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Abstract 

 
The High Performance Storage System (HPSS) 

provides scalable hierarchical storage management 

(HSM), archive, and file system services. Its design, 

implementation and current dominant use are focused on 

HSM and archive services. It is also a general-purpose, 

global, shared, parallel file system, potentially useful in 

other application domains. When HPSS design and 

implementation began over a decade ago, scientific 

computing power and storage capabilities at a site, such 

as a DOE national laboratory, was measured in a few 10s 

of gigaops, data archived in HSMs in a few 10s of 

terabytes at most, data throughput rates to an HSM in a 

few megabytes/s, and daily throughput with the HSM in a 

few gigabytes/day.  At that time, the DOE national 

laboratories and IBM HPSS design team recognized that 

we were headed for a data storage explosion driven by 

computing power rising to teraops/petaops requiring data 

stored in HSMs to rise to petabytes and beyond, data 

transfer rates with the HSM to rise to gigabytes/s and 

higher, and daily throughput with a HSM in 10s of 

terabytes/day. This paper discusses HPSS architectural, 

implementation and deployment experiences that 

contributed to its success in meeting the above orders of 

magnitude scaling targets. We also discuss areas that 

need additional attention as we continue significant 

scaling into the future. 

 

 
1. Introduction 

 

The High Performance Storage System (HPSS) 

provides scalable hierarchical storage management 

(HSM), archive, and file system services. Its design, 

implementation and current dominant use are focused on 

HSM and archive services. It is also a general-purpose, 

global, shared, parallel file system, potentially useful in 

other application domains. When HPSS design and 

implementation began over a decade ago, scientific 

computing power and storage capabilities at a site, such as 

a DOE national laboratory, was measured in a few 10s of 

gigaops, data archived in HSMs in a few 10s of terabytes 

at most, data throughput rates to an HSM in a few 

megabytes/s, and daily throughput with the HSM in a few 

gigabytes/day.  At that time, the DOE national laboratory1 

and IBM HPSS design team recognized that we were 

headed for a data storage explosion driven by computing 

power rising to teraops/petaops requiring data stored in 

HSMs to rise to petabytes and beyond, data transfer rates 

with the HSM to rise to gigabytes/s and higher, and daily 

throughput with a HSM in 10s of terabytes/day. 

Therefore, we set out to design and deploy a system that 

would scale and evolve from the base above toward these 

expected targets. These targets have been successfully 

met. 

 

While the rapid increase in both computational power 

and memory, storage device capacity, and networking 

bandwidth have made these increases in storage system 

capacity and performance possible, without proper 

attention to software architecture, implementation and 

deployment, this hardware potential can not be fully 

realized or exploited. Even assuming new faster hardware 

and a properly designed and implemented storage system, 

successful scaling, particularly for data transfer, is not just 

a matter of plugging in the new hardware, changing a few 

configuration settings and running the system. It requires 

careful attention to all phases of the end-to-end process.  

 

There are many dimensions of scalability to which a 

storage system architecture and implementation must pay 

attention. This paper discusses those dimensions and 

illustrates the architectural approach and some of the 

implementation choices and deployment experiences that 

have facilitated achieving scalability in these dimensions. 

It also discusses some areas where further work is 

required as the system continues to scale across these 

dimensions in the future. 

                                                             
1
 Lawrence Livermore (LLNL), Los Alamos (LANL), Lawrence 
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Oak Ridge (ORNL), and Sandia (SNL) National Laboratories. 
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Scalable data throughput: This dimension focuses on 
end-to-end I/O throughput, for both single files and for 
the aggregate throughput of many simultaneous file 
transfers or I/O operations. 
 
Scalable storage capacity and storage space 

management: This dimension includes scaling storage 
capacity, numbers and types of storage devices, and files 
and file sizes. It also includes scalable space management 
for migration and purge of disk cache. 
 
Scalable robustness: This dimension includes the ability 
of the system to (1) tolerate or recover from hardware 
failures without loss of user data or system metadata and 
(2) to maintain the consistency of both user data and 
system metadata in the face of concurrent accesses during 
normal operation.  
 
Scalable name service:  This dimension for HPSS 
involves a scalable hierarchical directory service with 
virtually unlimited numbers of directories and directory 
entries, and a global name space spanning multiple 
distributed HPSS systems. It also includes scaling the 
number of simultaneous directory accesses and access 
performance. 
 
Scalable numbers of clients:  This dimension includes 
both increasing numbers of end users and internal clients 
and associated concurrent operations. 
 
Scalable deployment across geographical distances 

and multiple cooperating institutions:  This dimension 
involves distribution of data storage devices and metadata 
for performance and robustness, and integration of 
multiple storage systems into a global namespace and 
secure environment. 
 
Scalable storage system management: This dimension 
enables system administrators to manage and configure 
hundreds of devices at a time with ease and convenience, 
obtain tuning information and set tuning parameters, 
monitor system health, perform diagnostic operations in a 
complex environment, and support rapid creation and 
modification of management screens by developers as the 
system and environment evolve. 
 
Scalable security: This dimension involves a security 
infrastructure that supports the scaling and distribution of 
users, servers and associated devices across networks and 
multiple sites. 
 
Client roles in scalability:  This dimension includes the 
role of storage utility clients or agents in supporting 
scalability  (e.g. client applications for use in data storage 

and retrieval that help achieve optimum data transfers and 
other uses of the system). 

 
2. HPSS high-level architecture 
 

Figure 1 shows a high-level view of the HPSS 
architecture, which was guided by the IEEE Mass Storage 
System Reference Model (MSSRM) V5 [19]. There are 
two key features of this architecture central to HPSS’s 
scalability success. First, there is its network-centric 
architecture, where its Metadata Service is out-of-band 
with data transfer. (Metadata is that information used 
externally and internally to name, protect, and locate the 
system’s storage objects, such as virtual volumes and 
files). Data sources and sinks (e.g. storage devices, 
memory, file systems) are either virtualized by the 
Movers to create real or virtual network-attached storage 
devices that can communicate directly over a network 
(e.g. TCP/IP networks such as gigabit Ethernet (GigE), or 
a Storage Area Network (SAN)) or Movers can make 
devices directly accessible from the client systems on a 
SAN [9].  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 1. High-level HPSS architecture 
 

Thus, to scale system throughput one adds more 
network bandwidth and more Movers with their 
virtualized storage devices or one adds more directly 
attached SAN devices. The HPSS architecture also 
supports “third-party” transfers where an application (the 
third-party) can issue I/O operations that cause the data to 
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go directly between sources and sinks on two other 

systems thus, avoiding a trip through the third-party 

(copying) application’s memory. 

 

Second, the robust Metadata Service, with its separate 

associated metadata storage, is cleanly modularized 

supporting well-defined scalable numbers of abstract and 

physical storage objects. The architecture shown in Figure 

1, where the metadata services are out-of-band with the 

data path is common in SAN and clustered global file 

systems [12,13,17,22,26,31]. This centralized, 

asymmetrical metadata architecture is used by HPSS and 

other systems for three main reasons. It simplifies: (1) 

lock management for concurrent accesses to shared user 

data, (2) metadata integrity, consistency and recovery 

because the metadata is controlled by a single component, 

simplifying the algorithms and enabling use of a robust 

commercial RDBMS as the metadata engine, and (3) 

securing the metadata by placing it on a separate system 

from one running user programs or directly accessible by 

such systems, thus minimizing the components that have 

to be trusted. In particular, there is increased security 

because all accesses can only take place through an 

authenticated message interface and because having no 

user code running on the metadata system minimizes the 

ability of an unauthorized person hacking into the system 

and compromising the entire metadata system and thus all 

the data managed by the storage system.  

 

Managing all metadata in a central metadata system 

makes it easier to support HSM and archive services for 

many, generally changing, heterogeneous file systems, 

because there is no sharing of metadata between the file 

systems and HPSS. Assuring high metadata robustness 

and security is important to the HPSS design because 

HPSS operates in environments where metadata must be 

safeguarded over decades and all client systems and their 

users cannot be completely trusted. 

 

There are two main issues with a centralized Metadata 

Service. One, since a central Metadata Service is a single 

point of failure, redundant metadata computers and disks 

may be required, with either manual or automatic failover 

mechanisms or procedures for switching between them. 

Two, there is some extra operation latency in systems 

using a central Metadata Service. This results because all 

requests and replies go through the network control path, 

usually a LAN, to the Metadata Service. This is the case 

for both relatively infrequent pure metadata operations 

like “create” and “rename” and, also the more frequent 

initiation of the data transfer operations “read” and 

“write”, even though the actual data transfers take place 

concurrently directly between client and storage system 

on separate network connections. I/O throughput scaling 

proceeds smoothly, even with some extra operation 

latency, when the average data transfer time for “reads” 

and “writes” is “large” relative to the time required to 

perform the metadata functions and control 

communications for each I/O operation. This is generally 

the case for HPSS deployments, where the bulk of the 

data being transferred is in relatively large files. These 

issues are discussed further later. 

 

Below brief outlines are given of the function for the 

components shown in Figure 1. Much more detail is in 

[5]. 

 

Data Transfer Components 

 

Mover: A Mover either directly transfers data from a 

source device to a sink device or can redirect control of 

the I/O to another Mover (e.g. for a direct SAN transfer 

[9]). A device can be a memory, network, tape, disk or 

file system or other physical or logical storage entity. The 

Mover’s client (typically the Storage Service or a client 

application) provides I/O descriptors that describe the 

location of the data to be transferred. It is the Mover’s 

responsibility to transfer the data, retry failed requests, 

and attempt to optimize transfers. (Note, in SAN 

operation the SAN-aware Mover on the HPSS side is not 

directly involved in the I/O operation as it passes 

metadata (an I/O descriptor) to the Client Mover or client 

application for direct access to the data [9]). When the 

Mover virtualizes devices into network-attached storage 

devices, they can be used securely on a TCP/IP network 

because the Mover will only accept a data transfer 

command from an authenticated client such as the Storage 

Service. The Mover is a simple, versatile, modular, 

component supporting easy evolution to new types of 

networks, storage devices and storage entities such as 

files. 

 

Metadata Components 

 

Core Server 

 

Three services, Bit File Service, Storage Service, and 

Name Service, interact extensively. We recently 

integrated these three services into a single process named 

the “Core Server”, in Figure 1, reducing communications 

and nested atomic transaction overhead between them. 
 

Name Service: The Name Service provides a Portable 

Operating System Interface (POSIX [20]) view of the 

global hierarchical name space, translating a human-

oriented name to an HPSS unique-object-identifier. 

The name spaces of different HPSS systems can be 

joined to create a larger distributed shared naming 

environment. 
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Bitfile Server: The Bit File Service provides the 

abstraction of logical bitfiles (the term “bitfile” is 

IEEE MSSRM terminology, even though files are 

logically streams of bytes) to client applications. 

Clients may reference random portions of a file. The 

POSIX file API has been extended to support parallel 

reading and writing of file data [5].  

 

Storage Service: The Storage Service provides a 

virtual volume service supporting a hierarchy of 

storage objects such as storage segments and virtual 

volumes (e.g. striped, mirrored, multi-physical 

volume). The Storage Service schedules the mounting 

and dismounting of removable media through the 

Physical Volume Library and provides the Movers 

with I/O descriptors to perform the actual I/O.  
 

Migration/Purge Server: The Migration/Purge Server 

manages the placement of data on appropriate storage 

media within storage hierarchies using site specified 

policies.  

 

Storage System Management: Storage System 

Management provides both a GUI and command line 

interface enabling system administrators to configure, 

monitor and control HPSS resources. All other system 

components provide information to a system management 

metadata base and provide other notifications and alarms.  

 

Location Server: The Location Server enables its clients 

to locate servers and gather information from both local 

and remote HPSS systems.  

 

Logging Service: Any HPSS component can send 

messages to the Logging Service to record events used for 

security auditing, problem troubleshooting, tuning and 

other needs that might develop. 

 

Components with both data transfer and metadata 

functions 

 

Physical Volume Library: The Physical Volume Library 

manages all HPSS physical volumes. It is in charge of 

coordinating the mounting and dismounting of sets of 

physical volumes, and allocating drive and cartridge 

resources to satisfy mount and dismount requests. The 

Physical Volume Library supports atomic mounts of sets 

of cartridges for parallel access to data on striped virtual 

tape volumes [3].  

 

Physical Volume Repository:  The Physical Volume 

Repository coordinates the mounting and dismounting of 

cartridges and performs other cartridge related operations. 

Each Physical Volume Repository is typically configured 

to manage the cartridges for each robot complex utilized 

by HPSS. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Figure 2. Abstracted HPSS Deployment 
 

HPSS functionality, infrastructure and implementation 

are constantly evolving. Each HPSS component is 

implemented as a separate multithreaded process that 

communicates with other HPSS components by remote 

procedure calls. This modular, distributable 

implementation, along with the separation of Metadata 

Service from data transfer, has been very successful. The 

component modularity has also proved very useful as part 

of the distributed development team’s development 

methodology.  

 

3. HPSS second level architecture, 

implementation and experience issues related 

to scalability 
 

3.1. HPSS infrastructure 
 

A key second level architecture and implementation 

decision was to define a set of common infrastructure 

services required by HPSS servers and clients. These 

infrastructure services (called “common infrastructure” in 

Figure 1) provide a uniform implementation foundation 

and serve to "glue together" the distributed clients and 

servers. All HPSS components must work together to 

provide users with a stable, robust, secure, distributable 

and portable storage system. Separation of the 
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infrastructure simplifies development by letting HPSS 

developers focus on the storage application, increases 

robustness (when well tested and widely used commercial 

components are used), and supports evolution as industry 

standards and products evolve in functionality, 

performance and support. The common infrastructure 

organizes the interfaces to the HPSS clients and servers 

into four primary services: remote procedure calls 

(RPCs), metadata system, security services, and 

concurrency services (threads).  

 

We initially chose the Distributed Computing 

Environment (DCE)[34] as a central infrastructure 

component because it provided an integrated set of RPC, 

security, thread, and time services. We chose IBM’s 

Encina/Structured File System (SFS) (built on DCE) 

yielding a well-integrated distributable infrastructure [28]. 

After a decade of service, we recently replaced 

Encina/SFS with IBM’s DB2 Universal Database [18] in 

HPSS Release 5.1 and DCE with a set of industry 

standard security, RPC and thread services in Release 6.1. 

These decisions were made to improve performance and 

robustness, and because IBM announced a phase-out of 

Encina/SFS and DCE support. 

 

3.2. Metadata system  
 

Fundamental to both HPSS robustness and scalability is 

the metadata architecture and implementation: a central 

Metadata Service, a robust metadata engine supporting 

atomic transactions, a scalable set of metadata data 

structures, scalable update and access algorithms, backup 

and recovery mechanisms, and separation of metadata 

from user data storage. While robustness is important to 

any file system, it is particularly critical to HSM and 

archive applications, where data is intended to live 

possibly for decades. If the metadata is damaged or lost 

during metadata updates, then user data, while correctly 

stored, will not be accessible or will be corrupted. 

 

We initially chose IBM’s Encina transaction manager 

with its associated Structured File System (SFS) because 

it supported distributed, nested atomic transactions, record 

structures organized by multiple keys, and it was 

integrated with DCE [7,28]. SFS, at the time, was also 

faster than RDBMS’s running on the available 

minicomputer machines targeted for running the Metadata 

Service components and had other capabilities not 

common in RDBMS’s available in 1992.  

 

To improve metadata scalability and performance, and 

to add new levels of robustness, we recently examined the 

options available for metadata engines.  We focused 

particularly on the commercial RDBMS systems most 

widely used in business and mission critical applications, 

and thus having demonstrated high robustness. 

Benchmarking showed that their performance and 

capabilities had improved dramatically since HPSS was 

initially implemented. In fact these tests indicated that we 

could expect to see a significant metadata performance 

improvement over Encina/SFS. Further, these systems 

were expected to be even more robust because they were 

much more widely deployed in business and mission 

critical applications, and thus had higher levels of support. 

Because of the richness of their functionality, they also 

offer the potential for metadata optimizations that can 

yield higher performance as the HPSS implementation 

evolves. 

  

We chose, as mentioned above, IBM’s DB2 Universal 

Database as our current RDBMS metadata engine [18]. 

Our implementation isolates the RDBMS choice from its 

HPSS client processes through a metadata manager 

library. This layer provides HPSS components with a 

means of accessing metadata, while insulating other parts 

of the system from the underlying details of the metadata 

RDBMS engine. This will also simplify the process of 

switching to a different RDBMS in the future, should this 

prove desirable. 

 

Metadata robustness requires a well engineered and 

tested metadata engine and a set of mechanisms to 

tolerate or recover from hardware failures. HPSS supports 

several levels of metadata integrity protection. First, is the 

use of a commercial RDBMS that is thoroughly tested, 

widely used, highly tuned and well supported. Second, the 

metadata engine supports atomic transactions, to assure 

metadata consistency in the face of possible failures when 

in the middle of a sequence of metadata updates that must 

all occur correctly or not at all [7]. Third, the metadata is 

stored in a mirrored RAID disk system, with recovery 

automatically handled by the RAID controller or the 

operating system. Fourth, the metadata disks are backed 

up daily. Last, an alternate failover machine, either 

inserted automatically [16] or manually, is available to 

run the Metadata Service. Cleanly separating metadata 

storage from user data storage makes it possible to keep 

all the metadata on high performance stable storage, and 

perform fast metadata restore operations, should they be 

necessary, time independent of the amount of user data 

stored. This is an important consideration in a system 

storing petabytes of data. 

 

3.3. Scalable data structures and algorithms 
 

Careful attention is required in the design of metadata 

structures and manipulation algorithms to enable 

scalability across the dimensions above, particularly 

scalable capacity: total storage space, as well as numbers 

and sizes of objects such as files and directories. It is 

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005) 
0-7695-2318-8/05 $20.00 © 2005 IEEE 



 

beyond the scope of this paper to discuss this topic in 

detail, but a few remarks are in order. One of our 

experiences building earlier storage systems was that 

decisions on field lengths in metadata records might limit 

scalability in numbers of objects or object sizes. Thus, 

from the beginning, HPSS has used 64 bit field sizes and 

64 bit arithmetic widely, particularly for numbers and 

sizes of objects, to avoid artificial field size restrictions. 

Another restriction limiting scalability of systems has 

been metadata storage limitations and requirements to 

statically allocate fixed disk regions for metadata use, 

such as inodes. HPSS has no such limits and makes 

effective use of the large and dynamic storage capabilities 

of DB2 for table and index growth.   

 

Keeping track of free disk space and allocating space 

are central storage system functions. To support scalable 

capacity and I/O one wants to allocate space in as large as 

possible contiguous regions, rather than fixed size blocks. 

There are two central internal objects in HPSS associated 

with these functions, the storage segment, out which files 

are constructed, and the virtual volume block, that can be 

thought of as the stripe stride length.  Disk segments are 

variable length, within parameters set by a system 

administrator, and map to contiguous regions on disk.  

Tape segments can be any length up to the length of a 

tape. Segments are safely kept track of in dynamic tables 

within DB2. HPSS keeps track of disk free space in tables 

kept in memory, which can be quickly rebuilt from the 

segment metadata if needed. Further, HPSS metadata 

manipulation uses the efficient B+ tree and other 

mechanisms provided by DB2, and in the case of 

algorithms outside of DB2, like the disk free space 

mechanism above, care is taken to assure they will scale 

well for large numbers and sizes of objects.  

 

3.4. Security services  
 

Mechanisms are provided that allow HPSS components 

to communicate in an authenticated manner, to authorize 

access, to enforce access control (POSIX user, group, 

world and access-control-lists (ACLs)) on HPSS objects, 

and to issue log records for security-related events. 

Security policies are site dependent. HPSS provides a 

clean separation of policy and mechanism so that sites can 

use default security services or add both their own policy 

modules and security mechanisms, in a plug-and-play 

architecture. Industry standard services are used, such as 

the Generic Security Services (GSS) API, Kerberos, and 

directory services that support HPSS data schemas, (such 

as Lightweight Directory Access Protocol (LDAP) 

[23,24,35]. The scalability implications for the security 

services are primarily in the distributed, cross-security 

domain, including a multi-institution dimension, where 

DCE excelled because it provided a fully integrated set of 

services with an essentially uniform implementation 

across platforms on which HPSS was targeted. However, 

DCE did have the drawback that sites not using DCE on 

an institution-wide basis had to develop DCE expertise 

for use with HPSS. Further, we had to develop a non-

DCE gateway to support access to HPSS from client 

machines that did not run DCE. Since today there is no 

industry-supported product with DCE’s integrated set of 

services, we selected an equivalent set of industry 

standard services (i.e. ONC RPC [30], POSIX threads 

[21], the security services above) and integrated them as a 

DCE replacement. To provide cross-realm integration, we 

use the multi-realm capabilities of Kerberos and LDAP. 

Kerberos is used to authenticate users, servers, etc. and 

LDAP is used to store registry information associated 

with all users.  Multiple LDAP servers at different sites 

can be integrated to provide a distributed registry service.  

We require LDAP servers to support strong authentication 

such as Kerberos and ACLs to securely control registry 

information.  

 

3.5. Concurrency  
 

Concurrency is critical to supporting and scaling 

multiple simultaneous operations throughout the system 

and being able to scale server performance, when needed, 

by multiprocessing HPSS components on commodity 

clusters of processors. IEEE POSIX-compliant threads 

and POSIX thread interfaces are used [21]. POSIX 

threads are supported as kernel-level threads by the 

operating system vendors. The central implementation 

architecture is that all HPSS components are implemented 

as multithreaded and thread safe processes. As each 

request arrives, a separate thread is forked to handle it. As 

commodity multiprocessors have arrived on the market, 

HPSS has been able to scale its metadata handling cost 

effectively. Organizing the metadata so that only 

minimum units of granulariy need locking is important for 

scalable concurreny. 

 

3.6. Communication services 
 

Communication (LAN, WAN, SAN) is central to the 

HPSS architecture and its I/O scalability. Therefore, 

providing mechanisms that support optimized use of each 

site’s available communications capabilities has received 

close attention. There are several levels of communication 

protocols and mechanisms used within HPSS. The lowest 

level is network communications. Currently TCP/IP and 

use of TCP/IP networks such as GigE and 10 GigE are 

dominant. Early in HPSS history, HIPPI networks and the 

IPI3 protocol were supported, along with directly attached 

HIPPI devices from companies such as Maximum 

Strategy [32]. GigE replaced HIPPI both in cost and 

reliability. To achieve full use of TCP/IP networking, we 
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pay close attention to tuning networking parameters and 

resources such as packet and buffer sizes (see Section 4). 

Fibre Channel SAN has also emerged in recent years 

along with LAN, WAN, and SAN use of iSCSI. HPSS 

supports use of SAN networking [9]. SANs potentially 

improve performance of migration and caching between 

device hierarchy levels [9] and can be used for 

interconnecting HPSS storage devices. HPSS can take 

advantage of each site’s networking configuration, which 

may include multiple networking technologies and 

separate different size data transfers on different network 

routes. As mentioned earlier, the modularization and 

virtualization of networking into the Mover component 

has been central in easily tracking the constantly evolving 

networking technologies. 

 

Above TCP/IP, HPSS uses remote procedure call 

(RPC) protocols for its control communications between 

clients and servers and between internal server 

components. Control communication between the Storage 

Service and Movers uses simple socket communications 

because the generality of RPC communications is not 

required as only two types of messages are exchanged 

between them. 

 

Another protocol in use within HPSS is the Mover-to-

Mover data transfer protocol [6]. It was developed to 

provide a simple data transfer protocol layer within low 

latency LAN and system area networking environments 

and to support a variety of transfer mechanisms such as 

IPI-3 over HIPPI, shared memory, and TCP/IP sockets. It 

uses a message exchange flow and error control scheme 

for each block transferred.  It also supports negotiations of 

transfer optimizations available between pairs of data 

sources and sinks, using information contained in a 

configuration file. Further, it supports striped transfers 

between different numbers of Movers on the client and 

the HPSS sides. It is simple and works well in low latency 

network environments. As HPSS usage scaled to WANs, 

message exchange latency increased, limiting bandwidth 

performance scaling. The Mover protocol evolved to 

utilize TCP/IP’s streaming capabilities to eliminate these 

latency-scaling limitations.  

 

At the next level, HPSS can scale bandwidth and 

throughput by different forms of network striping. HPSS 

client data transfer agents such as PFTP, HSI, PSI, and 

HTAR (see Section 3.10) can stripe transfers over 

multiple TCP/IP connections, utilize multiple network 

interface cards (NICs), when available, or utilize multiple 

nodes such as on Linux Clusters, or use combinations of 

the above [5,8,10]. In a cluster environment, the HPSS 

client agents may utilize internal networks, such as 

Quadrics or Myrinet for high-speed intra-cluster transfers. 

The number of TCP connections used is balanced against 

the performance of the NICs in use. Further, HPSS can do 

striped file transfers between M Movers on the client side 

and N Movers on the HPSS side, where these Movers can 

be on the same or different nodes of a system. (The HPSS 

file stripe width is N.) Connections between Movers can 

use multiple NICs and/or TCP connections. The 

architecture of Movers coupled with the Mover-to-Mover 

Parallel Transport Protocol (PTP) [6] makes this powerful 

generality and scaling capability possible. 

 

Client agents (discussed in Section 3.10) add the final 

level of protocols and mechanisms to support high I/O 

throughput. Optimum usage of the above forms of 

communication striping requires proper set up of various 

configuration files (used by both Movers and the client 

agents), along with other parameters such as packet and 

buffer sizes.  

 

3.7. Device striping 
 

I/O scaling is at two levels, bandwidth to individual 

files and total aggregate I/O throughput. Besides striping 

of connections, NICs, Movers, and nodes as discussed 

above, software striping of devices at the HPSS level is 

also used for scalable data transfer. The Storage Service 

provides the striped virtual volume abstraction. Since 

RAID disks provide a virtual highly reliable disk, we can 

safely stripe RAID devices very widely in HPSS to 

achieve highly scalable disk transfer rates. Disk striping 

in production environments are currently rather modest 

with four-way stripes being the largest, thus, there is 

significant scaling headroom using wider stripe widths. 

Demonstrations using 16-way and even 256-way disk 

stripes have been performed from HPSS’s earliest days.  

 

HPSS can also support virtual striped tape volumes to 

improve transfer rates to tape. The Storage Service 

supports virtual volumes of Redundant Arrays of 

Independent Tapes (RAIT), Level 0 (mirroring) and Level 

1 (striping with no parity tape). Current usage generally 

limits operational tape striping to four-way RAIT Level 1 

stripes because of concerns about the reliability of tape 

media and drives, although other strategies for using 

wider stripes are being considered. For example, it is 

possible to write a file to tape directly and then make a 

deferred mirrored copy later on a scheduled basis. We had 

hoped to encourage industry to produce a commercial 

high performance RAIT Level 3 or 5 controller and to that 

end a U. S. DOE project was created to develop such a 

controller. A prototype was developed, but the contractor 

did not elect to move it to the product stage. DOE labs are 

prototyping two RAIT Level 3 or 5 approaches at 

relatively low priority, one using software as a RAIT 

controller that could be used within HPSS, and the other 

using a Linux box as a RAIT controller. Other tertiary 
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storage technologies such as MAID disks [15] and 

holographic devices [25] may eventually become 

economically competitive with tape for use in large 

archives.  

 

3.8. Storage hierarchies, classes-of-service and file 

families 
 

HPSS supports the ability to organize classes of devices 

into varieties of storage hierarchies, from single-level 

hierarchies (e.g. disk for small files or tape for large files) 

to more complex hierarchies involving multiple levels of 

devices (e.g. a disk cache with multiple tape levels below 

it or disk over mirrored tape copies). Use of multiple 

storage hierarchies in a given deployment allows use of a 

range of media and devices with different costs and 

performance for different classes of service (COSs) and is 

central to HPSS’s capacity and I/O scaling strategies. A 

COS is selected for each HPSS file and is defined based 

on characteristics such as file size, disk type and speed, 

stripe width, tape type, and whether tapes are mirrored 

[4]. 

 

Selection of the proper COS for a file is achieved via a 

"hints" mechanism or by a system administrator setting. 

For instance, small files requiring quicker access may best 

be stored only on redundant disk devices or might be best 

directed to dual-hub access-efficient tape media, as 

opposed to capacity-focused devices. An example of 

COSs and multiple hierarchies is the current LLNL 

environment where five main COSs are used: small files 

(<4MB), medium files (4MB – 32MB), large files (32 – 

256 MB), jumbo/htar (> 256 MB), and dual-critical 

(large/jumbo files that are mirrored to tape). Each of these 

COSs uses different hierarchical sets of storage devices 

available within the LLNL system. The HSI application 

(see Section 3.10) augments this capability with a 

sophisticated auto-COS-selection capability that requires 

no user knowledge of the site’s COSs, and allows sites to 

segregate resources by user, group, and/or account, and to 

choose between hierarchies based upon the desired 

number of copies, among its many features. 

 

File Families are a way to assure files in a directory 

sub-tree are co-located on media. This is done when it is 

common to access multiple files from the same File 

Family during an application run, and thus, reduces the 

number of tape mounts and increases throughput. File 

Families and configurable COSs allow HPSS to scale to 

satisfy wide ranges of application requirements by 

matching classes of data with the best and most efficient 

device/media combinations. For example, climate 

research applications typically write extremely large files 

and so at some sites are configured to use a Direct-To-

Tape class of service, with no disk in the hierarchy at all.   

Weather sampling applications, on the other hand, collect 

a large number of very small files, which are frequently 

accessed.  These are therefore written to a COS with a 

large disk cache at the top of the hierarchy with an 

associated migration/purge policy that encourages lengthy 

retention of files at the top of the hierarchy. 

 

Associated with storage hierarchies is the need to 

support file migration and purge [5]. Migration of a file 

down the hierarchy (to slower, less expensive media) is 

performed in order to free space on more valuable media, 

take advantage of lower cost or new types of media, or 

implicitly provide backup. Dynamically configurable site 

policies are used to determine under what conditions 

migration should take place and when purging should take 

place. There are two performance and robustness issues 

here. One, by setting an aggressive migration policy, but 

delaying purge (thus potentially speeding up read back 

performance), backup is automatically provided as part of 

the hierarchical services, without a special backup service 

being required as two copies exist, one on each level of 

the hierarchy. Two, when migrating to tape, mirrored 

copies (possibly distributed) can be created as part of the 

policy, further enhancing user data robustness.  

 

Copies can also be explicitly (by command) or 

implicitly (when accessed) staged up the hierarchy for 

higher performance. A capability that is very important to 

scalability is the creation of metadata records that indicate 

which files need to be migrated and purged.  Files that are 

written are marked as candidates for migration and those 

that have been migrated as candidates for purge. By doing 

this, HPSS eliminates the need to scan through large 

amounts of metadata in order to determine which files are 

candidates for migration and purge.  Without this 

mechanism there would eventually be a scalability limit 

on the migration/purge algorithm. Sites also take 

advantage of the multiple mirrored copy feature of 

hierarchies to create backup copies in separate physical 

locations to protect against fire or other disaster.  

 

A deployment issue related to a high performance tape 

environment is configuring the system so that there are 

multiple robotic arms available, either in single tape 

library or by using multiple libraries, so that multiple tape 

mount/dismount requests can be in progress at once. 

HPSS has logic to optimize the choice of a tape drive in 

multi-robot configurations. 

 

3.9. Subsystems 
 

HPSS can distribute Metadata Services across multiple 

Core Servers and databases using a feature called 

“Subsystems” (a Subsystem can be thought of as a 

namespace partition along with its associated media, 
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managed by its own Core Server). Subsystems differ from 

whole instances of HPSS in that a single name space is 

still maintained, a single login is used by client 

applications, and devices such as tape and disk drives can 

be accessed by all subsystems within a single HPSS. It 

simplifies system administration by maintaining a single 

system image. Subsystems can be placed on separate 

computers or in separate processes on shared computers 

as appropriate to the requirement.  

 

An example use of Subsystems is the European Center 

for Medium Range Weather Forecasting (ECMWF), 

which uses Subsystems to separate two very different 

application domains within a single HPSS instance, an 

interesting form of scaling. ECMWF uses three 

Subsystems. Subsystem 1 contains the center-wide name 

space root of roots. Subsystem 2 is the MARS subsystem 

that receives data in near real-time from weather sensors 

around the world.  MARS is a sophisticated data access 

application that uses HPSS as its backing store and is a 

tape-only system. Subsystem 3 is the general-purpose user 

file store, ECFS, which has large disk and tape layers.  

 

The current HPSS implementation of Subsystems has 

the disadvantage that it partitions by name space sub-

trees. With the current implementation and available 

tools, a system administrator is required to make the 

decision whether to add a new Subsystem at system set 

up, or when new users are added, and thus partition based 

on anticipated loads across the metadata system. To 

improve Subsystem dynamic configurability, additional 

load measurement capabilities and partitioning tools are 

required. A better long-term solution would be to support 

automated distribution of resource load across 

Subsystems. Subsystems do, however, provide a 

foundation for further evolution. 

 

3.10. User interfaces 
 

HPSS supports an extended POSIX Client API 

(CLAPI) as its most complete and powerful interface. The 

HPSS Client API is a superset of POSIX semantics, 

providing fields to support striping, classes of service, and 

other HPSS functions that POSIX semantics do not 

address [5]. The HPSS CLAPI can be used directly by 

end user applications or by data storage service 

applications (client agents) or with other interfaces. 

CLAPI supports a powerful list form of I/O transfer 

command that allows multiple operations to be initiated 

with a single command. Achieving optimum parallel I/O 

can be a complex problem, involving scalability issues in 

areas such as file system, network and I/O striping, 

debugging and troubleshooting, resource allocation, error 

recovery and job restart capability. Therefore, client 

agents are available with HPSS or may be written by sites 

that facilitate applications achieving maximum use of 

HPSS’s I/O scaling capabilities. The MARS and ECFS 

applications at ECMWF, mentioned above, are examples 

of site agents. PFTP, discussed below, is an example of an 

included HPSS agent. Transparent access to the HPSS 

CLAPI through the Linux Virtual File System (VFS) 

capability is currently in its prototype phase. 

 

Parallel File Transfer Protocol (PFTP) [5], Hierarchical 

Storage Interface (HSI) [10] and Parallel Storage 

Interface (PSI) [8] are three agents with the configuration 

“knowledge” and mechanisms to optimize system 

throughput and parallel network and I/O bandwidth. An 

example use of configuration knowledge to optimize 

throughput is the ability of both HSI and PSI to use 

HPSS’s extended file attributes (indicating information 

such as file location - disk or tape and if on tape which 

tape and where on that tape). Thus, HSI and PSI can use 

this information to schedule file transfers to minimize 

tape mounts. Another example is the ability of PFTP and 

HSI to use HPSS configuration information to set up the 

optimum network-striping environment for a transfer. HSI 

can make use of HPSS’s ability to support third-party 

transfers and set up such transfers between Movers on any 

pair of systems, even between Movers on separate HPSS 

systems of cooperating sites. HSI and PSI also support a 

range of other useful file and transfer functions.  

 

Another utility developed to improve transfer 

performance is HPSS Tar (HTAR) [10]. HTAR creates 

POSIX-compliant TAR files directly in HPSS, using 

multithreading and HPSS striped transfers to achieve high 

I/O rates by blocking many small files into a single large 

archive file. HTAR includes a number of other features, 

such as automatic creation of a separate index file, that 

facilitate random retrievals of HPSS files and listing of 

archive (tar) files that may reside on tape. HTAR provides 

a simple means to scale the writing and reading of large 

numbers of small files in a single high data throughput 

transfer to HPSS. 

 

HPSS supports The Open Group’s XDSM interface 

[33], also known as DMAPI, which supports the 

connection of a file system to a tape archive system. 

HPSS supports an XDSM interface to the open source 

Linux XFS file system [29] and to IBM’s Distributed File 

System (DFS) [15]. IBM is discontinuing DFS support, 

but it is still in use at many sites. Indiana University, for 

example, uses DFS with HPSS to support over 1300 users 

in two geographical campus locations. Since IBM support 

for DFS is being phased out, existing DFS/HPSS filesets 

will be converted to HPSS-only filesets. These filesets 

will then be made available to clients using either the 

HPSS NFSv4 [27] under development by Commissariat à 

l'Energie Atomique/Division des Applications Militaires 
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(CEA/DAM) Compute Center in France or the HPSS VFS 

Client implementation.  

 

3.11. No OS kernel modification 
 

The decision to avoid OS kernel modifications has 

facilitated scaling across a variety of platforms, and 

operating systems, particularly enabling implementation 

of Movers on platforms from several vendors. 

 

4. Scaling I/O throughput using Scalable 

Units and system tuning  
 

Scaling is a continuous process as new hardware and 

media are introduced, as storage requirements increase, 

and as improved device capacities and performance enter 

the marketplace. Successfully accomplishing a high speed 

transfer is an end-to-end problem that requires the 

interaction of a myriad of components ranging from 

platform operating systems and file systems through 

choice of network buffer, window and packet sizes, to 

network switching components and topology, and 

ultimately down to the microcode in target device 

controllers. Often the direction of the transfer has 

profound effects on transfer speeds. The transfer is, of 

course, only as fast as the slowest component.    

 

Finding the sweet spot for an entire I/O chain is 

difficult.  HPSS allows system administrators to adjust a 

variety of parameters to tune transfer performance. 

Example parameters include the storage segment size and 

number, virtual volume block size (used in striping), 

packet size, Mover buffer size, TCP flow control window 

size, and numbers of NICs. Sites typically determine an 

optimal combination consisting of a Mover with a set of 

devices such as disk drives, controllers, channels, Mover 

nodes, Mover network connections and associated HPSS 

and interface parameters to provide high bandwidth 

transfers to/from large compute platforms.  This 

combination is labeled a Scalable Unit. An example of a 

disk Scalable Unit would include a particular Mover 

platform (model, number of CPUs, memory, NICs, 

HBAs) attached to a RAID array, with an appropriate 

Logical Unit organization, providing a tuned data 

throughput for a fixed disk capacity. 

 

As data throughput requirements grow or improved 

storage devices become available, sites simply add 

repetitive or new types of Scalable Units to satisfy the 

requirement. As technologies advance, a site constantly 

tunes, identifies and migrates to new Scalable Unit types. 

This is made possible by the modularity of HPSS, 

particularly the separation of Movers and their network 

connections from other metadata modules. Being able to 

add virtually unlimited numbers of Movers, and thus the 

above Scalable Units, is a key scalability feature.  

 

 As examples of the importance of proper tuning, we 

have seen performance improvements of 10X and even 

more by tuning the network and HPSS buffer sizes.  We 

have seen rates go from 12MB/s to 80+MB/s simply by 

changing the network send/receive socket buffer size. We 

have seen 2X to 4X improvement merely by properly 

choosing virtual volume block sizes, and Mover buffer 

sizes.   We saw large improvements for earlier IBM AIX 

operating system versions when it was discovered that 

32K is the sweet spot for doing writes to the network. 

Many more examples could be given. 

 

5. How HPSS achieves scalability across the 

scaling dimensions  
 

In this section we go through each of the scalability 

dimensions defined in Section 1.  We identify the key 

architectural and implementation features outlined above 

and briefly recap how they are achieved.  We also discuss 

areas requiring further evolution, both to better meet 

current requirements and future scalability.  

 

5.1. Scalable data throughput  
 

Architecture: The architectural features proven 

successful in I/O scaling have been the separation of data 

movement from Metadata Services and the use of Movers 

to virtualize storage devices, memory and files to create 

virtual network-attached storage devices or make storage 

devices directly accessible to clients on SANs. Thus, by 

expanding network cross-sectional bandwidth and 

replicating Scalable Units as needed, one can meet a 

given I/O throughput requirement. The Storage Server 

and its virtual volume (e.g. striped volumes) and virtual 

segment services have also aided scalable data 

throughput. 

 

Implementation: The important implementation choices 

supporting I/O scalability include: the ability to support 

many concurrent requests and I/Os in progress, a rich set 

of communications and client transfer agent capabilities at 

several levels, allowing balanced use of networking 

resources (types of networks, connections, NICs, nodes, 

Movers), the use of device striping, extended file 

attributes that can be used to optimally schedule tape 

mounting, COSs, configuration files usable by client 

agents and Movers, and a scalable metadata engine.  

 

Deployment: Review of metadata engine utilization on 

current equipment is a strategy that applies to this and all 

dimensions below to determine if workstation capacity 
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should be upgraded, replaced, or the metadata should be 

restructured across multiple subsystems/workstations to 

improve service. The ability to use faster commodity 

processors and multiprocessors for scaling Metadata 

Service and Mover I/O performance is an important and 

cost effective strategy. Periodic planning is important to 

determine I/O requirements and associated networking, 

Mover and device resources needed to meet these 

requirements. The specification of Scalable Units 

(Movers and attached devices) and end-to-end tuning of 

the appropriate network, communication, device 

configuration and HPSS parameters have been an 

essential part of the I/O scalability strategy.  Defining 

COSs and File Families and their mapping to the 

appropriate hierarchies has also been useful in organizing 

the storage devices for optimal I/O.  

 

Issues needing further work: There is a need to improve 

small file performance (e.g. the number of small file 

creates and/or writes/sec). This will be a focus of near 

term work.  We are studying several areas of the 

implementation where we can improve small file 

performance: reducing metadata; better use of DB2’s rich 

functionality for metadata organization, access, caching, 

and partitioning for better concurrent access; improving 

Storage Service and Mover communications; and 

improving tape organization and small file aggregation. 

Many of these will improve metadata performance for all 

other operations as well. The Storage Service storage 

allocation algorithm can also be improved to more 

uniformly balance disk utilization across multiple Movers 

to take advantage of knowledge of which disks are busy 

and which are idle. Making Subsystems easier to use is 

also an option for distributing metadata services for 

improved performance.  

 

5.2 Scalable storage capacity and storage space 

management  
 

Architecture: The hierarchical storage architecture with 

appropriate choice of abstract/physical objects, and object 

management modularity has been central to scaling 

capacity. 

 

Implementation: Important implementation choices 

include: metadata engine choice and scalable metadata 

design and organization; wide use of 64 bit fields for 

essentially unlimited numbers and sizes of objects; 

multiple storage hierarchies, COS, and File Families; 

separation of migration/purge policy and mechanism 

supporting site specific policies; a repack utility for both 

reclaiming tape space and moving data to newer 

technologies for technology insertion.  

 

Deployment: Periodic storage requirements and 

capacity planning, including review of new technologies 

to replace current disk/tape resources leverage the ability 

of HPSS to easily scale to meet identified requirements.  

 

Issues needing improvement: None currently identified. 

 

5.3 Scalable robustness  
 

Architecture: Separation of metadata and user data 

storage allows multiple redundancy mechanisms to be 

employed as appropriate to meet reliability, availability 

and recoverability requirements. 

 

Implementation: Successful approaches include:  use of 

a commercial quality RDBMS metadata engine, metadata 

backup, mirroring and recovery, atomic transactions, 

diagnostic utilities, the ability to create hierarchies and 

COS that make multiple copies of user data on tape, and 

use of the migration/purge policies to provide “automatic” 

backup. Use of backup metadata engines and, where 

appropriate, the IBM High Availability Option [16] that 

provides hot backup and recovery. 

 

Deployment: Strategies include: careful attention to 

setting up redundant metadata systems and storage, well 

defined backup and recovery procedures, metadata engine 

documentation and support coverage. 

 

Issues needing improvement: None currently identified. 

 

5.4 Scalable name service  
 

Architecture: Distributed architecture supporting a 

distributed, shared global name space. 

 

Implementation: Strategies include: a powerful 

metadata system allowing named objects to be located 

rapidly using a variety of search criteria, large field sizes 

in metadata records, scalable algorithms that support 

operation times that are independent of directory size or 

for “directory list” linear time with directory size, support 

for Filesets and Junctions allowing linking name spaces 

across HPSS systems.  

 

Deployment: No special strategies in use.  

 

Issues needing improvement: Metadata performance 

improvements as listed earlier. 

 

5.5 Scalable numbers of clients  
 

Architecture: Separation of Metadata Service and data 

transfer supporting many simultaneous transfers and the 
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ability to integrate HPSS with user systems such as file 

systems and web servers.  

 

Implementation: Important implementation decisions 

include metadata engine choice, supporting scalable 

concurrency through widespread use of threads and thread 

safety for multiprocessing. 

 

Deployment: An example of both use with large 

numbers of clients and geographical deployment is the 

HPSS environment at Indiana University, mentioned 

above.  

 

Issues needing improvement: Ongoing metadata 

performance improvements and completing a DFS 

replacement plan as described above. 

 

5.6 Scalable deployment across geographical 

distances and cooperating institutions  
 

Architecture: Key features include the modular 

distributable architecture. 

 

Implementation: The ability to distribute and join name 

spaces and join distributed and multiple security domains. 

 

Deployment: Examples of distributed HPSS usage is 

the “single user logon” access to any of the three systems 

at LLNL, SNL and LANL and the Indiana University 

system mentioned above. Besides the distributed users, 

Indiana University is an example of using the HPSS 

capability to distribute their storage devices so as not to 

be limited by WAN bandwidth for local access. They use 

a single HPSS metadata service for the entire system to 

create a global name space and single virtual shared 

environment, but have distributed Movers and Physical 

Volume Repositories for distributed disks, robots and tape 

drives [11].  

 

Issues needing improvement: None currently identified. 

 

5.7 Scalable storage system management  
 

Architecture: HPSS Storage System Management 

consists of the component mentioned earlier and a set of 

utilities. The modular architecture and the auto-generation 

of screens facilitate organization of the storage system 

management metadata, internal communications, and the 

user interface. These make the addition of new features 

faster and easier.   

 

Implementation: Strategies include: concurrency and 

scalable metadata engine; support for day-to-day 

operations using either an easily navigable GUI or 

command line interface; support for operations across 

large numbers of servers or devices using the command 

line interface and associated scripts (e.g. setting up initial 

configurations); and a set of utilities for troubleshooting, 

recovery and tuning. The task of developing and 

maintaining GUI screens is eased through the use of 

screen auto-generation techniques.  

 

Deployment: Different sites utilize the GUI and 

command line interfaces in different ways and 

combinations. For example, some sites deploy 6 – 12 

concurrent GUI users, each with 5 – 20 open screens, on a 

variety of Storage System Management desktops (Linux, 

Windows, Macintosh). Tests have shown that, should the 

need arise, many more concurrent users and active 

management screens can be supported. Other sites use the 

command line interface in scripts to perform regular 

system monitoring. The command line interface is also 

used for managing HPSS systems remotely. Flexibility 

exists with HPSS to manage distributed resources and 

HPSS systems as independent entities while linking them 

via the option of the federated namespace, or by using a 

single HPSS system to manage remote resources (Remote 

Mover option) such as at Indiana University or to manage 

remotely placed HPSS subsystems. 

 

Issues needing improvement:  Ongoing evolution of 

functionality and presentation screens, including 

supporting all commands in the command line interface, 

increasing the number and usefulness of the “views” of 

the system available, particularly the addition of screens 

which tie together related information  (e.g. to track a 

user’s job as it flows through the system).  

 

5.8 Scalable security  
  

Architecture: Ability to integrate a distributed modular 

system into a secure environment using local and cross-

site security infrastructures and modular organization of 

security components into plug and play security 

mechanisms.  

 

Implementation: Choices useful here include: common 

security infrastructure mechanisms (e.g. Kerberos, GSS, 

LDAP, Unix permissions), separation of policy and 

mechanism, the current version of LDAP (IBM’s) scales 

in the same manner as HPSS since it uses DB2. With 

Kerberos, one can create multiple security realms.  

 

Deployment: Each site has different institutional 

policies and possibly different directory products or 

implementations and care is required to appropriately set 

these up. 

 

Issues needing improvement:  Improving the 

deployment procedures for secure cross realm integration. 
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5.9 Client roles in scalability  
 

Architecture: The two features provided for building 

parallel-capable interfaces and powerful client agents are 

a single parallel API (CLAPI) and a structured 

configuration file. A range of capabilities can be built on 

these, depending on what the customer requires. The users 

have the option to either use a transparent interface (e.g., 

Linux VFS or XDMS with XFS) or use a powerful client 

agent (e.g. PFTP/FTP, HTAR, HSI, PSI), or a 

combination of these. For example, client agents have the 

ability to automatically make use of multiple NICs and 

client nodes, parallel I/O capabilities, network tuning and 

network configurations, select proper COS based upon 

file characteristics or user-specified options, optimize tape 

mounts for file retrievals, all with goal of transparently 

providing all of the power of HPSS via a simple intuitive 

interface that does not require the user to understand the 

system complexities.  

 

Implementation: A rich and growing set of user 

interface capabilities: CLIAPI library, VFS, client agents 

(e.g. PFTP, HSI, HTAR, PSI and others), extended file 

attributes and configuration files that support transfer 

scheduling and optimization, use of front-end file systems 

such as was done with DFS at the Indiana University and 

XFS integrated with XDSM.  

 

Deployment: HPSS provides a variety of user interfaces 

mentioned above. Alternatively sites can build custom 

interface applications. For example, the European Centre 

for Medium Range Weather Forecasts (ECMWF) has 

made extensive use of the CLAPI library to build high 

performance applications customized to its special 

requirements. 

 

Issues needing improvement: Ongoing evolution, 

standardization and addition of scalable user interface 

functionality and production deployment of the 

transparent VFS interface. 

 

6. Example storage and I/O throughput rate 

data 
 

In this section we present examples of scalability 

histories from selected HPSS sites. Numbers quoted are 

as of December 2004. 

 

6.1 I/O scaling examples 
 

LLNL - Aggregate data transfer rates to the archive, 

before HPSS, were well under 10MB/s and now exceed 

1.5GB/s to caching disk. Single file rates, using a four-

way stripe to a RAID array, generally run at around 300 

MB/s.  Daily throughput to the archive has exceeded 

17TB TB/day. 

 

LANL - A recent user archive operation stored 122,000 

files occupying 10TB in six hours with the transfer rate 

limited by network throughput. In a recent performance 

demonstration, a data transfer rate of 550 MB/s was 

achieved using 16-way mirrored tape stripes storing files 

over 100 GB in size on StorageTek 9940Bs. 

 

LBNL - NERSC has gone from moving 1.5TB/day in 

2001 to peak I/O days of 6TBs in 2004, with expected 

peak days of 10TBs in 2005. Single file transfer 

throughput has gone from 17MB/s in 2001 to 231MB/s in 

2004, limited by network bandwidth. 

 

BNL – Daily ingest rate from experimental devices to 

HPSS has reached 28TB/day, and 330MB/s and 550MB/s 

I/O to tape and disk respectively.  

 

IBM - At the SC04 supercomputing conference in 

November 2004, IBM demonstrated HPSS (an early 

version of HPSS 6.2) performance using three computers, 

one each for HPSS, reading and writing.   A large 128 GB 

file was written and read in 512 MB blocks using 16-way 

striped SAN-attached disk files, using 8 host bus adapters 

on each client computer. As one computer wrote each 

block, it was immediately read by a second computer, 

thus demonstrating "read behind write" performance.  The 

file transfers were measured at 1016 MB per second on 

the write side and 1008 MB per second on the read side, 

for an aggregate data rate of just over two GB per second. 

 

6.2 Capacity examples 
 

LLNL - The Secure Computing Facility (SCF) held 13 

TB of data in 1992 when HPSS design began. Today the 

SCF contains 1.5 PBs stored in about 25 million files. The 

Open Computing Facility (OCF), not available in 1992, 

today contains an additional 1.3 PB stored in about 18 

million files. There are about 1 million directories in the 

OCF and 0.5 million in the SCF. Directories with tens of 

thousands of entries are in use in both SCF and OCF, the 

largest with about 90,000 entries. 

 

Other sites known to be storing a petabyte or more in 

HPSS include: 

2.3PB Los Alamos National Laboratory, in 33M files. 

2+PB: Brookhaven National Laboratory (BNL).  

1+PB: Commissariat à l'Energie Atomique/Division des 

Applications Militaires (CEA/DAM) Compute 

Center in France. 

2+PB: The European Centre for Medium-Range 

Weather Forecasts (ECMWF) in England.  
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1+PB: National Energy Research Scientific Computing 

Center (NERSC), in 33M files. 

1.5PB: San Diego Supercomputer Center (SDSC). 

1.4PB: Stanford Linear Accelerator Center (SLAC). 

Many sites, such as ORNL, are doubling their stored data 

yearly and will also shortly reach a petabyte. 

 

7. Conclusion 
 

HPSS design, implementation, and deployment have 

resulted in a robust, scalable system that has successfully 

met its initial scaling goals in the several dimensions 

discussed above.  Particularly visible are I/O and capacity 

scaling. Based on experience at HPSS sites such as LLNL 

and through demonstrations, today’s performance 

compared to performance at the time the HPSS project 

began, has demonstrated the following scaling factors: 

100 for capacity to petabytes, 

1000 for instantaneous throughput to GB/s, 

1000 for daily throughput to 10s TB/day, and 

1000 for single file bandwidth to GB/s.  

 

The HPSS system architecture and implementation is 

such that there is lots of room for further scaling in these 

important I/O and capacity dimensions by further orders 

of magnitude into the future (e.g. extending its capacity to 

100s of petabytes to exabytes stored and I/O throughput 

to 100s gigabytes/sec to terabytes/sec). The other 

dimensions of scalability discussed will also continue to 

scale. The modular network centric, distributable 

architecture of HPSS and modular industry standard 

product infrastructure are sound. The major near term 

focus will be on measurement, tuning and optimization, 

particularly metadata performance, outlined in Section 5, 

thus improving small file performance and supporting 

other scalability dimensions. 

 

Acknowledgement 
 

We wish to thank the many developers within the HPSS 

Collaboration who have created HPSS and provided 

helpful comments on this paper. This work was, in part, 

performed by the Lawrence Livermore National 

Laboratory, Los Alamos National Laboratory, Oak Ridge 

National Laboratory, National Energy Research 

Supercomputer Center and Sandia National Laboratories 

under auspices of the U.S. Department of Energy, and by 

IBM Global Services – Federal. 

 

References 
 

All URLs in references below were tested and working 

on Jan. 6, 2005. 

 

HPSS references organized by date 

[1] A.L. Buck and R.A. Coyne, Jr., ``Dynamic Hierarchies and 

Optimization in Distributed Storage System,'' Digest of 

Papers, 11th IEEE Symp. Mass Storage Systems, Oct. 7-10, 

1991, IEEE Computer Society Press, 85-91. 

[2] R. Coyne, H. Hulen, and R. Watson, ``The High 

Performance Storage System,'' Proc. Supercomputing '93, 

November 1993, 15-19. 

[3] J.K. Deutsch and M.R. Gary, " Physical Volume Library 

Deadlock Avoidance in a Striped Media Environment," 

Proc.  IEEE MSS Symposium, IEEE Computer Society 

Press, 1995. 

[4] S. Louis and D. Teaff, ``Class of Service in the High 

Performance Storage System,'' Proc. 3rd IFIP TC6 

International Conf. Open Distributed Processing, Brisbane, 

Australia, Feb. 1995, 21-24. 

[5] Danny Teaff, Dick Watson, and Bob Coyne, “The 

Architecture of the High Performance Storage System 

(HPSS),” Proceedings of the Goddard Conference on Mass 

Storage & Technologies, College Park, Maryland, March 

1995. 

[6] R. Watson and R. Coyne, “The Parallel I/O Architecture of 

the High Performance Storage System  (HPSS),” 

Proceedings of the Fourteenth IEEE Symposium on Mass 

Storage Systems. IEEE Computer Society Press, September 

1995, 27-44.   

[7] D. Fisher and T. Tyler, ``Using Distributed OLTP 

Technology in the High Performance Storage System,'' 

Proc. 14th IEEE Computer Society Mass Storage Systems 

Symp., Monterey, CA, Sept. 11-14, 1995. 

[8] Per Lynse, Gary Lee, Lynn Jones, and Mark Roschke. 

“HPSS at Los Alamos: Experiences and analysis,” Proc. 

Sixteenth IEEE Symposium on Mass Storage Systems in 

cooperation with the Seventh NASA Goddard Conference 

on Mass Storage Systems and Technologies, IEEE, March 

1999, 150-157. 

[9] Harry Hulen, Otis Graf, Keith Fitzgerald and Richard W. 

Watson, “Storage Area Networks and the High 

Performance Storage System,” Proceedings Goddard Mass 

Storage Conference, April 2002. 

[10] M. Gleicher, Hierarchical Storage Interface and HTAR 

Web sites, (HSI) http://www.hpss-

collaboration.org/hpss/HSI/index.html, (HTAR) 

http://www.llnl.gov/LCdocs/htar/. 

[11] Haichuan Yang, "Building a Massive Data Storage 

Infrastructure for the Masses", Supercomputing 2003 

Conference, Baltimore, MD, November 14-18, 2002. 

http://storage.iu.edu/presentations/index.html. 

Other references 

[12] ADIC, StorNext File System, 

http://www.adic.com/ibeCCtpItmDspRte.jsp?section=1002

4&item=121889. 

[13] Cluster File Systems, Lustre a Scalable High-Performance 

File System, White Paper, 

http://www.lustre.org/documentation.html. 

[14] Dennis Colarelli, Dirk Grunwald, “Massive arrays of idle 

disks for storage archives,” Proceedings of the 2002 

ACM/IEEE Conference on Supercomputing, Baltimore, 

Maryland, November 16 - 22, 2002, 1–11. 

[15] IBM, Distributed File System, http://www-

306.ibm.com/software/stormgmt/dfs/.  

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005) 
0-7695-2318-8/05 $20.00 © 2005 IEEE 



 

[16] IBM, High availability option, HACMP for AIX 5L, 

http://www-

1.ibm.com/servers/aix/products/ibmsw/high_avail_network

/hacmp.html. 

[17] IBM Total Storage: Introducing the SAN File System SAN 

FS, http://publib-

b.boulder.ibm.com/Redbooks.nsf/RedpieceAbstracts/sg247

057.html?Open. 

[18] IBM, DB2 Universal Database for Linux, Unix and 

Windows, http://www-

306.ibm.com/software/data/db2/udb/. 

[19] IEEE Mass Storage System Reference Model V5 

(MSSRM), available at 

http://www.ssswg.org/public_documents.html. 

[20] IEEE, IEEE Standard 1003.1-1988, Portable Operating 

System Interface for Computer Environments”, 1988. 

[21] IEEE, POSIX threads, ISO/IEC standard 9945-1:1996, 

IEEE publications catalogue number SH 94352-NYF. 

[22] Kline, B., Distributed File Systems for Storage Area 

Networks, http://hsi.web.cern.ch/HSI/HNF-

Europe/SEM3_2000/DistFileSystems.pdf. 

[23] J. Kohl, C. Neuman, Request for Comments:  RFC 1510, 

The Kerberos Network Authentication Service (V5), Sept. 

1993. 

[24] J. Linn, Request for Comments: RFC 1508, Generic 

Security Service Application Program Interface, September 

1993. 

[25] R. O'Donnell, “Holographic Data Storage Systems,” 

Proceedings of the IEEE, Volume: 92, Issue: 8, Aug. 2004, 

1229- 1230. 

[26] Panasas, Panasas Object Storage Architecture, 

www.panasas.com/docs/Object_Storage_Architecture_WP.

pdf. 

[27] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C. 

Beame, M. Eisler, D. Noveck, Request for Comments: 

3530, “Network File System (NFS) version 4 Protocol,” 

April 30, 2003. 

[28] M. Sherman, “Architecture of the Encina distributed 

transaction processing family, “Proceedings of the 1993 

ACM SIGMOD international conference on Management 

of data, 1993, 460-463. 

[29] SGI, XFS: A high-performance journaling file 

system, http://oss.sgi.com/projects/xfs/. 
[30] R. Srinivasan, RPC: Remote Procedure Call Protocol 

Specification Version 2, Network Working Group Request 

for Comments: 1831, August 1995. 

[31] Sun Microsystems, Sharing Data with Sun StorEdge™ 

Performance Suite: QFS, www.sun.com/storage/white-

papers/sharing_data_qfs.pdf. 

[32] Chris Wood, “Client/Server Data Serving for High-

Performance Computing, ”Proceedings of the Fourteenth 

IEEE Symposium on Mass Storage Systems, IEEE 

Computer Society Press, September 1995. 

[33] X/Open, Systems Management: Data Storage Management 

(XDSM) API, X/Open Document Number: C429, 

http://www.opengroup.org/onlinepubs/9695979099/toc.htm 

[34] X/Open, Distributed Computing Environment, 

http://www.opengroup.org/tech/dce/. 

[35] W. Yeong, T. Howes, S. Kille,  Request for Comments: 

RFC 1777 Lightweight Directory Access Protocol, March 

1995.  

 

Disclaimer  
 

This document was prepared as an account of work sponsored 

by an agency of the United States Government. Neither the 

United States Government nor the University of California nor 

any of their employees, makes any warranty, express or implied, 

or assumes any legal liability or responsibility for the accuracy, 

completeness, or usefulness of any information, apparatus, 

product, or process disclosed, or represents that its use would 

not infringe privately owned rights. Reference herein to any 

specific commercial product, process, or service by trade name, 

trademark, manufacturer, or otherwise, does not necessarily 

constitute or imply its endorsement, recommendation, or 

favoring by the United States Government or the University of 

California. The views and opinions of authors expressed herein 

do not necessarily state or reflect those of the United States 

Government or the University of California, and shall not be 

used for advertising or product endorsement purposes. 

 

UCRL-PROC-208872 

 

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005) 
0-7695-2318-8/05 $20.00 © 2005 IEEE 


