parameters,
monitor system health, perform diagnostic operations in a
complex environment, and support rapid creation and
modification of management screens by developers as the
system and environment evolve.

Scalable security: This dimension involves a security
infrastructure that supports the scaling and distribution of
users, servers and associated devices across networks and
multiple sites.

Client roles in scalability: This dimension includes the
role of storage utility clients or agents in supporting
scalability (e.g. client applications for use in data storage

and retrieval that help achieve optimum data transfers and
other uses of the system).

2. HPSS high-level architecture

Figure 1 shows a high-level view of the HPSS
architecture, which was guided by the IEEE Mass Storage
System Reference Model (MSSRM) V5 [19]. There are
two key features of this architecture central to HPSS’s
scalability success. First, there is its network-centric
architecture, where its Metadata Service is out-of-band
with data transfer. (Metadata is that information used
externally and internally to name, protect, and locate the
system’s storage objects, such as virtual volumes and
files). Data sources and sinks (e.g. storage devices,
memory, file systems) are either virtualized by the
Movers to create real or virtual network-attached storage
devices that can communicate directly over a network
(e.g. TCP/IP networks such as gigabit Ethernet (GigE), or
a Storage Area Network (SAN)) or Movers can make
devices directly accessible from the client systems on a
SAN [9].

Figure 1. High-level HPSS architecture

Thus, to scale system throughput one adds more
network bandwidth and more Movers with their
virtualized storage devices or one adds more directly
attached SAN devices. The HPSS architecture also
supports “third-party” transfers where an application (the
third-party) can issue I/O operations that cause the data to

Client API Library

Control

Data

Client Applications or Agents

Client Movers

N Heterogeneous Client Systems

Extended POSIX API

Metadata Service
Common Infrastructure

Core Server

Physical Volume Library

Physical Volume Repository

Migration/Purge Server

Storage System Management

Logging

Location

Movers

Disk, Tape, other Devices

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE

go directly between sources and sinks on two other

systems thus, avoiding a trip through the third-party

(copying) application’s memory.

Second, the robust Metadata Service, with its separate

associated metadata storage, is cleanly modularized

supporting well-defined scalable numbers of abstract and

physical storage objects. The architecture shown in Figure

1, where the metadata services are out-of-band with the

data path is common in SAN and clustered global file

systems [12,13,17,22,26,31]. This centralized,

asymmetrical metadata architecture is used by HPSS and

other systems for three main reasons. It simplifies: (1)

lock management for concurrent accesses to shared user

data, (2) metadata integrity, consistency and recovery

because the metadata is controlled by a single component,

simplifying the algorithms and enabling use of a robust

commercial RDBMS as the metadata engine, and (3)

securing the metadata by placing it on a separate system

from one running user programs or directly accessible by

such systems, thus minimizing the components that have

to be trusted. In particular, there is increased security

because all accesses can only take place through an

authenticated message interface and because having no

user code running on the metadata system minimizes the

ability of an unauthorized person hacking into the system

and compromising the entire metadata system and thus all

the data managed by the storage system.

Managing all metadata in a central metadata system

makes it easier to support HSM and archive services for

many, generally changing, heterogeneous file systems,

because there is no sharing of metadata between the file

systems and HPSS. Assuring high metadata robustness

and security is important to the HPSS design because

HPSS operates in environments where metadata must be

safeguarded over decades and all client systems and their

users cannot be completely trusted.

There are two main issues with a centralized Metadata

Service. One, since a central Metadata Service is a single

point of failure, redundant metadata computers and disks

may be required, with either manual or automatic failover

mechanisms or procedures for switching between them.

Two, there is some extra operation latency in systems

using a central Metadata Service. This results because all

requests and replies go through the network control path,

usually a LAN, to the Metadata Service. This is the case

for both relatively infrequent pure metadata operations

like “create” and “rename” and, also the more frequent

initiation of the data transfer operations “read” and

“write”, even though the actual data transfers take place

concurrently directly between client and storage system

on separate network connections. I/O throughput scaling

proceeds smoothly, even with some extra operation

latency, when the average data transfer time for “reads”

and “writes” is “large” relative to the time required to

perform the metadata functions and control

communications for each I/O operation. This is generally

the case for HPSS deployments, where the bulk of the

data being transferred is in relatively large files. These

issues are discussed further later.

Below brief outlines are given of the function for the

components shown in Figure 1. Much more detail is in

[5].

Data Transfer Components

Mover: A Mover either directly transfers data from a

source device to a sink device or can redirect control of

the I/O to another Mover (e.g. for a direct SAN transfer

[9]). A device can be a memory, network, tape, disk or

file system or other physical or logical storage entity. The

Mover’s client (typically the Storage Service or a client

application) provides I/O descriptors that describe the

location of the data to be transferred. It is the Mover’s

responsibility to transfer the data, retry failed requests,

and attempt to optimize transfers. (Note, in SAN

operation the SAN-aware Mover on the HPSS side is not

directly involved in the I/O operation as it passes

metadata (an I/O descriptor) to the Client Mover or client

application for direct access to the data [9]). When the

Mover virtualizes devices into network-attached storage

devices, they can be used securely on a TCP/IP network

because the Mover will only accept a data transfer

command from an authenticated client such as the Storage

Service. The Mover is a simple, versatile, modular,

component supporting easy evolution to new types of

networks, storage devices and storage entities such as

files.

Metadata Components

Core Server

Three services, Bit File Service, Storage Service, and

Name Service, interact extensively. We recently

integrated these three services into a single process named

the “Core Server”, in Figure 1, reducing communications

and nested atomic transaction overhead between them.

Name Service: The Name Service provides a Portable

Operating System Interface (POSIX [20]) view of the

global hierarchical name space, translating a human-

oriented name to an HPSS unique-object-identifier.

The name spaces of different HPSS systems can be

joined to create a larger distributed shared naming

environment.

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE

Bitfile Server: The Bit File Service provides the

abstraction of logical bitfiles (the term “bitfile” is

IEEE MSSRM terminology, even though files are

logically streams of bytes) to client applications.

Clients may reference random portions of a file. The

POSIX file API has been extended to support parallel

reading and writing of file data [5].

Storage Service: The Storage Service provides a

virtual volume service supporting a hierarchy of

storage objects such as storage segments and virtual

volumes (e.g. striped, mirrored, multi-physical

volume). The Storage Service schedules the mounting

and dismounting of removable media through the

Physical Volume Library and provides the Movers

with I/O descriptors to perform the actual I/O.

Migration/Purge Server: The Migration/Purge Server

manages the placement of data on appropriate storage

media within storage hierarchies using site specified

policies.

Storage System Management: Storage System

Management provides both a GUI and command line

interface enabling system administrators to configure,

monitor and control HPSS resources. All other system

components provide information to a system management

metadata base and provide other notifications and alarms.

Location Server: The Location Server enables its clients

to locate servers and gather information from both local

and remote HPSS systems.

Logging Service: Any HPSS component can send

messages to the Logging Service to record events used for

security auditing, problem troubleshooting, tuning and

other needs that might develop.

Components with both data transfer and metadata

functions

Physical Volume Library: The Physical Volume Library

manages all HPSS physical volumes. It is in charge of

coordinating the mounting and dismounting of sets of

physical volumes, and allocating drive and cartridge

resources to satisfy mount and dismount requests. The

Physical Volume Library supports atomic mounts of sets

of cartridges for parallel access to data on striped virtual

tape volumes [3].

Physical Volume Repository: The Physical Volume

Repository coordinates the mounting and dismounting of

cartridges and performs other cartridge related operations.

Each Physical Volume Repository is typically configured

to manage the cartridges for each robot complex utilized

by HPSS.

Figure 2. Abstracted HPSS Deployment

HPSS functionality, infrastructure and implementation

are constantly evolving. Each HPSS component is

implemented as a separate multithreaded process that

communicates with other HPSS components by remote

procedure calls. This modular, distributable

implementation, along with the separation of Metadata

Service from data transfer, has been very successful. The

component modularity has also proved very useful as part

of the distributed development team’s development

methodology.

3. HPSS second level architecture,

implementation and experience issues related

to scalability

3.1. HPSS infrastructure

A key second level architecture and implementation

decision was to define a set of common infrastructure

services required by HPSS servers and clients. These

infrastructure services (called “common infrastructure” in

Figure 1) provide a uniform implementation foundation

and serve to "glue together" the distributed clients and

servers. All HPSS components must work together to

provide users with a stable, robust, secure, distributable

and portable storage system. Separation of the

Robotic Tape

Libraries

Client
Computers

LAN

SAN

Disk
Arrays

Backup

Metadata
Services

Metadata

Disks

Metadata
Services

Tape-Disk
Movers

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE

infrastructure simplifies development by letting HPSS

developers focus on the storage application, increases

robustness (when well tested and widely used commercial

components are used), and supports evolution as industry

standards and products evolve in functionality,

performance and support. The common infrastructure

organizes the interfaces to the HPSS clients and servers

into four primary services: remote procedure calls

(RPCs), metadata system, security services, and

concurrency services (threads).

We initially chose the Distributed Computing

Environment (DCE)[34] as a central infrastructure

component because it provided an integrated set of RPC,

security, thread, and time services. We chose IBM’s

Encina/Structured File System (SFS) (built on DCE)

yielding a well-integrated distributable infrastructure [28].

After a decade of service, we recently replaced

Encina/SFS with IBM’s DB2 Universal Database [18] in

HPSS Release 5.1 and DCE with a set of industry

standard security, RPC and thread services in Release 6.1.

These decisions were made to improve performance and

robustness, and because IBM announced a phase-out of

Encina/SFS and DCE support.

3.2. Metadata system

Fundamental to both HPSS robustness and scalability is

the metadata architecture and implementation: a central

Metadata Service, a robust metadata engine supporting

atomic transactions, a scalable set of metadata data

structures, scalable update and access algorithms, backup

and recovery mechanisms, and separation of metadata

from user data storage. While robustness is important to

any file system, it is particularly critical to HSM and

archive applications, where data is intended to live

possibly for decades. If the metadata is damaged or lost

during metadata updates, then user data, while correctly

stored, will not be accessible or will be corrupted.

We initially chose IBM’s Encina transaction manager

with its associated Structured File System (SFS) because

it supported distributed, nested atomic transactions, record

structures organized by multiple keys, and it was

integrated with DCE [7,28]. SFS, at the time, was also

faster than RDBMS’s running on the available

minicomputer machines targeted for running the Metadata

Service components and had other capabilities not

common in RDBMS’s available in 1992.

To improve metadata scalability and performance, and

to add new levels of robustness, we recently examined the

options available for metadata engines. We focused

particularly on the commercial RDBMS systems most

widely used in business and mission critical applications,

and thus having demonstrated high robustness.

Benchmarking showed that their performance and

capabilities had improved dramatically since HPSS was

initially implemented. In fact these tests indicated that we

could expect to see a significant metadata performance

improvement over Encina/SFS. Further, these systems

were expected to be even more robust because they were

much more widely deployed in business and mission

critical applications, and thus had higher levels of support.

Because of the richness of their functionality, they also

offer the potential for metadata optimizations that can

yield higher performance as the HPSS implementation

evolves.

We chose, as mentioned above, IBM’s DB2 Universal

Database as our current RDBMS metadata engine [18].

Our implementation isolates the RDBMS choice from its

HPSS client processes through a metadata manager

library. This layer provides HPSS components with a

means of accessing metadata, while insulating other parts

of the system from the underlying details of the metadata

RDBMS engine. This will also simplify the process of

switching to a different RDBMS in the future, should this

prove desirable.

Metadata robustness requires a well engineered and

tested metadata engine and a set of mechanisms to

tolerate or recover from hardware failures. HPSS supports

several levels of metadata integrity protection. First, is the

use of a commercial RDBMS that is thoroughly tested,

widely used, highly tuned and well supported. Second, the

metadata engine supports atomic transactions, to assure

metadata consistency in the face of possible failures when

in the middle of a sequence of metadata updates that must

all occur correctly or not at all [7]. Third, the metadata is

stored in a mirrored RAID disk system, with recovery

automatically handled by the RAID controller or the

operating system. Fourth, the metadata disks are backed

up daily. Last, an alternate failover machine, either

inserted automatically [16] or manually, is available to

run the Metadata Service. Cleanly separating metadata

storage from user data storage makes it possible to keep

all the metadata on high performance stable storage, and

perform fast metadata restore operations, should they be

necessary, time independent of the amount of user data

stored. This is an important consideration in a system

storing petabytes of data.

3.3. Scalable data structures and algorithms

Careful attention is required in the design of metadata

structures and manipulation algorithms to enable

scalability across the dimensions above, particularly

scalable capacity: total storage space, as well as numbers

and sizes of objects such as files and directories. It is

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE

beyond the scope of this paper to discuss this topic in

detail, but a few remarks are in order. One of our

experiences building earlier storage systems was that

decisions on field lengths in metadata records might limit

scalability in numbers of objects or object sizes. Thus,

from the beginning, HPSS has used 64 bit field sizes and

64 bit arithmetic widely, particularly for numbers and

sizes of objects, to avoid artificial field size restrictions.

Another restriction limiting scalability of systems has

been metadata storage limitations and requirements to

statically allocate fixed disk regions for metadata use,

such as inodes. HPSS has no such limits and makes

effective use of the large and dynamic storage capabilities

of DB2 for table and index growth.

Keeping track of free disk space and allocating space

are central storage system functions. To support scalable

capacity and I/O one wants to allocate space in as large as

possible contiguous regions, rather than fixed size blocks.

There are two central internal objects in HPSS associated

with these functions, the storage segment, out which files

are constructed, and the virtual volume block, that can be

thought of as the stripe stride length. Disk segments are

variable length, within parameters set by a system

administrator, and map to contiguous regions on disk.

Tape segments can be any length up to the length of a

tape. Segments are safely kept track of in dynamic tables

within DB2. HPSS keeps track of disk free space in tables

kept in memory, which can be quickly rebuilt from the

segment metadata if needed. Further, HPSS metadata

manipulation uses the efficient B+ tree and other

mechanisms provided by DB2, and in the case of

algorithms outside of DB2, like the disk free space

mechanism above, care is taken to assure they will scale

well for large numbers and sizes of objects.

3.4. Security services

Mechanisms are provided that allow HPSS components

to communicate in an authenticated manner, to authorize

access, to enforce access control (POSIX user, group,

world and access-control-lists (ACLs)) on HPSS objects,

and to issue log records for security-related events.

Security policies are site dependent. HPSS provides a

clean separation of policy and mechanism so that sites can

use default security services or add both their own policy

modules and security mechanisms, in a plug-and-play

architecture. Industry standard services are used, such as

the Generic Security Services (GSS) API, Kerberos, and

directory services that support HPSS data schemas, (such

as Lightweight Directory Access Protocol (LDAP)

[23,24,35]. The scalability implications for the security

services are primarily in the distributed, cross-security

domain, including a multi-institution dimension, where

DCE excelled because it provided a fully integrated set of

services with an essentially uniform implementation

across platforms on which HPSS was targeted. However,

DCE did have the drawback that sites not using DCE on

an institution-wide basis had to develop DCE expertise

for use with HPSS. Further, we had to develop a non-

DCE gateway to support access to HPSS from client

machines that did not run DCE. Since today there is no

industry-supported product with DCE’s integrated set of

services, we selected an equivalent set of industry

standard services (i.e. ONC RPC [30], POSIX threads

[21], the security services above) and integrated them as a

DCE replacement. To provide cross-realm integration, we

use the multi-realm capabilities of Kerberos and LDAP.

Kerberos is used to authenticate users, servers, etc. and

LDAP is used to store registry information associated

with all users. Multiple LDAP servers at different sites

can be integrated to provide a distributed registry service.

We require LDAP servers to support strong authentication

such as Kerberos and ACLs to securely control registry

information.

3.5. Concurrency

Concurrency is critical to supporting and scaling

multiple simultaneous operations throughout the system

and being able to scale server performance, when needed,

by multiprocessing HPSS components on commodity

clusters of processors. IEEE POSIX-compliant threads

and POSIX thread interfaces are used [21]. POSIX

threads are supported as kernel-level threads by the

operating system vendors. The central implementation

architecture is that all HPSS components are implemented

as multithreaded and thread safe processes. As each

request arrives, a separate thread is forked to handle it. As

commodity multiprocessors have arrived on the market,

HPSS has been able to scale its metadata handling cost

effectively. Organizing the metadata so that only

minimum units of granulariy need locking is important for

scalable concurreny.

3.6. Communication services

Communication (LAN, WAN, SAN) is central to the

HPSS architecture and its I/O scalability. Therefore,

providing mechanisms that support optimized use of each

site’s available communications capabilities has received

close attention. There are several levels of communication

protocols and mechanisms used within HPSS. The lowest

level is network communications. Currently TCP/IP and

use of TCP/IP networks such as GigE and 10 GigE are

dominant. Early in HPSS history, HIPPI networks and the

IPI3 protocol were supported, along with directly attached

HIPPI devices from companies such as Maximum

Strategy [32]. GigE replaced HIPPI both in cost and

reliability. To achieve full use of TCP/IP networking, we

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE

pay close attention to tuning networking parameters and

resources such as packet and buffer sizes (see Section 4).

Fibre Channel SAN has also emerged in recent years

along with LAN, WAN, and SAN use of iSCSI. HPSS

supports use of SAN networking [9]. SANs potentially

improve performance of migration and caching between

device hierarchy levels [9] and can be used for

interconnecting HPSS storage devices. HPSS can take

advantage of each site’s networking configuration, which

may include multiple networking technologies and

separate different size data transfers on different network

routes. As mentioned earlier, the modularization and

virtualization of networking into the Mover component

has been central in easily tracking the constantly evolving

networking technologies.

Above TCP/IP, HPSS uses remote procedure call

(RPC) protocols for its control communications between

clients and servers and between internal server

components. Control communication between the Storage

Service and Movers uses simple socket communications

because the generality of RPC communications is not

required as only two types of messages are exchanged

between them.

Another protocol in use within HPSS is the Mover-to-

Mover data transfer protocol [6]. It was developed to

provide a simple data transfer protocol layer within low

latency LAN and system area networking environments

and to support a variety of transfer mechanisms such as

IPI-3 over HIPPI, shared memory, and TCP/IP sockets. It

uses a message exchange flow and error control scheme

for each block transferred. It also supports negotiations of

transfer optimizations available between pairs of data

sources and sinks, using information contained in a

configuration file. Further, it supports striped transfers

between different numbers of Movers on the client and

the HPSS sides. It is simple and works well in low latency

network environments. As HPSS usage scaled to WANs,

message exchange latency increased, limiting bandwidth

performance scaling. The Mover protocol evolved to

utilize TCP/IP’s streaming capabilities to eliminate these

latency-scaling limitations.

At the next level, HPSS can scale bandwidth and

throughput by different forms of network striping. HPSS

client data transfer agents such as PFTP, HSI, PSI, and

HTAR (see Section 3.10) can stripe transfers over

multiple TCP/IP connections, utilize multiple network

interface cards (NICs), when available, or utilize multiple

nodes such as on Linux Clusters, or use combinations of

the above [5,8,10]. In a cluster environment, the HPSS

client agents may utilize internal networks, such as

Quadrics or Myrinet for high-speed intra-cluster transfers.

The number of TCP connections used is balanced against

the performance of the NICs in use. Further, HPSS can do

striped file transfers between M Movers on the client side

and N Movers on the HPSS side, where these Movers can

be on the same or different nodes of a system. (The HPSS

file stripe width is N.) Connections between Movers can

use multiple NICs and/or TCP connections. The

architecture of Movers coupled with the Mover-to-Mover

Parallel Transport Protocol (PTP) [6] makes this powerful

generality and scaling capability possible.

Client agents (discussed in Section 3.10) add the final

level of protocols and mechanisms to support high I/O

throughput. Optimum usage of the above forms of

communication striping requires proper set up of various

configuration files (used by both Movers and the client

agents), along with other parameters such as packet and

buffer sizes.

3.7. Device striping

I/O scaling is at two levels, bandwidth to individual

files and total aggregate I/O throughput. Besides striping

of connections, NICs, Movers, and nodes as discussed

above, software striping of devices at the HPSS level is

also used for scalable data transfer. The Storage Service

provides the striped virtual volume abstraction. Since

RAID disks provide a virtual highly reliable disk, we can

safely stripe RAID devices very widely in HPSS to

achieve highly scalable disk transfer rates. Disk striping

in production environments are currently rather modest

with four-way stripes being the largest, thus, there is

significant scaling headroom using wider stripe widths.

Demonstrations using 16-way and even 256-way disk

stripes have been performed from HPSS’s earliest days.

HPSS can also support virtual striped tape volumes to

improve transfer rates to tape. The Storage Service

supports virtual volumes of Redundant Arrays of

Independent Tapes (RAIT), Level 0 (mirroring) and Level

1 (striping with no parity tape). Current usage generally

limits operational tape striping to four-way RAIT Level 1

stripes because of concerns about the reliability of tape

media and drives, although other strategies for using

wider stripes are being considered. For example, it is

possible to write a file to tape directly and then make a

deferred mirrored copy later on a scheduled basis. We had

hoped to encourage industry to produce a commercial

high performance RAIT Level 3 or 5 controller and to that

end a U. S. DOE project was created to develop such a

controller. A prototype was developed, but the contractor

did not elect to move it to the product stage. DOE labs are

prototyping two RAIT Level 3 or 5 approaches at

relatively low priority, one using software as a RAIT

controller that could be used within HPSS, and the other

using a Linux box as a RAIT controller. Other tertiary

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE

storage technologies such as MAID disks [15] and

holographic devices [25] may eventually become

economically competitive with tape for use in large

archives.

3.8. Storage hierarchies, classes-of-service and file

families

HPSS supports the ability to organize classes of devices

into varieties of storage hierarchies, from single-level

hierarchies (e.g. disk for small files or tape for large files)

to more complex hierarchies involving multiple levels of

devices (e.g. a disk cache with multiple tape levels below

it or disk over mirrored tape copies). Use of multiple

storage hierarchies in a given deployment allows use of a

range of media and devices with different costs and

performance for different classes of service (COSs) and is

central to HPSS’s capacity and I/O scaling strategies. A

COS is selected for each HPSS file and is defined based

on characteristics such as file size, disk type and speed,

stripe width, tape type, and whether tapes are mirrored

[4].

Selection of the proper COS for a file is achieved via a

"hints" mechanism or by a system administrator setting.

For instance, small files requiring quicker access may best

be stored only on redundant disk devices or might be best

directed to dual-hub access-efficient tape media, as

opposed to capacity-focused devices. An example of

COSs and multiple hierarchies is the current LLNL

environment where five main COSs are used: small files

(<4MB), medium files (4MB – 32MB), large files (32 –

256 MB), jumbo/htar (> 256 MB), and dual-critical

(large/jumbo files that are mirrored to tape). Each of these

COSs uses different hierarchical sets of storage devices

available within the LLNL system. The HSI application

(see Section 3.10) augments this capability with a

sophisticated auto-COS-selection capability that requires

no user knowledge of the site’s COSs, and allows sites to

segregate resources by user, group, and/or account, and to

choose between hierarchies based upon the desired

number of copies, among its many features.

File Families are a way to assure files in a directory

sub-tree are co-located on media. This is done when it is

common to access multiple files from the same File

Family during an application run, and thus, reduces the

number of tape mounts and increases throughput. File

Families and configurable COSs allow HPSS to scale to

satisfy wide ranges of application requirements by

matching classes of data with the best and most efficient

device/media combinations. For example, climate

research applications typically write extremely large files

and so at some sites are configured to use a Direct-To-

Tape class of service, with no disk in the hierarchy at all.

Weather sampling applications, on the other hand, collect

a large number of very small files, which are frequently

accessed. These are therefore written to a COS with a

large disk cache at the top of the hierarchy with an

associated migration/purge policy that encourages lengthy

retention of files at the top of the hierarchy.

Associated with storage hierarchies is the need to

support file migration and purge [5]. Migration of a file

down the hierarchy (to slower, less expensive media) is

performed in order to free space on more valuable media,

take advantage of lower cost or new types of media, or

implicitly provide backup. Dynamically configurable site

policies are used to determine under what conditions

migration should take place and when purging should take

place. There are two performance and robustness issues

here. One, by setting an aggressive migration policy, but

delaying purge (thus potentially speeding up read back

performance), backup is automatically provided as part of

the hierarchical services, without a special backup service

being required as two copies exist, one on each level of

the hierarchy. Two, when migrating to tape, mirrored

copies (possibly distributed) can be created as part of the

policy, further enhancing user data robustness.

Copies can also be explicitly (by command) or

implicitly (when accessed) staged up the hierarchy for

higher performance. A capability that is very important to

scalability is the creation of metadata records that indicate

which files need to be migrated and purged. Files that are

written are marked as candidates for migration and those

that have been migrated as candidates for purge. By doing

this, HPSS eliminates the need to scan through large

amounts of metadata in order to determine which files are

candidates for migration and purge. Without this

mechanism there would eventually be a scalability limit

on the migration/purge algorithm. Sites also take

advantage of the multiple mirrored copy feature of

hierarchies to create backup copies in separate physical

locations to protect against fire or other disaster.

A deployment issue related to a high performance tape

environment is configuring the system so that there are

multiple robotic arms available, either in single tape

library or by using multiple libraries, so that multiple tape

mount/dismount requests can be in progress at once.

HPSS has logic to optimize the choice of a tape drive in

multi-robot configurations.

3.9. Subsystems

HPSS can distribute Metadata Services across multiple

Core Servers and databases using a feature called

“Subsystems” (a Subsystem can be thought of as a

namespace partition along with its associated media,

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE

managed by its own Core Server). Subsystems differ from

whole instances of HPSS in that a single name space is

still maintained, a single login is used by client

applications, and devices such as tape and disk drives can

be accessed by all subsystems within a single HPSS. It

simplifies system administration by maintaining a single

system image. Subsystems can be placed on separate

computers or in separate processes on shared computers

as appropriate to the requirement.

An example use of Subsystems is the European Center

for Medium Range Weather Forecasting (ECMWF),

which uses Subsystems to separate two very different

application domains within a single HPSS instance, an

interesting form of scaling. ECMWF uses three

Subsystems. Subsystem 1 contains the center-wide name

space root of roots. Subsystem 2 is the MARS subsystem

that receives data in near real-time from weather sensors

around the world. MARS is a sophisticated data access

application that uses HPSS as its backing store and is a

tape-only system. Subsystem 3 is the general-purpose user

file store, ECFS, which has large disk and tape layers.

The current HPSS implementation of Subsystems has

the disadvantage that it partitions by name space sub-

trees. With the current implementation and available

tools, a system administrator is required to make the

decision whether to add a new Subsystem at system set

up, or when new users are added, and thus partition based

on anticipated loads across the metadata system. To

improve Subsystem dynamic configurability, additional

load measurement capabilities and partitioning tools are

required. A better long-term solution would be to support

automated distribution of resource load across

Subsystems. Subsystems do, however, provide a

foundation for further evolution.

3.10. User interfaces

HPSS supports an extended POSIX Client API

(CLAPI) as its most complete and powerful interface. The

HPSS Client API is a superset of POSIX semantics,

providing fields to support striping, classes of service, and

other HPSS functions that POSIX semantics do not

address [5]. The HPSS CLAPI can be used directly by

end user applications or by data storage service

applications (client agents) or with other interfaces.

CLAPI supports a powerful list form of I/O transfer

command that allows multiple operations to be initiated

with a single command. Achieving optimum parallel I/O

can be a complex problem, involving scalability issues in

areas such as file system, network and I/O striping,

debugging and troubleshooting, resource allocation, error

recovery and job restart capability. Therefore, client

agents are available with HPSS or may be written by sites

that facilitate applications achieving maximum use of

HPSS’s I/O scaling capabilities. The MARS and ECFS

applications at ECMWF, mentioned above, are examples

of site agents. PFTP, discussed below, is an example of an

included HPSS agent. Transparent access to the HPSS

CLAPI through the Linux Virtual File System (VFS)

capability is currently in its prototype phase.

Parallel File Transfer Protocol (PFTP) [5], Hierarchical

Storage Interface (HSI) [10] and Parallel Storage

Interface (PSI) [8] are three agents with the configuration

“knowledge” and mechanisms to optimize system

throughput and parallel network and I/O bandwidth. An

example use of configuration knowledge to optimize

throughput is the ability of both HSI and PSI to use

HPSS’s extended file attributes (indicating information

such as file location - disk or tape and if on tape which

tape and where on that tape). Thus, HSI and PSI can use

this information to schedule file transfers to minimize

tape mounts. Another example is the ability of PFTP and

HSI to use HPSS configuration information to set up the

optimum network-striping environment for a transfer. HSI

can make use of HPSS’s ability to support third-party

transfers and set up such transfers between Movers on any

pair of systems, even between Movers on separate HPSS

systems of cooperating sites. HSI and PSI also support a

range of other useful file and transfer functions.

Another utility developed to improve transfer

performance is HPSS Tar (HTAR) [10]. HTAR creates

POSIX-compliant TAR files directly in HPSS, using

multithreading and HPSS striped transfers to achieve high

I/O rates by blocking many small files into a single large

archive file. HTAR includes a number of other features,

such as automatic creation of a separate index file, that

facilitate random retrievals of HPSS files and listing of

archive (tar) files that may reside on tape. HTAR provides

a simple means to scale the writing and reading of large

numbers of small files in a single high data throughput

transfer to HPSS.

HPSS supports The Open Group’s XDSM interface

[33], also known as DMAPI, which supports the

connection of a file system to a tape archive system.

HPSS supports an XDSM interface to the open source

Linux XFS file system [29] and to IBM’s Distributed File

System (DFS) [15]. IBM is discontinuing DFS support,

but it is still in use at many sites. Indiana University, for

example, uses DFS with HPSS to support over 1300 users

in two geographical campus locations. Since IBM support

for DFS is being phased out, existing DFS/HPSS filesets

will be converted to HPSS-only filesets. These filesets

will then be made available to clients using either the

HPSS NFSv4 [27] under development by Commissariat à

l'Energie Atomique/Division des Applications Militaires

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE

(CEA/DAM) Compute Center in France or the HPSS VFS

Client implementation.

3.11. No OS kernel modification

The decision to avoid OS kernel modifications has

facilitated scaling across a variety of platforms, and

operating systems, particularly enabling implementation

of Movers on platforms from several vendors.

4. Scaling I/O throughput using Scalable

Units and system tuning

Scaling is a continuous process as new hardware and

media are introduced, as storage requirements increase,

and as improved device capacities and performance enter

the marketplace. Successfully accomplishing a high speed

transfer is an end-to-end problem that requires the

interaction of a myriad of components ranging from

platform operating systems and file systems through

choice of network buffer, window and packet sizes, to

network switching components and topology, and

ultimately down to the microcode in target device

controllers. Often the direction of the transfer has

profound effects on transfer speeds. The transfer is, of

course, only as fast as the slowest component.

Finding the sweet spot for an entire I/O chain is

difficult. HPSS allows system administrators to adjust a

variety of parameters to tune transfer performance.

Example parameters include the storage segment size and

number, virtual volume block size (used in striping),

packet size, Mover buffer size, TCP flow control window

size, and numbers of NICs. Sites typically determine an

optimal combination consisting of a Mover with a set of

devices such as disk drives, controllers, channels, Mover

nodes, Mover network connections and associated HPSS

and interface parameters to provide high bandwidth

transfers to/from large compute platforms. This

combination is labeled a Scalable Unit. An example of a

disk Scalable Unit would include a particular Mover

platform (model, number of CPUs, memory, NICs,

HBAs) attached to a RAID array, with an appropriate

Logical Unit organization, providing a tuned data

throughput for a fixed disk capacity.

As data throughput requirements grow or improved

storage devices become available, sites simply add

repetitive or new types of Scalable Units to satisfy the

requirement. As technologies advance, a site constantly

tunes, identifies and migrates to new Scalable Unit types.

This is made possible by the modularity of HPSS,

particularly the separation of Movers and their network

connections from other metadata modules. Being able to

add virtually unlimited numbers of Movers, and thus the

above Scalable Units, is a key scalability feature.

 As examples of the importance of proper tuning, we

have seen performance improvements of 10X and even

more by tuning the network and HPSS buffer sizes. We

have seen rates go from 12MB/s to 80+MB/s simply by

changing the network send/receive socket buffer size. We

have seen 2X to 4X improvement merely by properly

choosing virtual volume block sizes, and Mover buffer

sizes. We saw large improvements for earlier IBM AIX

operating system versions when it was discovered that

32K is the sweet spot for doing writes to the network.

Many more examples could be given.

5. How HPSS achieves scalability across the

scaling dimensions

In this section we go through each of the scalability

dimensions defined in Section 1. We identify the key

architectural and implementation features outlined above

and briefly recap how they are achieved. We also discuss

areas requiring further evolution, both to better meet

current requirements and future scalability.

5.1. Scalable data throughput

Architecture: The architectural features proven

successful in I/O scaling have been the separation of data

movement from Metadata Services and the use of Movers

to virtualize storage devices, memory and files to create

virtual network-attached storage devices or make storage

devices directly accessible to clients on SANs. Thus, by

expanding network cross-sectional bandwidth and

replicating Scalable Units as needed, one can meet a

given I/O throughput requirement. The Storage Server

and its virtual volume (e.g. striped volumes) and virtual

segment services have also aided scalable data

throughput.

Implementation: The important implementation choices

supporting I/O scalability include: the ability to support

many concurrent requests and I/Os in progress, a rich set

of communications and client transfer agent capabilities at

several levels, allowing balanced use of networking

resources (types of networks, connections, NICs, nodes,

Movers), the use of device striping, extended file

attributes that can be used to optimally schedule tape

mounting, COSs, configuration files usable by client

agents and Movers, and a scalable metadata engine.

Deployment: Review of metadata engine utilization on

current equipment is a strategy that applies to this and all

dimensions below to determine if workstation capacity

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE

should be upgraded, replaced, or the metadata should be

restructured across multiple subsystems/workstations to

improve service. The ability to use faster commodity

processors and multiprocessors for scaling Metadata

Service and Mover I/O performance is an important and

cost effective strategy. Periodic planning is important to

determine I/O requirements and associated networking,

Mover and device resources needed to meet these

requirements. The specification of Scalable Units

(Movers and attached devices) and end-to-end tuning of

the appropriate network, communication, device

configuration and HPSS parameters have been an

essential part of the I/O scalability strategy. Defining

COSs and File Families and their mapping to the

appropriate hierarchies has also been useful in organizing

the storage devices for optimal I/O.

Issues needing further work: There is a need to improve

small file performance (e.g. the number of small file

creates and/or writes/sec). This will be a focus of near

term work. We are studying several areas of the

implementation where we can improve small file

performance: reducing metadata; better use of DB2’s rich

functionality for metadata organization, access, caching,

and partitioning for better concurrent access; improving

Storage Service and Mover communications; and

improving tape organization and small file aggregation.

Many of these will improve metadata performance for all

other operations as well. The Storage Service storage

allocation algorithm can also be improved to more

uniformly balance disk utilization across multiple Movers

to take advantage of knowledge of which disks are busy

and which are idle. Making Subsystems easier to use is

also an option for distributing metadata services for

improved performance.

5.2 Scalable storage capacity and storage space

management

Architecture: The hierarchical storage architecture with

appropriate choice of abstract/physical objects, and object

management modularity has been central to scaling

capacity.

Implementation: Important implementation choices

include: metadata engine choice and scalable metadata

design and organization; wide use of 64 bit fields for

essentially unlimited numbers and sizes of objects;

multiple storage hierarchies, COS, and File Families;

separation of migration/purge policy and mechanism

supporting site specific policies; a repack utility for both

reclaiming tape space and moving data to newer

technologies for technology insertion.

Deployment: Periodic storage requirements and

capacity planning, including review of new technologies

to replace current disk/tape resources leverage the ability

of HPSS to easily scale to meet identified requirements.

Issues needing improvement: None currently identified.

5.3 Scalable robustness

Architecture: Separation of metadata and user data

storage allows multiple redundancy mechanisms to be

employed as appropriate to meet reliability, availability

and recoverability requirements.

Implementation: Successful approaches include: use of

a commercial quality RDBMS metadata engine, metadata

backup, mirroring and recovery, atomic transactions,

diagnostic utilities, the ability to create hierarchies and

COS that make multiple copies of user data on tape, and

use of the migration/purge policies to provide “automatic”

backup. Use of backup metadata engines and, where

appropriate, the IBM High Availability Option [16] that

provides hot backup and recovery.

Deployment: Strategies include: careful attention to

setting up redundant metadata systems and storage, well

defined backup and recovery procedures, metadata engine

documentation and support coverage.

Issues needing improvement: None currently identified.

5.4 Scalable name service

Architecture: Distributed architecture supporting a

distributed, shared global name space.

Implementation: Strategies include: a powerful

metadata system allowing named objects to be located

rapidly using a variety of search criteria, large field sizes

in metadata records, scalable algorithms that support

operation times that are independent of directory size or

for “directory list” linear time with directory size, support

for Filesets and Junctions allowing linking name spaces

across HPSS systems.

Deployment: No special strategies in use.

Issues needing improvement: Metadata performance

improvements as listed earlier.

5.5 Scalable numbers of clients

Architecture: Separation of Metadata Service and data

transfer supporting many simultaneous transfers and the

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE

ability to integrate HPSS with user systems such as file

systems and web servers.

Implementation: Important implementation decisions

include metadata engine choice, supporting scalable

concurrency through widespread use of threads and thread

safety for multiprocessing.

Deployment: An example of both use with large

numbers of clients and geographical deployment is the

HPSS environment at Indiana University, mentioned

above.

Issues needing improvement: Ongoing metadata

performance improvements and completing a DFS

replacement plan as described above.

5.6 Scalable deployment across geographical

distances and cooperating institutions

Architecture: Key features include the modular

distributable architecture.

Implementation: The ability to distribute and join name

spaces and join distributed and multiple security domains.

Deployment: Examples of distributed HPSS usage is

the “single user logon” access to any of the three systems

at LLNL, SNL and LANL and the Indiana University

system mentioned above. Besides the distributed users,

Indiana University is an example of using the HPSS

capability to distribute their storage devices so as not to

be limited by WAN bandwidth for local access. They use

a single HPSS metadata service for the entire system to

create a global name space and single virtual shared

environment, but have distributed Movers and Physical

Volume Repositories for distributed disks, robots and tape

drives [11].

Issues needing improvement: None currently identified.

5.7 Scalable storage system management

Architecture: HPSS Storage System Management

consists of the component mentioned earlier and a set of

utilities. The modular architecture and the auto-generation

of screens facilitate organization of the storage system

management metadata, internal communications, and the

user interface. These make the addition of new features

faster and easier.

Implementation: Strategies include: concurrency and

scalable metadata engine; support for day-to-day

operations using either an easily navigable GUI or

command line interface; support for operations across

large numbers of servers or devices using the command

line interface and associated scripts (e.g. setting up initial

configurations); and a set of utilities for troubleshooting,

recovery and tuning. The task of developing and

maintaining GUI screens is eased through the use of

screen auto-generation techniques.

Deployment: Different sites utilize the GUI and

command line interfaces in different ways and

combinations. For example, some sites deploy 6 – 12

concurrent GUI users, each with 5 – 20 open screens, on a

variety of Storage System Management desktops (Linux,

Windows, Macintosh). Tests have shown that, should the

need arise, many more concurrent users and active

management screens can be supported. Other sites use the

command line interface in scripts to perform regular

system monitoring. The command line interface is also

used for managing HPSS systems remotely. Flexibility

exists with HPSS to manage distributed resources and

HPSS systems as independent entities while linking them

via the option of the federated namespace, or by using a

single HPSS system to manage remote resources (Remote

Mover option) such as at Indiana University or to manage

remotely placed HPSS subsystems.

Issues needing improvement: Ongoing evolution of

functionality and presentation screens, including

supporting all commands in the command line interface,

increasing the number and usefulness of the “views” of

the system available, particularly the addition of screens

which tie together related information (e.g. to track a

user’s job as it flows through the system).

5.8 Scalable security

Architecture: Ability to integrate a distributed modular

system into a secure environment using local and cross-

site security infrastructures and modular organization of

security components into plug and play security

mechanisms.

Implementation: Choices useful here include: common

security infrastructure mechanisms (e.g. Kerberos, GSS,

LDAP, Unix permissions), separation of policy and

mechanism, the current version of LDAP (IBM’s) scales

in the same manner as HPSS since it uses DB2. With

Kerberos, one can create multiple security realms.

Deployment: Each site has different institutional

policies and possibly different directory products or

implementations and care is required to appropriately set

these up.

Issues needing improvement: Improving the

deployment procedures for secure cross realm integration.

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE

5.9 Client roles in scalability

Architecture: The two features provided for building

parallel-capable interfaces and powerful client agents are

a single parallel API (CLAPI) and a structured

configuration file. A range of capabilities can be built on

these, depending on what the customer requires. The users

have the option to either use a transparent interface (e.g.,

Linux VFS or XDMS with XFS) or use a powerful client

agent (e.g. PFTP/FTP, HTAR, HSI, PSI), or a

combination of these. For example, client agents have the

ability to automatically make use of multiple NICs and

client nodes, parallel I/O capabilities, network tuning and

network configurations, select proper COS based upon

file characteristics or user-specified options, optimize tape

mounts for file retrievals, all with goal of transparently

providing all of the power of HPSS via a simple intuitive

interface that does not require the user to understand the

system complexities.

Implementation: A rich and growing set of user

interface capabilities: CLIAPI library, VFS, client agents

(e.g. PFTP, HSI, HTAR, PSI and others), extended file

attributes and configuration files that support transfer

scheduling and optimization, use of front-end file systems

such as was done with DFS at the Indiana University and

XFS integrated with XDSM.

Deployment: HPSS provides a variety of user interfaces

mentioned above. Alternatively sites can build custom

interface applications. For example, the European Centre

for Medium Range Weather Forecasts (ECMWF) has

made extensive use of the CLAPI library to build high

performance applications customized to its special

requirements.

Issues needing improvement: Ongoing evolution,

standardization and addition of scalable user interface

functionality and production deployment of the

transparent VFS interface.

6. Example storage and I/O throughput rate

data

In this section we present examples of scalability

histories from selected HPSS sites. Numbers quoted are

as of December 2004.

6.1 I/O scaling examples

LLNL - Aggregate data transfer rates to the archive,

before HPSS, were well under 10MB/s and now exceed

1.5GB/s to caching disk. Single file rates, using a four-

way stripe to a RAID array, generally run at around 300

MB/s. Daily throughput to the archive has exceeded

17TB TB/day.

LANL - A recent user archive operation stored 122,000

files occupying 10TB in six hours with the transfer rate

limited by network throughput. In a recent performance

demonstration, a data transfer rate of 550 MB/s was

achieved using 16-way mirrored tape stripes storing files

over 100 GB in size on StorageTek 9940Bs.

LBNL - NERSC has gone from moving 1.5TB/day in

2001 to peak I/O days of 6TBs in 2004, with expected

peak days of 10TBs in 2005. Single file transfer

throughput has gone from 17MB/s in 2001 to 231MB/s in

2004, limited by network bandwidth.

BNL – Daily ingest rate from experimental devices to

HPSS has reached 28TB/day, and 330MB/s and 550MB/s

I/O to tape and disk respectively.

IBM - At the SC04 supercomputing conference in

November 2004, IBM demonstrated HPSS (an early

version of HPSS 6.2) performance using three computers,

one each for HPSS, reading and writing. A large 128 GB

file was written and read in 512 MB blocks using 16-way

striped SAN-attached disk files, using 8 host bus adapters

on each client computer. As one computer wrote each

block, it was immediately read by a second computer,

thus demonstrating "read behind write" performance. The

file transfers were measured at 1016 MB per second on

the write side and 1008 MB per second on the read side,

for an aggregate data rate of just over two GB per second.

6.2 Capacity examples

LLNL - The Secure Computing Facility (SCF) held 13

TB of data in 1992 when HPSS design began. Today the

SCF contains 1.5 PBs stored in about 25 million files. The

Open Computing Facility (OCF), not available in 1992,

today contains an additional 1.3 PB stored in about 18

million files. There are about 1 million directories in the

OCF and 0.5 million in the SCF. Directories with tens of

thousands of entries are in use in both SCF and OCF, the

largest with about 90,000 entries.

Other sites known to be storing a petabyte or more in

HPSS include:

2.3PB Los Alamos National Laboratory, in 33M files.

2+PB: Brookhaven National Laboratory (BNL).

1+PB: Commissariat à l'Energie Atomique/Division des

Applications Militaires (CEA/DAM) Compute

Center in France.

2+PB: The European Centre for Medium-Range

Weather Forecasts (ECMWF) in England.

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE

1+PB: National Energy Research Scientific Computing

Center (NERSC), in 33M files.

1.5PB: San Diego Supercomputer Center (SDSC).

1.4PB: Stanford Linear Accelerator Center (SLAC).

Many sites, such as ORNL, are doubling their stored data

yearly and will also shortly reach a petabyte.

7. Conclusion

HPSS design, implementation, and deployment have

resulted in a robust, scalable system that has successfully

met its initial scaling goals in the several dimensions

discussed above. Particularly visible are I/O and capacity

scaling. Based on experience at HPSS sites such as LLNL

and through demonstrations, today’s performance

compared to performance at the time the HPSS project

began, has demonstrated the following scaling factors:

100 for capacity to petabytes,

1000 for instantaneous throughput to GB/s,

1000 for daily throughput to 10s TB/day, and

1000 for single file bandwidth to GB/s.

The HPSS system architecture and implementation is

such that there is lots of room for further scaling in these

important I/O and capacity dimensions by further orders

of magnitude into the future (e.g. extending its capacity to

100s of petabytes to exabytes stored and I/O throughput

to 100s gigabytes/sec to terabytes/sec). The other

dimensions of scalability discussed will also continue to

scale. The modular network centric, distributable

architecture of HPSS and modular industry standard

product infrastructure are sound. The major near term

focus will be on measurement, tuning and optimization,

particularly metadata performance, outlined in Section 5,

thus improving small file performance and supporting

other scalability dimensions.

Acknowledgement

We wish to thank the many developers within the HPSS

Collaboration who have created HPSS and provided

helpful comments on this paper. This work was, in part,

performed by the Lawrence Livermore National

Laboratory, Los Alamos National Laboratory, Oak Ridge

National Laboratory, National Energy Research

Supercomputer Center and Sandia National Laboratories

under auspices of the U.S. Department of Energy, and by

IBM Global Services – Federal.

References

All URLs in references below were tested and working

on Jan. 6, 2005.

HPSS references organized by date

[1] A.L. Buck and R.A. Coyne, Jr., ``Dynamic Hierarchies and

Optimization in Distributed Storage System,'' Digest of

Papers, 11th IEEE Symp. Mass Storage Systems, Oct. 7-10,

1991, IEEE Computer Society Press, 85-91.

[2] R. Coyne, H. Hulen, and R. Watson, ``The High

Performance Storage System,'' Proc. Supercomputing '93,

November 1993, 15-19.

[3] J.K. Deutsch and M.R. Gary, " Physical Volume Library

Deadlock Avoidance in a Striped Media Environment,"

Proc. IEEE MSS Symposium, IEEE Computer Society

Press, 1995.

[4] S. Louis and D. Teaff, ``Class of Service in the High

Performance Storage System,'' Proc. 3rd IFIP TC6

International Conf. Open Distributed Processing, Brisbane,

Australia, Feb. 1995, 21-24.

[5] Danny Teaff, Dick Watson, and Bob Coyne, “The

Architecture of the High Performance Storage System

(HPSS),” Proceedings of the Goddard Conference on Mass

Storage & Technologies, College Park, Maryland, March

1995.

[6] R. Watson and R. Coyne, “The Parallel I/O Architecture of

the High Performance Storage System (HPSS),”

Proceedings of the Fourteenth IEEE Symposium on Mass

Storage Systems. IEEE Computer Society Press, September

1995, 27-44.

[7] D. Fisher and T. Tyler, ``Using Distributed OLTP

Technology in the High Performance Storage System,''

Proc. 14th IEEE Computer Society Mass Storage Systems

Symp., Monterey, CA, Sept. 11-14, 1995.

[8] Per Lynse, Gary Lee, Lynn Jones, and Mark Roschke.

“HPSS at Los Alamos: Experiences and analysis,” Proc.

Sixteenth IEEE Symposium on Mass Storage Systems in

cooperation with the Seventh NASA Goddard Conference

on Mass Storage Systems and Technologies, IEEE, March

1999, 150-157.

[9] Harry Hulen, Otis Graf, Keith Fitzgerald and Richard W.

Watson, “Storage Area Networks and the High

Performance Storage System,” Proceedings Goddard Mass

Storage Conference, April 2002.

[10] M. Gleicher, Hierarchical Storage Interface and HTAR

Web sites, (HSI) http://www.hpss-

collaboration.org/hpss/HSI/index.html, (HTAR)

http://www.llnl.gov/LCdocs/htar/.

[11] Haichuan Yang, "Building a Massive Data Storage

Infrastructure for the Masses", Supercomputing 2003

Conference, Baltimore, MD, November 14-18, 2002.

http://storage.iu.edu/presentations/index.html.

Other references

[12] ADIC, StorNext File System,

http://www.adic.com/ibeCCtpItmDspRte.jsp?section=1002

4&item=121889.

[13] Cluster File Systems, Lustre a Scalable High-Performance

File System, White Paper,

http://www.lustre.org/documentation.html.

[14] Dennis Colarelli, Dirk Grunwald, “Massive arrays of idle

disks for storage archives,” Proceedings of the 2002

ACM/IEEE Conference on Supercomputing, Baltimore,

Maryland, November 16 - 22, 2002, 1–11.

[15] IBM, Distributed File System, http://www-

306.ibm.com/software/stormgmt/dfs/.

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE

[16] IBM, High availability option, HACMP for AIX 5L,

http://www-

1.ibm.com/servers/aix/products/ibmsw/high_avail_network

/hacmp.html.

[17] IBM Total Storage: Introducing the SAN File System SAN

FS, http://publib-

b.boulder.ibm.com/Redbooks.nsf/RedpieceAbstracts/sg247

057.html?Open.

[18] IBM, DB2 Universal Database for Linux, Unix and

Windows, http://www-

306.ibm.com/software/data/db2/udb/.

[19] IEEE Mass Storage System Reference Model V5

(MSSRM), available at

http://www.ssswg.org/public_documents.html.

[20] IEEE, IEEE Standard 1003.1-1988, Portable Operating

System Interface for Computer Environments”, 1988.

[21] IEEE, POSIX threads, ISO/IEC standard 9945-1:1996,

IEEE publications catalogue number SH 94352-NYF.

[22] Kline, B., Distributed File Systems for Storage Area

Networks, http://hsi.web.cern.ch/HSI/HNF-

Europe/SEM3_2000/DistFileSystems.pdf.

[23] J. Kohl, C. Neuman, Request for Comments: RFC 1510,

The Kerberos Network Authentication Service (V5), Sept.

1993.

[24] J. Linn, Request for Comments: RFC 1508, Generic

Security Service Application Program Interface, September

1993.

[25] R. O'Donnell, “Holographic Data Storage Systems,”

Proceedings of the IEEE, Volume: 92, Issue: 8, Aug. 2004,

1229- 1230.

[26] Panasas, Panasas Object Storage Architecture,

www.panasas.com/docs/Object_Storage_Architecture_WP.

pdf.

[27] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C.

Beame, M. Eisler, D. Noveck, Request for Comments:

3530, “Network File System (NFS) version 4 Protocol,”

April 30, 2003.

[28] M. Sherman, “Architecture of the Encina distributed

transaction processing family, “Proceedings of the 1993

ACM SIGMOD international conference on Management

of data, 1993, 460-463.

[29] SGI, XFS: A high-performance journaling file

system, http://oss.sgi.com/projects/xfs/.
[30] R. Srinivasan, RPC: Remote Procedure Call Protocol

Specification Version 2, Network Working Group Request

for Comments: 1831, August 1995.

[31] Sun Microsystems, Sharing Data with Sun StorEdge™

Performance Suite: QFS, www.sun.com/storage/white-

papers/sharing_data_qfs.pdf.

[32] Chris Wood, “Client/Server Data Serving for High-

Performance Computing, ”Proceedings of the Fourteenth

IEEE Symposium on Mass Storage Systems, IEEE

Computer Society Press, September 1995.

[33] X/Open, Systems Management: Data Storage Management

(XDSM) API, X/Open Document Number: C429,

http://www.opengroup.org/onlinepubs/9695979099/toc.htm

[34] X/Open, Distributed Computing Environment,

http://www.opengroup.org/tech/dce/.

[35] W. Yeong, T. Howes, S. Kille, Request for Comments:

RFC 1777 Lightweight Directory Access Protocol, March

1995.

Disclaimer

This document was prepared as an account of work sponsored

by an agency of the United States Government. Neither the

United States Government nor the University of California nor

any of their employees, makes any warranty, express or implied,

or assumes any legal liability or responsibility for the accuracy,

completeness, or usefulness of any information, apparatus,

product, or process disclosed, or represents that its use would

not infringe privately owned rights. Reference herein to any

specific commercial product, process, or service by trade name,

trademark, manufacturer, or otherwise, does not necessarily

constitute or imply its endorsement, recommendation, or

favoring by the United States Government or the University of

California. The views and opinions of authors expressed herein

do not necessarily state or reflect those of the United States

Government or the University of California, and shall not be

used for advertising or product endorsement purposes.

UCRL-PROC-208872

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE

