
An Architecture for Lifecycle Management in Very Large File Systems

Akshat Verma
�

IBM India Research Lab
akshatverma@in.ibm.com

Upendra Sharma
IBM India Research Lab
supendra@in.ibm.com

Jim Rubas
IBM Watson Research
rubas@us.ibm.com

David Pease
IBM Almaden Research

pease@almaden.ibm.com

Marc Kaplan
IBM Watson Research

makaplan@us.ibm.com

Rohit Jain
IBM India Research Lab
rohitjain@in.ibm.com

Murthy Devarakonda
IBM Watson Research

mdev@us.ibm.com

Mandis Beigi
IBM Watson Research
mandis@us.ibm.com

Abstract

We present a policy-based architecture STEPS for life-
cycle management (LCM) in a mass scale distributed file
system. The STEPS architecture is designed in the con-
text of IBM’s SAN File System (SFS) and leverages the
parallelism and scalability offered by SFS, while provid-
ing a centralized point of control for policy-based man-
agement. The architecture uses novel concepts like Pol-
icy Cache and Rate-Controlled Migration for efficient
and non-intrusive execution of the LCM functions, while
ensuring that the architecture scales with very large
number of files.

The architecture has been implemented and used for
lifecycle management in a distributed deployment of
SFS with heterogeneous data. We conduct experiments
on the implementation to study the performance of the
architecture. We observed that STEPS is highly scal-
able with increase in the number as well as the size of
the file objects hosted by SFS. The performance study
also demonstrated that most of the efficiency of policy
execution is derived from Policy Cache. Further, a rate-
control mechanism is necessary to ensure that users are
isolated from LCM operations.

1. Introduction

Migrating data between different tiers of a multi-tiered
storage system according to the changing quality of
service (QoS) needs of data during its lifecycle is a

�

Authors are listed in reverse-alphabetical order.

well known problem[8]. Several commercially avail-
able products offer such hierarchical storage manage-
ment [2, 4, 11]. However, increased governmental reg-
ulatory requirements on electronic data places new em-
phasis on the need for more complete policy control of
data lifecycle management. Furthermore, the explosive
growth of data in recent years requires lifecycle manage-
ment solutions that are scalable to very large file systems
with billions of files and that address not only the migra-
tion of data but also unchangeable retention and timely
deletion.

The utility functions that comprise the lifecycle man-
agement solution must also be aware of their impact on
the system since 24x7 service is now a common require-
ment. Therefore, there is a renewed interest in scalable,
adaptive, and comprehensive lifecycle management so-
lutions. In this paper, we present an architecture and
implementation for lifecycle management (LCM) in a
large-scale distributed file system that addresses these
challenges.

1.1. Motivation for a comprehensive LCM So-
lution

The increased interest in scalable lifecycle manage-
ment solutions stems from some new technologies that
have emerged. The evolution of file level location in-
dependence supported in the new file systems like IBM
SAN File System (SFS) [6] enables transparent move-
ment of a file without affecting its users and (even run-
ning) applications. Another technological change comes
in the form of Serial ATA drives that offer inexpensive,
higher capacity, but lower performance storage alterna-

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE

tive to enterprise-class SCSI drives. Taking advantage
of this new class of online storage, storage administra-
tors deliver differentiated QoS by migrating data be-
tween the storage classes as the performance require-
ments of data changes over time. To take the simple
example of an email server, the recent messages may be
hosted on SCSI drives when they arrive and moved to
cheaper SATA drives as they become older (and their
access probability goes down). These technology trends
have led to an environment where the lifecycle of a file
may involve many migrations. This is a stark contrast
to the typical file lifecycle model for which existing life-
cycle management solutions are designed; i.e., creation
followed by backup and archival, a model where the file
data would move only once, usually from a SCSI de-
vice to a tape pool. These additional complexities in file
lifecycle require us to develop efficient infrastructure for
large-scale lifecycle management that can deal with a
large number of migrations.

Also, in existing lifecycle management solutions, there
often are multiple tools designed to control the various
aspects of the file lifecycle. For example, backup and
archival to tape, migration to near-line storage, and mi-
gration to WORM storage are under the control of dif-
ferent tools. Managing multiple tools to provide an in-
tegrated lifecycle strategy is complex, error-prone and
can overburden the job of an administrator. Further, cur-
rent lifecycle management solutions are not integrated
within the file system but instead exist outside the file
system thereby limiting their ability to take advantage
of file system internal structures for scalability. In large
scale file systems with billions of files, selecting candi-
date files for lifecycle management operations can be ex-
tremely resource intensive. Naive implementations scan
the entire file system namespace for candidate files on
every policy invocation. Studies [3] show that less than
1% of files are modified every day in a file system with
200,000 files, and the percentage reduces with increas-
ing size of the file system. Our measurements show that
roughly 5000 files can be scanned per second, which im-
plies that a naive implementation requires 27 hours to
scan one billion files on every policy invocation.

Hence, one needs to design file lifecycle management
solutions that are scalable, provide an integrated control
for all management functions, and has mechanisms to
ensure that the large number of migrations do not disrupt
regular client traffic.

1.2. Contribution

We present the Storage Tank Enhanced Policy Ser-
vice (STEPS) architecture for policy-based file lifecy-
cle management that provides an integrated and central

management control for all lifecycle management func-
tions in a non-disruptive manner. In order to capture the
diverse lifecycle management functions, we have pro-
vided a powerful yet simple policy language that storage
administrators can use to specify policies to control all
aspects of file lifecycle management. The architecture
provides centralized policy-based management for con-
trolling the placement of files in different storage tiers,
from their initial creation to their eventual deletion or se-
cure archival. The policy execution is designed to scale
to billions of files while minimizing the impact on ongo-
ing client workloads.

To avoid the scanning of the entire filesystem metadata
for each policy execution, we propose a novel concept of
a Policy Cache in which the entire metadata is scanned
at policy initialization time and a cache is built of fu-
ture policy actions applicable to each file. The cache
is updated subsequently, using a lazy and batched ap-
proach, as a result of modifications to files, file creations
and deletions. This significantly reduces the cost of pol-
icy execution as the problem of candidate file selection
is now reduced to cache lookup. In our example of a
file system with one billion files, our policy cache will
reduce the scanning to the actual set of files modified,
which is likely to be less than 1%; thus it will take less
than 15 minutes to find candidates for LCM actions even
in this huge file system.

We also provide a resource arbitration mechanism for
controlling the rate of LCM initiated data movement in
order to minimize the impact of LCM operations on nor-
mal client operations. LCM operations often require mi-
gration of large amounts of data between storage tiers.
For very large scale file systems, the time required to
complete data migration may be several hours during
which client access to the system could be severely af-
fected. For those large 24x7 service providers, such an
impact would have a negative affect on the business. We
provide a control-theoretic mechanism to adapt the rate
of migration according to changes in client workloads so
as to minimize the impact on them.

We have implemented this architecture in The IBM
SAN File System (SFS) also known as Storage Tank
[6]. SFS is a distributed file system for SAN-attached
storage that supports heterogeneous clients. Our im-
plementation leverages advanced management concepts
provided in SFS such as separate centralized metadata
management, namespace partitioning into containers,
and storage pools. However, the architecture is general
enough to be applicable for implementation in other dis-
tributed file systems. Experimental results validate that
the STEPS architecture is scalable and the rate-control
mechanism is effective in ensuring that LCM activities
do not disrupt regular client traffic.

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE

The rest of this paper is organized as follows. In sec-
tion 2, we present a detailed design of our system along
with a discussion on the design choice that we made.
In section 3, we present the details of our prototype im-
plementation, our performance study and results regard-
ing the scalability and efficiency of the implementation.
Finally, we conclude with our key observations in sec-
tion 4.

2. Framework and Architecture for SAN
File System Policy Service

We describe a policy-based lifecycle management
architecture, Storage Tank Enhanced Policy Service
(STEPS), in the context of the IBM SAN File System
[6], a distributed filesystem that can support a large num-
ber of file objects. We first provide a brief overview of
the IBM SAN File System (SFS).

2.1. SFS Overview

The IBM SAN File System is architected to be a highly
available file system for SAN-attached storage; it is de-
signed to provide a network-based, heterogeneous file
system for data sharing and centralized policy-based
storage management in an open systems environment.
SFS is designed to enable host systems to plug into a
common SAN-wide file structure (Fig. 1). With SFS,
files and file systems are no longer managed by individ-
ual computers; instead, they are viewed and managed as
a centralized IT resource with a single point of adminis-
trative control. SFS provides a common file system for
UNIX, Windows and Linux servers, with a single global
namespace to help provide data sharing across servers.

SFS maintains all the file system metadata on a ded-
icated metadata server (MDS) cluster. SFS clients re-
trieve the physical location of a particular file segment
from the MDS, and directly fetch the data from the disks
attached to the SAN. SFS also uses dedicated SFS clients
to perform any bulk data copy for LCM functions, thus
ensuring that data access operations never flow through
the metadata servers. The server-free data path along
with the aggressive caching of metadata supported by
SFS ensures that data access is not affected greatly by
server congestion, thus making the system highly scal-
able without the limitations normally associated with
Network File System (NFS) or Common Internet File
System (CIFS) implementations.

Unlike many file systems, the name space in SFS is
completely decoupled from the storage space; that is, a
file’s location in the name tree has no connection with
its location in the storage subsystem. The name space is

subdivided into segments called ”containers”; contain-
ers are used for various management purposes in SFS,
including server load assignment. The storage space is
subdivided into ”pools”; pools are named collections of
storage volumes; at any point in time, a file’s data is
stored in one pool.

The metadata servers designate one of their number as
a master node with all the other servers being subordi-
nate to it. At a file system level, the master MDS assigns
containers to individual subordinate nodes, which are re-
sponsible for managing the assigned container. The sub-
ordinate node that manages a specific container allocates
space for the files belonging to that container; a file’s
data is allocated on one or more of the volumes of the
appropriate pool during its lifetime, as specified by the
LCM policies. The distributed server cluster and random
master election provide a high level of concurrency, that
in turn ensures scalability of SFS with large number of
files, and fault tolerance in the presence of server fail-
ures.

However, the distributed nature of the MDS cluster
presents challenges in designing an LCM policy infras-
tructure that can be controlled centrally without affect-
ing the scalability and the high degree of concurrency in
the SFS. Moreover, the policy infrastructure should not
violate the intrinsic design principle that management
components do not sit in the datapath. Further, LCM
operations like backup and archival that deal with tape
or optical pools require us to integrate the policy archi-
tecture efficiently with a (possibly) third party tertiary
storage manager. We now present an architecture that
achieves the above goals.

2.2. The STEPS Architecture

The STEPS architecture has a policy user interface that
is used by an administrator to create ”high level” lifecy-
cle management policies. A policy is a tuple of a condi-
tion and an LCM action (migration, replication, deletion,
backup or archival) on a datagroup. A datagroup is a
collection of files that share certain common properties;
it is specified by a boolean expression of file attributes.
An example of a common policy used for LCM is

If
�

space utilization of PREMIUM POOL is greater
than 80% � then

�
MIGRATE *.tmp files greater than 1

MB ordered by size to IDE POOL until the space uti-
lization of PREMIUM POOL is 60%”. �

The datagroup is defined as the set of files whose name
matches the pattern *.tmp and whose size is greater than
1 MB, ordered by size.

The central control in our architecture (Fig. 2) lies
within a File Policy Scheduler and Orchestrator (FPSO)
that determines if a particular policy is active at any point

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE

IFS w/ cache
W2000

IFS w/ cache
AIX

IFS w/ cache
Solaris

Data
Store

Shared
Storage
Devices

• Load balancing
• Fail-over processing
• Scalability

Existing IP Network for Participant/Metadata Cluster Communications

NFS
CIFS

IFS w/ cache
Linux

Admin
Client

•Centralized
Administration
•Compatible
with other SAN
products

Multiple Storage Pools

Metadata
Server

Metadata
Server

Metadata
Server

Metadata
Server

.

.

.
Meta
Data
Store

SAN

Tank
Metadata
Server
Cluster

AIX
or

Linux

Figure 1. A typical SFS Deployment

in time. FPSO uses File Policy Agents (FPA) to execute
the policies currently active. A Scanner component on
each server is responsible for initializing and updating
the Policy Cache. The FPA queries the Scanner to obtain
the list of files belonging to the datagroup on which the
particular policy action is defined and uses a File Policy
Effector (FPE) to perform the required LCM function.

The control flow for a given policy execution con-
sists of the following steps: The ”high level” policies
are transformed into ”low level” policies particular to
FPSO and Scanner components. In the above exam-
ple, the FPSO policy is If the space utilization of PRE-
MIUM POOL is greater than 80% and the Scanner pol-
icy is the definition of the datagroup, *.tmp files greater
than 1 MB ordered by size. The Scanner low level poli-
cies are additionally transformed into SQL predicates
in order to use the SQL engine provided by SFS. The
FPSO monitors the pool performance and space param-
eters along with temporal data and sends periodic re-
quests to the Policy Decision Manager for policy evalu-
ation. In response, the Policy Decision Manager returns
the applicable policy action to be executed. The FPSO,
after some initial bookkeeping, forwards the action to
the Agents where the action is applied to their respective
containers. Agents obtain the list of candidate files eligi-
ble for policy execution from their local Scanner. Agents
communicate among themselves to further prune the file
list and obtain the exact set of files on which the LCM
action corresponding to the policy should be applied.

The FPE uses the SFS clients for those LCM opera-
tions that involve only the disks (migration, replication
and deletion) and invokes a tape manager (possibly third
party) for other LCM operations (backup and archival).

2.3. Centralized FPSO and Distributed Agent

A key design choice in the STEPS architecture is
to separate out the multi-server management functions
from the per-server management functions. Towards this
purpose, we have a File Policy Scheduler and Orchestra-
tor (FPSO) component that co-ordinates the overall exe-
cution of a complete policy across all MDS nodes. The
actual execution of a policy is managed by File Policy
Agents, with one agent deployed on each MDS effected
by the policy.

The FPSO component performs the following func-
tions:

� Seeks policy guidance from the Policy Decision
Manager based on time and SFS thresholds speci-
fied in the policy (e.g., space threshold, throughput,
response time).

� Passes any active policy to File Policy Agents on
metadata servers for execution/enforcementand en-
sures fault tolerance from agent failures.

� Provides a centralized point to monitor all active
LCM actions.

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE

MASTER MDS

SANFS Clients

SUBORDINATE

FPA FPE

SCANNER

SUBORDINATE

FPA FPE

SCANNER

FPSO

POLICIES

SCHEDULER
POLICIES

SCANNER
POLICIES

DECISION

MANAGER

POLICY

SUBORDINATE

POLICY EVENT

POLICY GUI

SCANNER

LIST

LIST

FPEFPA

FILE
DATA

FILE

DATAPATH COMPONENTS

DISK SERVERS

BULK COPY

 PERFORMANCE SENSOR

Resp Time

REQUEST

BULK DATA MOVEMENT

REQUEST
BACKUP/ARCHIVAL

MANAGEMENT INFRASTRCUTURE

TAPE POOL
TAPE MANAGER

SANFS
Client

METADATA

Figure 2. The STEPS Architecture
� Decide the SFS clients to be used for bulk data

movement related to any specific policy action.

Our architecture supports a centralized FPSO (on the
master MDS) since the policies apply uniformly to all
the containers and hence to all the metadata servers that
manage the containers. With this design, we do not need
to monitor if a particular policy has become active at
multiple servers and therefore a single FPSO suffices. A
single FPSO also ensures that management functions of-
fer a centralized control point. In the distributed SFS ar-
chitecture, a single policy may affect containers that are
distributed amongst many servers in the cluster. There-
fore, for each LCM policy, we spawn an FPA agent at
each of the subordinate nodes that are affected by the
policy.

A distributed agent architecture requires us to handle
the additional complexity of inter-agent communication,
which is necessary for policies that require a global rank-
ing of files that need to be moved. To elaborate, in the
example policy specified earlier, the agents need to com-
pute a set of *.tmp files that is large enough to bring
down the space utilization on PREMIUM POOL from
80% to 60% while ensuring that all *.tmp files that are
moved from PREMIUM POOL are larger than the tmp
files that have not been moved. Hence, the Agents need

to compute a global ranking of the files in the distributed
architecture.

However, having a distributed architecture allows us
the high degree of concurrency supported by SFS by
using all the servers in a cluster for any policy action.
Moreover, by delegating the LCM functionality for each
container to the node that manages its metadata, we
solve the problem of balancing the LCM load across the
servers without any additional effort. The parallelism
offered by the distributed architecture allows the system
to scale well to a large number of files by dividing the
execution across multiple servers. A single computa-
tionally expensive policy does not slow down access to
a metadata server or to the containers managed by that
particular metadata server.

2.4. File Policy Cache for Efficient Policy Exe-
cution

The most computationally expensive operation in the
STEPS architecture is scanning the metadata to deter-
mine the files that belong to a particular datagroup. For
a server that manages a very large amount of metadata
(e.g. hundreds of millions of files), a naive implementa-
tion would burden the server – both the policy operations
as well as client accesses to the server would be affected
significantly. Hence, the STEPS implementation main-

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE

tains a Policy Cache. The Policy Cache contains, for
each file, the policies that apply to the file, and the times
at which each policy calls for an action (eg. migration or
deletion.)

The Policy Cache can be viewed as a database table
where each row is a triple: rule number, predicted time,
file object id. (The file object id in SAN FS is a unique
identifier similar to an inode in most Unix file systems).
A Policy Cache entry with values

�
R � T � I � means that

file I should be selected as a candidate for application
of rule R at time T . The Policy Cache is indexed two
ways: (1) by rule number and predicted time and (2)
by file object id. The first index allows one to quickly
determine which files are subject to a given rule within
a given time interval. The second index allows one to
quickly locate all entries for a given file. To be able to
maintain a Policy Cache a priori, the Scanner requires
the definition of the datagroups. These are passed to it
as Scanner Policies by the Policy Decision Manager, at
the time of creating of the policies.

In order to populate the Policy Cache initially, the
Scanner checks all the files in any container assigned to
its corresponding MDS against the policy rules set, in
order to determine which rules apply to the file at what
time. Although this process can be lengthy it need only
be executed once during Policy Cache initialization (but
again should some rules change.) Naturally, changes to
files “invalidate” the corresponding entries in the Policy
Cache. So the Policy Cache is brought up-to-date pe-
riodically and/or on-demand by re-evaluating the policy
rules, but only for the files that have changed.

The STEPS Scanner determines which files have
changed by examining a changed files index that is main-
tained by SFS. The SFS changed files index is comprised
of hourly “buckets” - the first time a file changes within a
given hour SFS logically moves the file’s index entry to
the bucket representing all files that have changed during
the current hour of the current date.

Hence, the Scanner overhead to update the Policy
Cache is proportional to the number of changed files per
hour, not the total number of files, nor is there a penalty
for rapidly changing files. Various techniques keep the
cost of maintaining the changed file index very low;the
details of which are beyond the scope of this paper.

2.5. Rate-Controlled Bulk Data Movement

The information life cycle management functions (mi-
gration, replication) require moving large amounts of
data at regular intervals. This places huge demands on
the storage resources, mainly disk and controller band-
width, and may affect client performance to such an ex-
tent that their QoS requirements are not met. In order

to ensure that the I/O performance as perceived by the
client is not affected, we control the rate at which such
bulk data is moved.

The STEPS architecture uses sensors to monitor the
performance parameters, namely response time and
throughput, for each volume. The FPSO computes a
target response time for each storage pool such that the
performance requirements of all the datagroups hosted
on that pool are met. The target response time thus com-
puted for each pool is also the target response time for
each volume in the pool. The total throughput offered
by the volume is then controlled by the Effector (FPE) in
order to ensure that the target response time is met. If the
current response time of the volume is greater than the
target response time, migration is throttled back whereas
if the response time of the volume is less than the target,
migration throughput is allowed to increase.

SAN VOLUMES

QUEUE MANAGER
BULK DATA

CLIENT

SANFS

BULK DATA REQUEST
QUEUE

Bulk Data Request

Bulk Data Request

Bulk Data Request

(Rate−Controlled)

FPE

Bulk Data Request

METADATA SERVER
Response Time
Throughput

Figure 3. Rate Control Mechanism

The rate control is enforced inside the SFS metadata
server (Fig. 3), which maintains a separate request queue
for bulk data movement requests. A particular migration
throughput is ensured by interspersing periods of bulk
data movement with periods of sleep in the queue man-
ager of the bulk data movement queue. We use a linear
rate controller to vary the migration throughput in or-
der to ensure the response time of the volume meeting
its target. The basic feedback controller is described in
Eqn. 1

Ri
�
t ��� Ri

�
t � 1 � δT

i

E
�
δt

i �
(1)

where Ri
�
t � is the migration throughput at time t, δt

i is
the response time in the interval

�
t � 1 � t � and E

�
δT

i � is
the target response time for volume Vi. For a bulk data

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE

movement from Volume Vi to V j, the rate of migration
Ri � j

�
t � is then given by min

�
Ri
�
t � � R j

�
t ��� .

We have observed in our preliminary investigation that
response time is not a stable parameter and may shoot
up for small periods of time, independent of migration
throughput. In order to ensure that migration is not
throttled due to transient increases, we also incorporate
throughput served by the volume as another parameter
for stability. Hence, migration is rate-controlled only
when the total throughput to the volume is more than a
threshold, where the chosen threshold is computed so as
to ensure that the average response time for 99% of the
intervals or more is less than the target response time.
Incorporating throughput in the rate-control framework
has the added benefit of providing damping and reducing
oscillations in rate of migration. Our architecture is de-
signed to support the sophisticated QoSMig [1] method-
ology that provides optimal client performance while en-
suring that LCM objectives, such as meeting a particular
deadline, are satisfied.

3. Implementation and Performance Eval-
uation

We now describe our implementation of the STEPS ar-
chitecture and an experimental study that demonstrates
its scalability and efficiency.

3.1. STEPS Implementation

We have a distributed deployment of IBM SAN File
System and have implemented the STEPS architecture
on top of it. Our SFS test bed consists of two meta-
data servers hosted on Intel Xeon 2.8 GHz servers with
1GB of RAM and 20 GB of attached disk storage. We
use an Intel Pentium 4 2.66 GHz machine with 1 GB
RAM as an SFS client dedicated to file movement per-
taining to LCM activity. We currently host two pools for
providing differentiated QoS. The logical volumes com-
prising the PREMIUM POOL pool are hosted on Sea-
gate 36GB enterprise class SCSI disks. The IDE POOL
consists of Maxtor 40GB IDE disks that host data with
lower performance requirement. Both sets of disks are
controlled by a FAStT200 [9] storage server. Our im-
plementation has mechanisms for recovering from node
failures and disk failures by maintaining the LCM oper-
ations in progress on stable storage.

The performance metrics such as response time of a
volume needed for rate-control mechanism are not avail-
able from the FAStT200 storage server. Hence, we
instrument the QLogic host bus adapter (HBA) driver
on each SFS client to measure the response time and

throughput seen by the client for each volume that is ac-
cessible to the client.

3.2. Experimental Setup

The experiments were conducted by hosting a file sys-
tem with two containers on the STEPS implementation.
The first container mimics a workplace setting with pro-
duction code consisting of C/C++ source files and ob-
ject files. The other container consists of multimedia
(audio and video) files that are accessed by an mpeg
player (for Linux) [10]. The mpeg player can toler-
ate average response time latencies of 20ms and that is
defined as the target response time for client access to
this container for rate-controlled migration. The produc-
tion file system has policies for moving older files from
the PREMIUM POOL pool to the IDE POOL pool.
Moreover, policies are deployed to ensure that files on
IDE POOL pool that are accessed are moved back to
the PREMIUM POOL pool.

We study the performance of STEPS architecture in
the following contexts: (i) scalability with increase in
file objects, (ii) efficiency of the Policy Cache, and
(iii) usefulness of the rate-controlled migration. For
the first set of experiments, we increase the number of
file objects managed by a metadata server from 100 to
100 � 000. In the second set of experiments, the efficiency
of policy cache is established by repeating the first set of
experiments; this time with the policy cache disabled.
The difference in the two sets of numbers describe the
performance improvement that can be directly attributed
to the Policy Cache. In a third set of experiments, we ob-
serve the performance of the mpeg player with the rate-
controlled mechanism activated and contrast it with the
response times seen by the mpeg player when the rate-
control is deactivated.

For all these experiments, the number of LCM Candi-
date files was kept at 10% of the total number of files.
The measurements are averaged over 10 runs, and the
policy execution time excludes the actual data movement
time.

3.3. Results

The STEPS architecture scales well as the number of
file objects increases, with the policy execution time in-
creasing from 55 ms to only 150 ms (Table 1) as the
number of file objects managed by a metadata server is
increased from 100 to 100 � 000. We note that the scal-
ability of the architecture is a direct consequence of the
Policy Cache. We observe that when the Policy Cache is
disabled, policy execution increases almost linearly with
increase in the number of file objects taking as much

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE

Table 1. Policy Execution Time with in-
crease in file objects when Policy Cache
is enabled and disabled

Number of File Policy Cache Policy Cache
Objects Enabled Disabled

100 55 ms 100ms
1000 62 ms 1sec

10000 70 ms 3 sec
50000 100 ms 11 sec

100000 150 ms 21 sec

as 21 seconds when the number of file objects reaches
100 � 000. This is because the complete metadata has to
be scanned during execution of the policy if the policy
cache is disabled. On the other hand, with the policy
cache enabled, the execution of a policy only requires
looking up a cache of eligible files with no computation
for candidate selection.

0

1

2

3

4

5

6

7

8

0 50 100 150 200 250 300 350

T
hr

ou
gh

pu
t(

M
B

P
S

)

Time

Rate-ControlledRate-Controlled

Not Rate-Controlled Not Rate-Controlled

Total Throughput
Migration Throughput

Figure 4. Throughput (Total throughput
and migration throughput) with and with-
out Rate-control

Finally, we investigate the efficacy of the rate control
mechanism for migration. Fig. 4 and Fig. 5 present a
snapshot of the system as the rate-control mechanism for
migration is activated and deactivated. Fig. 4 shows the
total throughput as well as the migration throughput and
Fig. 5 shows the storage subsystem response time for the
same period. We observed that while our rate-control
mechanism is active, the response time (averaged over
1 second) for the mpeg player remained below 20ms
and hence the mpeg player played the video without any
glitches. In the absence of the rate-control mechanism,
the average latency for the player was consistently above
100ms due to resource contention from the LCM work-

0

5

10

15

20

25

30

0 50 100 150 200 250 300 350

R
es

po
ns

e
T

im
e

(1
0m

s)

Time

Rate-ControlledRate-Controlled

Not Rate-Controlled Not Rate-Controlled

Response Time

Figure 5. Response Time of the mpeg
stream with and without Rate-control

load, and as a result the mpeg player dropped frames and
the video was jittery.

We also observe that the response time requirements
are met without completely throttling the LCM bulk data
movement. In fact, at times, with only a slight decrease
in migration bandwidth, we were able to meet the tar-
get response time. Hence, the rate-control mechanism
is critical for ensuring that client performance does not
suffer significantly due to the additional load generated
by the LCM operations.

4. Conclusion and Future Work

We presented a framework and STEPS architecture for
automation of lifecycle management functions in large
distributed filesystems using administrator defined poli-
cies. We have shown how to leverage the distributed ar-
chitecture of a scalable file system, such as IBM’s SAN
File System (SFS) to design an LCM architecture that
scales well with large number of file objects, without
imposing a significant load on normal file operations.

We also presented a prototype implementation of the
STEPS architecture in the context of SFS, and observed
experimentally that the architecture is highly scalable
and efficient. Our experiments pinpoint the specific fea-
tures in the architecture that are required to ensure that
the system scales well and client workloads are isolated
from LCM workloads. We believe that our framework
will fuel further research directed towards making large
storage systems self-managing in nature.

An interesting direction of research that we are inves-
tigating is to a priori predict the load that LCM opera-
tions would put on the storage subsystem at any time in
the future. This would allow the system administrator
to identify times of possible overload in the system and

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE

take appropriate actions (by rescheduling some of them)
to avoid overload.

We note that the Policy Cache provides us the ability
to predict the file set that is affected by any LCM policy.
Hence, we have the information of the load generated
by any policy; provided no file activity takes place in the
interim. We plan to use short-term prediction tools to
establish trends in file activity and use them along with
the current file set, as predicted by the Policy Cache, to
predict the candidate file set for the LCM policy at the
future time.

5. Acknowledgment

We would like to thank Linda Duyanovich, Aki Flesh-
ler, Sugata Ghosal, Jim Seeger, Ronnie Sarkar and Jason
Young (IBM) for their valuable suggestions.

References

[1] K. Dasgupta, S. Ghosal, R. Jain, U. Sharma,
and A. Verma. (2005). QoSMig: Adaptive Rate-
Controlled Migration of Bulk Data in Storage Sys-
tems. To be published in Proc. International Con-
ference on Data Engineering, 2005.

[2] J. P. Gelb. System-Managed Storage. In IBM Sys-
tems Journal,28(1),1989.

[3] T. J. Gibson, E. L. Miller, and D. D. E. Long.
Long-Term File Activity and Inter-Reference Pat-
terns. Computer Measurement Group (CMG 98)
Proceedings, 1998.

[4] M. Kaczmarski, T. Jiang, D. Pease. Beyond
Backup Towards Storage Management. In IBM
Systems Journal, 42(2):322-338, 2003.

[5] D. H. Lawrie, J. M. Randal, R. R. Barton. Ex-
periments with Automatic File Migration. In IEEE
Computer, 15(7): 45-55, 1982.

[6] J. Menon, D. A. Pease, R. Rees, L. Duyanovich
and B. Hillsberg. IBM Storage Tank- A Heteroge-
neous Scalable SAN File System. In IBM Systems
Journal, 42(2):250-267, 2003.

[7] E. L. G. Saukas, and S. W. Song. Efficient Selec-
tion Algorithms on Distributed Memory Comput-
ers. In SuperComputing, 1998.

[8] A. J. Smith. Long Term File Migration: develop-
ment and evaluation of algorithms. In Commun.
ACM Vol.24, No.8 :521-532, 1981.

[9] Anonymous. IBM TotalStorage Products.
http://www.storage.ibm.com.

[10] Anonymous. Mpeg Player for Linux.
http://mplayer.com

[11] Anonymous. Veritas Data Protection Products.
http://veritas.com. 2004.

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE

