

OpenSMS

 Stephen Cranage
StorageTek

Steve_Cranage@stortek.com

Abstract

Systems Managed Storage is a proven concept in
traditional mainframe computing. Client-Server operating
systems have traditionally lacked the tape I/O subsystem,
file system intelligence, and data classification policies
required to implement the storage management services
that are necessary attributes of a scalable data processing
environment. OpenSMS is an Open-source framework
that addresses these deficiencies.

1. Introduction

The vision of ILM, or Information Lifecycle
Management, has become the topic of great industry
attention of late. Rising complexity and cost of storage
management has become increasingly apparent. The
previous generation of mainframe processing
professionals viewed storage management as a systemic
task, tied into the base operating system. In the process of
migrating applications to new client/server platforms, we
have lost some essential operating system services in this
area.

While taking advantage of lower cost distributed
computers, we have migrated systems that were
traditionally departmental and desktop platforms into
enterprise computing, and lost sight of how data growth
would pose challenges when it occurred on operating
systems that were not designed to manage enterprise
storage. Situational awareness is now creeping up on the
industry as the realization is setting in that scalability and
ad-hoc management of storage are mutually exclusive
concepts.

Backup processes are a good example. Michael
Peterson, Program Director of SNIA’s Data Management
Forum reports that: [1]

A strong driver exists pushing the revolution to disk-
based data protection and it is not cost. Cost is merely
an enabler. The driver is IT’s urgent need to solve the
backup problem. IT has to reduce operating costs and
cope with a smaller staff. IT must “stop backing up” to
solve this complexity problem. It is the only real way.

The solution requires a fundamental shift in
architecture, moving to a simple, transparent
operation where redundancy is native to the write
process, where data is always there, and even the
concept of “restore” goes away.

Making data protection native to the write process, and

making “restore go away” is a fundamental function of
some traditional Hierarchical Storage Management
(HSM) systems, which typically act to duplicate a file
object in seconds to minutes after creation or
modification, and if well designed, integrate this process
into a comprehensive data protection model. Many other
aspects of the ILM vision can also be addressed by HSM
concepts; these include dealing with regulatory
compliance and archiving issues that are not well served
by the current crop of fixed content products on the
market today

These products use high density disk arrays for storage
in spite of the fact that storage comprised of massive
arrays of spinning disk spindles is a poor choice for long
term data retention due to the perishable nature of the
underlying disk technology, and the high cost of
maintenance and power for these technologies. The high
operating costs combined with rapid technological
obsolescence drives the need for routine retirement and
replacement of the technology. Unfortunately, increasing
array density makes this very problematic. The issue is
movement of massive amounts of data off an obsolete
platform to the new, and the affect on application
availability.

Again, HSM concepts can address the problem.
Classification of file objects as they are created can direct
the duplication of data to an appropriate tier, including a
tier with good archival properties, or good quality of
service properties, or both, based on policy directives. In
fact, HSM systems are very common in the mainframe
environments, where they are an integral component of a
larger solution that is referred to as Systems Managed
Storage.

Many HSM solutions have come to market for
client/server platforms over the years. However none has
achieved broad commercial success to the extent of

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE

becoming common in client/server environments, as they
did in mainframe computing. There are a number of
reasons for this, including poor product focus or reliability
or poor hardware choices in implementation, but the
principal reason is the technical challenge of operating
system integration in a multi-platform, multi-operating
system environment.

2. OpenSMS

One of the biggest challenges in creating a HSM
product lies in being able to return migrated files back
from multi-tier storage in a manner that is transparent to
applications. Historically, creating data management
applications that intervene within operating system
services such as file I/O has been a difficult and expensive
process given the proprietary nature of commercial
operating systems. As evidence, note the lack of multi-
platform products in the HSM space. Vendors who have
entered this space have been compelled by intricate
dependencies on proprietary kernel code to pick a single
operating environment to support.

In the mid 90’s, the industry developed an API for data
management that was designed to address this set of
problems. The Data Management Application
Programming Interface (DMAPI), was designed as a
standardized set of “hooks” into the file system that would
allow data management companies to write HSM software
to a standardized file system API [2].

DMAPI interfaces appeared in many file systems on
virtually all computing platforms in the years since.
Although compatibility between the interfaces is not
perfect, dealing with the minor incompatibilities in
DMAPI implementations is quite manageable (unlike
maintaining compatibility with evolving proprietary
operating system internals).

Silicon Graphics (SGI) recently released its high
performance XFS file system for Linux under the GNU
General Public License[3]. This gave the entire industry
access to the source code for a DMAPI enabled file
system. Shortly thereafter, IBM followed suit with its JFS
file system[4], and based their DMAPI implementation on
SGI’s implementation.

We seized this opportunity to create a policy-based
data mover framework. We called this framework
OpenHSM, and published its source code under General
Public License (GPL). In order to have something to
move archival data to, we took an enterprise Tape
Management System (TMS), which StorageTek
previously sold as a commercial product called
REELlibrarian, and published its source code under the
GPL, we call that OpenTMS. Taken together we refer to
the two projects as OpenSMS (Open Systems Managed
Storage).

2.1.1. Architectural Approach

Our approach is differentiated from traditional HSM
products in the way we view storage of file objects in the
tape management system (TMS). We view the file system
and TMS to be “parallel universes” of data storage. Each
has properties that make it better for one storage
requirement or another, but each is a storage namespace
where file objects are directly accessible, regardless of
where they reside.

While the concept of a TMS, or for that matter a tape
I/O subsystem by itself, may not be intuitive to everyone,
it is well tested in legacy mainframe environments, as well
as in legacy UNIX based supercomputing environments.

In the last decade, when large monolithic high
performance computers were more common than they are
today, there were a few UNIX variants from Cray and
others that did include tape I/O subsystems services.
These services include device allocation, a mount request
system and low level device control. The TMS services
(often the very same REELlibrarian code licensed from
StorageTek) provide an additional layer of intelligence
that includes file cataloging, and media management.

While the TMS is a separate namespace that is in some
ways comparable to the file system namespace, it also has
some significant differences. The physical properties of
sequential access media of course impose some limitations
such as single user access and latency. But TMS services
also have beneficial properties that make them an
indispensable component in creating a scalable archive.
Some of the distinguishing characteristics of the TMS
namespace include:

• Enterprise wide scope. The TMS client

services can satisfy access for a file object
anywhere the TMS services are installed. This
code is all user level, and has been historically
ported very widely. Since TMS access
methods don’t include multi-user access, this
is simpler than a shared file system. Shared
SAN based tape transports can be used to
distribute large amounts of data at high-
sustained transfer rates through the TMS
services using channel protocols for the
transport without the complexity of a SAN file
system.

• Logical vs. hierarchical organization. TMS
file objects are stored in a logical container
called a “volumeset”. The volumeset has the
form of userid/volumeset_name:Vno:Gno.
Vno and Gno refer to version and generation
numbers. Within each of these volumesets, is
a flat namespace where files are stored and
individually cataloged. We have individual

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE

policy directives that organize data into
volumesets logically, so for example when a
user writes a file with a “.avi” extension to a
managed file system, it is written to a
volumset named “Movies”, with that user’s
userid.

• Policy attribution. Volumesets are created
with attributes that are used by the TMS to
manage their life cycle automatically.

• Scalability. The TMS volumeset is essentially
infinitely large in terms of raw storage
capacity. It grows as long as data is written to
it, and there are compatible scratch volumes
available.

2.1.2. OpenSMS Storage Topologies

We view the storage market as having produced many

highly granular types of storage systems with different

Figure 1. Multi-tier Storage Topology.
performance and cost metrics, and wanted the OpenSMS
framework to fully support data movement between an
arbitrary number of storage tiers. We allow for each file
system tier to be accessed independently of all other tiers.
In complex multi-tier implementations, data faults cascade
until they reach a tier where the data still resides. Policies
copy data between tiers.

Conceptually, we divide our policies into two camps,
copy policy (file system to file system) and archive policy
(file system to TMS). Each has the ability to support block
release, and application-transparent recall from its
copy/archive target destination.

OpenSMS is designed so that these policies can be
intermixed and combined in various storage topologies,
including possibly quite complex topologies with many
tiers of storage containers with different performance,
reliability, and durability (archival) characteristics. Any
arbitrary number of policies can be running against any
file system, and the purpose of these policies is to either
copy or archive a file system object sometime in the first
few moments of a file’s creation (or modification) to
another storage container.

We think of this as near “real time” backup, either to
disk or to tape, or both. An important point is that copy
and archive policies only duplicate data to another
container; they do not remove or modify in any way the
original file. They do however add new attributes to the
file. Those attributes are pointers to the copies of the file,
and to the older versions of the file.

2.1.3. Primary Event Daemon

File system integration is accomplished with the

primary event daemon, hsmd. It can currently be compiled
to support either the SGI XFS DMAPI or the IBM JFS
DMAPI library. We anticipate supporting other DMAPI
enabled file systems in the future.

The hsmd detects all events related to creation or
modification of managed files, and notifies any registered
policy engines via UNIX domain sockets. One hsmd
instance handles the events for a single managed file
system. Multiple managed file systems would require one
hsmd instance for each.

Write events get special handling because DMAPI
currently has no “close” event, and because for large files
there can be thousands or millions of write events (which
would pose performance and resource problems if each of
these events had to be handled by the user level hsmd
code).

Thus, upon receipt of a write event, hsmd places the
event descriptor on a “changelist”, and turns off write
events for the subject file. The changelist is checked at
tunable intervals, and any files that have not changed
within the tunable change interval are removed from the
list and any registered policy engines are notified of the
change to the file. Write events are re-enabled on the file
before notification of policy engines, guaranteeing that if
the file subsequently changes, another event will be
generated. This allows policy engines to either take action
or drop an event if a file has changed since the timestamp
of the event, knowing that another notification will be
forthcoming when the file ceases changing.

The hsmd also supports the standard HSM activity of
punching holes in files (removing a file’s data while
maintaining application-transparent referential integrity).
If a read event occurs on a file whose data has been
removed, hsmd prevents the I/O from proceeding while it

Copy
Policy

Archive
Policy

Tier1 Online
Disk

Tier2 Inline
Disk

Tier3 Nearline
Performance Tape

Tier4 Nearline
Capacity Tape

Copy
Policy

Archive
Policy

Tier1 Online
Disk

Tier2 Inline
Disk

Tier3 Nearline
Performance Tape

Tier4 Nearline
Capacity Tape

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE

forwards the event to the policy engine for data retrieval.
The policy engine will respond to the event when the data
has been restored, allowing the I/O to resume in an
application-transparent fashion. The policy engine can
also cause the application to error out, if the data is
unavailable or inaccessible according to policy.

2.1.4. Policy Engines Overview

The hsmd communicates with policy engines via UNIX

domain sockets. Current code supports up to four
simultaneous socket connections to policy engines per
hsmd instance. This limitation is arbitrary, but sufficient
for most or all environments (the code can be recompiled
to support more policy engine connections).

We have implemented two primary policy engines, and

the architecture supports creation of other policy engines
as needed. Each policy engine is responsible for the
following:

• Applying policy as appropriate to its function
(normally this would mean copying new or
changed files to some alternate container, but
might be almost anything).

• Attaching attributes to files as necessary so
that copies made by this policy engine can be
located and retrieved or updated.

• Servicing data faults, if permitted by the
policy.

• Update the central SQL metadata database, if
in use.

Associated policy engine utilities must also:
• Report the location of any copies of the file

saved by this policy engine.
• Verify and report whether there is a non-stale

copy of a given file (for use in permitting hole
punching).

• Audit a file system to determine whether there
are any files for which policy has not been
applied.

Figure 2. Copy Policy Data Flow

Primary policy engines may support one or more
secondary policy engines, as is the case with the Database
Policy engine, documented below. The interface to the
secondary policy engines is a design point for the primary
policy engine that supports secondary engines.

2.1.5. Copy policy

The first policy engine is a copy policy, and its

function is to duplicate files to a secondary “federated”
file system as the files appear in the primary file system.
Only the primary file system must be DMAPI enabled
(unless policy will also be run on the secondary file
system as well). Copies are written to the secondary file
system using standard file I/O for writes, and for the reads
necessary to service a data fault on the primary file
system.

Since the tier 2 file system need not be DMAPI-
enabled, any file system will do, including one mounted
by NFS. The disadvantage is that we can’t maintain
identical file attributes (specifically create, change and
access times).

Future plans include creating a new copy policy engine
that will work on a client/server basis when the tier 2 file
system is DMAPI-enabled, allowing complete consistency
of attributes between tiers. In the mean time, standard file
I/O works well aside from the minor points noted.

Our approach has some compelling advantages over
block level device mirroring, as the target file system is
independent of the primary from a validity and
consistency standpoint. This means of duplication does
not propagate file system corruption, nor does it depend
on the in-order completion of I/O for a valid secondary
file system. Asynchronous mirroring at a file level avoids
the data integrity issues associated with block level
mirroring commonly applied in storage subsystem
hardware.

A copy policy implementation with rich data
classification capabilities (e.g., more than one duplication
target selected based on file type, ownership or other
attributes) is planned for the future, as a secondary policy
engine to the Database Policy engine.

2.1.6. Database policy

The Database Policy engine (db_policy) is designed to

reliably support more complex and sophisticated policy
engines by providing the event stream as a SQL based
event queue. Events received from hsmd are stored in a
persistent RDBMS based work queue (the Primary Work
Queue), and a secondary event handler is used to drain the
queue and act upon the events. This approach avoids both
the memory management limitations and the lack of
persistence across boots that affect an in-memory event
queuing approach.

hsmd

DMAPI
Filesystem

Copy Policy

Data Faults

Federated
Filesystem

Standard
(not DMAPI File I/O)

hsmd

DMAPI
Filesystem

Copy Policy

Data Faults

Federated
Filesystem

Standard
(not DMAPI File I/O)

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE

Advantages of this approach include the following:
• Work queues are persistent.
• Off the shelf cluster database servers can be

utilized to easily architect multi-node, multi-
tier implementations that deliver high
availability characteristics.

• New secondary policy engines may be quickly
prototyped in any scripted language that has
good database support, such as Perl. This has
been important in designing data classification
practices where data management logic can
quickly be tested for a good fit with the
“business logic” of the problem to be solved.

• Work queues may be queried by any number
of agents other than archive policy to achieve
other objectives (for example, resource
monitoring, QOS or fairness enforcement, or
secondary work queue processors for high
availability).

Figure 3. Database Policy Data Flow

Disadvantages of using the RDBMS might include

scalability and footprint issues, but we feel these can be
addressed with the distributed nature of modern RDBMS
servers. Instead of running a database instance on each
system with a managed file system, the database schema
employed allows us to use one or many RDBMS severs
for one or many managed file system servers. Maintaining
database server integrity is a well documented subject,
and the MySQL code we currently employ has a good
reputation for stability.

2.1.7. Secondary Policy Engine: Archive Policy

The Archive Policy secondary policy engine removes

events from the primary work queue database, and sorts
them to an arbitrary number of policy queues which are
serviced by their own data movers. This allows files
meeting different criteria to be collocated on tape
volumesets, separate from the data not meeting those
specific criteria. This construct allows us to disaggregate
data based on any desired criteria, and bring it into TMS
as cataloged files under policy based management
provided by the TMS.

As currently implemented, the Archive Policy engine
uses regular expression analysis and file attributes to sort
relevant events into work queues for separate data movers.
Each data mover services a collocated set of files on tape.
An example archive policy would act on files with a
“.doc” extension. Those files would get archived to a
volumset named “Word_Docs”, with the option of having
identically named volumsets for each user ID to separate
files by both type and owner within the archive. The
volumset’s attributes might include an onsite or offsite
location, tape technology type, and an attribute to keep the
last five generations of files.

We know the difference between a file create and a file
modify, by virtue of storing the TMS reference for the file
within the file, as a user attribute when it is archived.
When a file is modified, archive policy will append
another file to the volumeset with the same fileid as the
previous generation, and an incremented generation
number.

Figure 4. Primary and Secondary Policy
Engines

The various generations of a file continue to add new
TMS references within the file’s user attribute area,
supporting rollback of the file system state to restore
individual files back to previous generations.

2.1.8. Metadata Database and Block Release

The Archive Policy engine also maintains information

on its actions in the metadata database, which contains
key attributes of files. This database is useful in locating
all copies of a file, or in finding candidates for hole
punching or permanent deletion, or just general analysis
of data and filespaces (without dragging the whole file
system structure through memory). OpenSMS does not
rely on this database always being completely in sync with
the file system state.

Like copy policy, the Database Policy / Archive Policy
combination provides services for block release
(“punching holes” in files), if appropriate. The metadata
database can be queried by the block release tools to
identify block release candidates. For example, a select
sorted by size and last access or perhaps a user defined
criteria such as a low “quality of service” rating.

hsmd

DMAPI
Filesystem

DB Policy

Data Faults
Primary

Work Queue
UNIX Domain

Socket

SQL Inserts

hsmd

DMAPI
Filesystem

DB Policy

Data Faults
Primary

Work Queue
UNIX Domain

Socket

SQL Inserts

SQL SQL

Sort and
queue to data

movers by
policy

SQL

Policy1
Handler

Data Faults

Policy N
Handler

Data Faults

DB PolicyUNIX Domain
Socket

“Archive Policy”
Secondary Policy

Engine

Data
Movers

Primary
Work
Queue

Mover 1 Work
Queue

Mover N Work
Queue

SQL SQL

Sort and
queue to data

movers by
policy

SQL

Policy1
Handler

Data Faults

Policy1
Handler

Data Faults

Policy N
Handler

Data Faults

Policy N
Handler

Data Faults

DB PolicyUNIX Domain
Socket

“Archive Policy”
Secondary Policy

Engine

Data
Movers

Primary
Work
Queue

Primary
Work
Queue

Mover 1 Work
Queue

Mover 1 Work
Queue

Mover N Work
Queue

Mover N Work
Queue

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE

Once the list of files that satisfy the query is complete,
the candidate files are passed to a utility that verifies that
we have a non-stale copy, either in a downstream
federated file system or the TMS archive, and releases the
data blocks if so. Determination of the existence of the
non-stale secondary copy is based on the copy pointer in
the file’s user attributes having a timestamp that is later
than the ctime for the file object.

One important aspect of the metadata database is that it
is not an essential component in our data management
system. While its data integrity is assumed not to be
problematic, if it is somehow compromised and needs to
be resynchronized, only the RDBMS selection of block
release candidates will be affected during this process.
Referential integrity needed to service a data fault is still
good, since we store the TMS catalog entry for the file as
a user attribute within the actual file system, as well as in
the file system dump file.

2.1.9. OpenTMS

OpenTMS brings standard tape I/O subsystem services

and file cataloging. It is code that has historically been
ported to virtually every operating system. It performs
functions such as device allocation, mount request
processing, low level device handling, media
management, a vault management system, and services for
direct tape I/O typically only found in mainframe
operating systems. By providing high-level services for
direct tape I/O, OpenTMS allows enterprise class
hardware to be shared by disparate applications and hosts,
making highly reliable hardware cost effective by enabling
high device utilization rates.

While OpenSMS manages the policy-based movement
of data files between a DMAPI compliant file system and
OpenTMS, once files have been copied to OpenTMS,
they become directly addressable objects. This is a
common data access method in enterprise computing on
large systems, and allows direct access to tape, bypassing
disk altogether. We use these combined file system/TMS
access methods often in a hybrid manner, for example
dropping a video file into a network exported file system,
and then later accessing it for viewing or transcoding
directly from a TMS request for the file.

As previously mentioned, OpenTMS volumesets are
created with specific policy attributes that are used by the
TMS to manage their life cycle. Included in these policy
attributes are the expiration attributes. Expiration of data
once it is copied into a volumeset can be based on criteria
that include:

• Time since creation
• Time since last access

• Version number (keep N versions before
expiring the oldest)

• Generation number (keep N generations
before expiring the oldest)

• Never expire unless explicitly done by
operator action

If a file object exists only as a TMS cataloged object

and a user or application attempts to open the object, it is
copied back into the file system where the open occurred
(via DMAPI), and then the application I/O is satisfied
normally. If the TMS object being called has been
expired, but not yet overwritten, the file system open will
still be satisfied.

The interesting concept that the TMS brings to the
table is the association of policy attributes with the
volumesets. The attributes control the technology used for
storing the data (and the associated performance and
reliability), the physical location for storage, whether
there is a scheduled movement for the container,
ownership and disposal attributes, and of course retention
attributes.

When we combine the concept of policy attributes of
TMS storage, with the highly granular classification of
data that is available with database policy engines, we are
able to create a complex and self-managing multi-tier
storage system. This multi-tier architecture, driven by the
ability to disaggregate data on very minor distinctions, has
implications; particularly in terms of the removable media
handling, and these need to be taken into account.

An example is creation of policies that aggregate data
by user or group id, after disaggregating by file type. This
type of a deployment is attractive in terms of the way one
might like to view the collocation of user data into
separate removable volumes. It also will drive an
amazingly high library mount rate as different users create
files with different applications, or worse yet does a
recursive copy of a large directory tree off of a multi-user
server into a managed file system.

2.1.10. TMS Library and Tape Drive Interfaces

Library interconnectivity is affected through site exits,

which exist for each tape drive in the form of mount and
unmount executables for that drive’s associated media
changer or library. These executables can be run on any
named TMS netclient. If the netclient isn’t named in the
site exit file, the executable will be invoked on the
netclient where the device allocation is made. This allows
for the library control to be distributed in an environment
where it is implemented in a shared SAN, or an IP based
library interface. We use both environments. The IP based
implementation uses StorageTek’s UNIX based library
control platform, ACSLS. In a direct SCSI library

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE

environment, we use site exits based on the mtx SCSI
media changer project. A minor change had to be made for
mtx to work, the SCSI command descriptor block for the
unload command had to be changed to force the rewind-
unload operation at the tape drive through the media
changer interface. The reason is that the TMS close of a
volumset leaves the drive loaded and in a ready state in
case another subsequent user access could be satisfied
with the existing mount.

Historically the tape drive interface has always been
challenging because of the many different device
attributes presented by the different tape technologies on
the market, and the fact that the TMS needs to drive all
these devices capably and with the best performance
possible. In order to accomplish this, a tapecap file has
been employed, and it serves much the same purpose as
the /etc/termcap file serves for terminal I/O.

Within the tapecap file, the entire device attributes and
appropriate IOCTL’s are listed. This file will have drive
entries for each device, and its driver/OS environment so
that drive specific attributes such as inter-record gap can
be accommodated alongside driver/OS specific attributes
such as whether or not end of tape is supported, or must
be calculated. Populating this set of attributes is done via
a utility which exercises the target tape drive, and
discovers its tapecap profile.

2.1.11. TMS Namespace Considerations

The process of conveying file objects from a

hierarchical file system namespace to a flat TMS
namespace imposes some interesting challenges. Having
many files from different file systems and directories with
identical names in a single TMS volumset is possible, file
ids do not have to be unique within a volumset. However,
it imposes the requirement that the file sequence number
be used as the unique file descriptor. The problem here is
in that if we were to use the file sequence number, we
would then have to update the file system pointers to do
either reclamation, or media transcription.

That would be very undesirable, so we create a unique
file id, and preserve the original file name (at least the first
40 characters) within the TMS catalog as the file
comment. This produces a very readable volumeset
listing, since the file comment appears with each file entry.
What is seen in a volumset listing as files are created and
modified over their life, is a contrived file id that is unique
to a specific name and path in a file system. That file id
will be repeated for every modification of the file that is
archived, with each having an incremented file generation
number.

The volumset will typically have a retention policy that
keeps N generations of a file. As soon as enough
generations of a file have been archived, the older ones
will begin to be expired. Reclamation simply calculates

the percentage of expired vs. unexpired blocks on a
volumset to determine if the reclamation threshold has
been met. If it has, reclamation will create a new volumset
with the same name as the source volumset, but an
incremented generation number.

So we use the generational construct in two different
contexts. In a file context it is used to rollback to a
previously archived file object generation. In a volumset
context, it is used to copy a fragmented volumset to a new
unfragmented volumset, or to transcribe an old volumset
to a new media or another type of removable technology.

Since we maintain the uniqueness of the contrived file
id within the volumset, we can do the volumset
transcription or reclamation without changing any file
system attributes, and still have data fault servicing work
as it should. We haven’t saved any pointer to the archive
copy that has a context related to the physical media, as
we would have if we had used a block id or file sequence
number.

Another consideration is the application of user
attributes, and their preservation as the file is archived
into the TMS namespace. We chose not to create any user
attributes in our environment that have a scope outside of
the file system because of the difficulty of attaching them
to a file as it leaves the file system. Standard file
attributes match well with the metadata that exists in a
standard mainframe compatible HDR3 tape label, so we
write one of these with every file. This makes a volumset
completely portable, since a TMS client can scan an
uncataloged volumeset, and recover all the file metadata
necessary to repopulate the TMS catalog.

Other user attributes that might be helpful in the
application environment would be problematic. The file
object could be encapapsulated within a dump file, and
the user attributes would be preserved. However
portability would be limited, since a user recalling the
object from the TMS on another platform may well not
have the appropriate restore utility.

As it stands now, a file object appearing in a managed
file system gets archived in a platform independent,
standard labeled tape. A TMS client on any platform can
access that file object directly, with no post processing
required to convert it back to the original file object. We
view this preservation of a platform independent archive,
with all metadata preserved in standard labeled media as
unique, and quite useful.

2.1.12. TMS Interfaces

The TMS resident file objects can be accessed at a

command line interface (or within a shell script), or
through a C API. Accessing files through the command
line is done through a set of commands that allow the user
to view the file contents of a volumeset, and then request

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE

the object with a read on the selected file. Command line
options exist for use of standard I/O redirection or named
pipes to avoid bringing the object back into the file system
in applications where the file is being brought back to be
processed and then saved in some transformed state, such
as parsing a large body of data for insertion into a
RDBMS system. Creation of the volumset with its policies
(retention, technology, location, scratch pool, etc…) is the
first step in saving TMS file objects. Once a volumset is
created, it must be accessed in write mode, and then files
are saved using either recputs in the API, or file I/O,
named pipes, or I/O redirection at the command line.

2.1.13. TMS Scalability

As previously stated, we have used a legacy enterprise

product with an extensive history as our TMS. This gives
us high confidence in the stability of the code base within
its design limitations, which it 6 million file objects, 4
million volumesets, and 255 tape drives.

In order to get beyond these limitations, we are looking
at two changes to the existing code. The first is to replace
the existing B+Tree catalog code with Berkley Database
code. We are also looking into modifying the TMS client
to understand a volumset name that is qualified with a
TMS catalog server name. Currently, each TMS client has
a single master server defined in a configuration file. This
latter change would allow us to work in an environment
where we have an arbitrary number of TMS catalog
servers, each with its own volumsets.

2.1.14. Tape Subsystem Considerations

This architecture imposes performance and reliability

demands on tape automation that are significantly greater
than in a traditional backup/restore environment. In the
current implementation, files are individually cataloged in
the TMS. This is done so that once there, the file objects
have enterprise wide scope, and can be easily accessed
directly from the TMS services on any client system, by
any privileged user, without any post processing. We write
the volumesets as standard ANSI labeled tapes, with a
HDR3 label for each file.

One of the implications of this design decision is that
we add about a second of overhead per file written for
label processing (when using enterprise class tape drives).
Writing tape labels involves writing tape marks, which
forces tape drives to do some physical things that take
time. Some backup oriented tape drives will handle this
very badly, taking much more than a second or so per file.

We did this because we choose to use rich data
classification to manage and archive only the files that

were valuable to us, and ignore everything else. Using
standard HDR3 label processing on a per file basis not
only adheres to a decades old enterprise standard for data
interchange on removable tape media, it allows us to bring
a previously written volume into a TMS, and populate the
TMS catalog by telling it to “scan” the volume, recovering
all the file information from those HD3 labels.

Alternative approaches could be taken at the sacrifice
of some benefits, such as logical collocation of data by
file type. Archive policy can be very simple, putting all
different file types together as they are created and
changed onto a single volumset. This in itself will reduce
the number of mounts and would be much less taxing on
backup oriented hardware.

Increasing the archive rate for small files could be done
by aggregating many small files into a few larger tar or
dump files to address the label-processing problem, and it
has been considered as well.

We chose not to go down either of these paths, since
enterprise hardware that meets the demands of an active
archive is readily available, and we viewed preserving
these characteristics as highly desirable. The deciding
factor in preserving label processing was the availability
of a fairly simple hardware solution to the performance
problem in a small file environment. Tape virtualization
systems that write first to a disk buffer, then write large
files to real tape drives should avoid that problem
altogether.

2.1.15. Shared Active Archive

This type of “direct access to tape data” architecture
requires reliable, enterprise class technologies to support
the high mount rates and duty cycles. These drives and
libraries are costly, and need to be shared resources to be
cost effective as well as to facilitate data sharing at the
TMS service level. OpenTMS is architected for dynamic
drive sharing between dissimilar hosts and applications to
provide these benifits.

The TMS catalog and device allocation functions
reside on a master server, communicating with net clients
that run on any node either using TMS services, and/or
hosting a tape transport. OpenTMS makes these drives
available to any network attached host, by means of either
a network socket, or direct SCSI, or attachment through
switched fibre channel fabric. For SCSI attached
environments, transports would typically be distributed
with larger numbers of drives on the hosts doing the most
I/O, to keep the I/O off the network to the greatest extent
possible.

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE

Figure 5. Shared Archive Architecture

When using enterprise class drives, typically they

would have fibre channel interfaces and be attached to an
un-zoned fabric, creating a device entry for each transport
on every fibre channel attached host. Taking advantage of
this any-to-any connectivity is supported by configuring
the master server with an arbitrary name for each
transport. Each transport name then has an entry for each
fibre attached host, including its /dev/rmt entry. Allocation
between hosts is dynamic, and will be by default
preferenced by allocation of a channel rather than network
attached resource. The TMS also accepts a “machine=”
attribute if the user chooses to have control over data path
allocation for some reason.

Accessing cataloged objects in OpenTMS can be done
via user scripts with standard I/O redirection, named
pipes, or through a C language API.

2.1.16. Data Protection Issues

Protecting files with archive policy doesn’t in itself

alleviate the need to protect the file system space, so we
still have to contend with dump/restore. Fortunately, the
problem of large dump files can be cleverly avoided.

SGI’s xfsdump utility has a command option to ignore
the user data in a file if it has an attribute that indicates it
is “dual state,” meaning it has previously been archived.
These files will still be present in the dump file, but only
in the form of the standard and user metadata, the later
containing all the information necessary for data fault
handling from an archive copy.

We could envision some fairly capable data protection
schemes based on the available tools with a managed file
system. One example might be to run a utility on a system
as soon as the operating system installation is completed
off of the distribution media to set every file as “dual
state”. One would then set up archive policies to make

archive copies of every file created that is of some long
term value, and ignore everything else.

This would provide near real time backup of user data,
and would allow routine dumps of the file system
containing only file system metadata. Backing up
operating system files that are installed during a bare
metal recovery would be avoided. Restore could be done
very quickly by first restoring only the file system
metadata, and then allowing open events to trigger
repopulation of user data into the file system.

3. Related work

We looked at several other Hierarchical Storage
Managers over the years and learned a few lessons that we
tried to incorporate into OpenSMS. But we also looked at
Systems Managed Storage as a more comprehensive issue
in terms of the added requirements of integrating
regulatory compliance, offsite archiving, and asset
management (specifically, easing the retirement of large
disk arrays).

One of the differentiators of OpenSMS is the concept
of bringing a TMS into the environment as an alternative
to disk storage altogether. There are many data access
requirements that don’t match the attributes of disk I/O
well, and shouldn’t be satisfied with disk storage. Batch
processes that do large sequential I/O are good examples.
These processes put a significant load on a file system,
denying performance to applications that need low
latency, or bursty I/O. Arguably, SGI’s DMF when
combined with TMF and OpenVault have many of the
features of OpenTMS, but also a few shortcomings.
Specifically, there does not appear to be any provision for
direct access to data from tape if it came to the tape
system through the HSM daemon[5], and referential
integrity is dependent on the consistency of a meta data
database.

SamFS from Sun has very good scalability because
they store all the pointer information needed to maintain
referential integrity back to the offline storage within the
inode. This makes an inode dump and the offline copies
the only information needed to restore a file system, and
that is a key feature we decided we had to have. DMF and
ADIC’s StorNext Management Suite both use relational
databases that have to be kept in sync with the inodes, and
offline media, and we view this as problematic in that the
referential integrity of file system pointers and offline
copies depends on too many things being all right, all the
time.

On the down side, SamFS uses tape hardware that is
captive to a single server, which is a common problem
with most applications on client server platforms. Having
to dedicate tape drives on a per server bases, with no
application sharing makes cost justification of reliable

NetMaster

API sh

SMS Policy Applications

Shell Scripts

Interactive User

Un-Zoned
SANIP

Any – to – Any Connectivity
And Drive Allocation

TMS Catalogue

NetMaster

API sh

SMS Policy Applications

Shell Scripts

Interactive User

Un-Zoned
SANIP

Any – to – Any Connectivity
And Drive Allocation

TMS Catalogue

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE

enterprise hardware very difficult. Using low cost
transports and libraries for active HSM is an unreliable
design choice in our experience.

SamFS also doesn’t have a user accessible TMS. It
writes tar files, but direct access to tape data isn’t really
supported in anything other than a manual process. SamFS
also has primitive support for an inline disk tier. It doesn’t
store files in the secondary disk tier as standard files, they
are stored as tar files. OpenSMS allows the secondary
disk tiers to work as normal disk mirrors to facilitate
unmounting a primary, and remounting a mirror in its
place. This was done principally to facilitate retirement of
obsolete disk technology without the down time
associated with data movement. We haven’t seen this
capability explicitly noted in other HSMs. It is unclear to
us whether or not DMF has this capability.

4. Future work

We expect to create some new variations on copy
policy to add the same rich data classification that exists
currently in archive policy. Additionally, a copy policy
that works in a true client-server fashion with another
DMAPI enable file system is being considered.

We also anticipate other policy engines, some that
might make use of an ftp repository for example. Some
other possibilities outside of storage management may
also make sense. We could for example use the
appearance of a certain file type in a managed file system
to execute some batch process, such as a transcoding an
mpeg2 file into an mpeg4, or automatically indexing files
as they are created.

Data protection that is completely integrated into
OpenSMS is a high priority. Since it needs to be
integrated into whatever dump/restore utilities are
provided by the file system vendor, we’ll need to come up
with a flexible approach to solving this problem.

5. Conclusions

So far, the free market has failed to solve the data
management problem in an effective manner. The
existence of many proprietary variants of UNIX, all
similar, and yet all different, has made the task too
challenging for anyone hoping to provide data
management where it is needed - at the file system level.

The emergence of Linux as an open-source alternative
provides another chance to address this problem in a
comprehensive manner. We believe OpenSMS can bring
systemic management of data, as practiced for many years
in mainframe computing, to the client-server platforms of
today’s enterprise environment.

OpenSMS will surely need time to evolve into a data
management system with enterprise class reliability, but
we think an open source model will serve this need well.
We also feel the lack of licensing costs and access to
sources will give OpenSMS a leg up in establishing a
platform to develop some badly needed standards for
storage management.

References

[1] Michael Peterson, Information Lifecycle
Management - A VISION FOR THE FUTURE.
(http://www.sresearch.com/strat_profiles/SRC-
Profile%20ILM%20Vision%203-18-04.pdf)

[2] Peter Lawthers. The Data Management Applications
Programming Interface. (Proceedings of the
Fourteenth IEEE Symposium on Mass Storage
Systems, pages 327-335)

[3] Jim Mostek, William Earl, Dan Koren Russell
Cattelan, Kenneth Preslan, and Matthew O’Keefe.
(Porting the SGI XFS File System to Linux.
http://oss.sgi.com/projects/xfs/publications.html)

[4] Steve Best, Journaling File Systems - Advanced
Linux file systems are bigger, faster, and more
reliable (Linux Magazine, October 2002)

[5] Neil Bannister and Jim Mostek, DMF Overview,
September 1999
(http://oss.sgi.com/projects/xfs/publications.html)

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE

http://oss.sgi.com/projects/xfs/publications.html
http://oss.sgi.com/projects/xfs/publications.html

	Introduction
	OpenSMS
	
	Architectural Approach
	OpenSMS Storage Topologies
	Primary Event Daemon
	Policy Engines Overview
	Copy policy
	Database policy
	Secondary Policy Engine: Archive Policy
	Metadata Database and Block Release
	OpenTMS
	TMS Library and Tape Drive Interfaces
	TMS Namespace Considerations
	TMS Interfaces
	TMS Scalability
	Tape Subsystem Considerations
	Shared Active Archive
	Data Protection Issues

	Related work
	Future work
	Conclusions
	References

