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Abstract

Obtaining consistent bandwidth with predictable la-
tency from disk-based storage systems has proven difficult
due to the storage system’s inability to understand Quality
of Service (QoS) requirements. In this paper, we present
a feasibility study of QoS with the Object-based Storage
Device (OSD) specification. We look at OSD’s ability to
provide QoS guarantees for consistent bandwidth with pre-
dictable latency. Included in this paper is a description of
QoS requirements of a sample application and how these
requirements are translated into parameters that are then
communicated to, and interpreted by, the OSD. Implemen-
tation problems lead to the failure of a hard real-time QoS
model, but this failure is not due to the OSD protocol. The
paper concludes with a description of how well the Re-
vision 9 OSD standard (OSDR9) is able to accommodate
QoS. We provide suggestions for improving the OSD spec-
ification and its ability to communicate QoS requirements.

1. Introduction

The Object-based Storage Device (OSD) protocol is an
extension of the Small Computer System Interface (SCSI)
command protocol. The OSD protocol is intended for stor-
ing data in variable length objects rather than fixed length
blocks. Furthermore, objects may have arbitrary attributes
associated with them, whereas traditional block-based stor-
age does not have any attributes. Object-based storage de-
vices represent parts of files as data objects with attributes.
These attributes help describe the object (objects and files
may not correspond one-to-one). Because data is stored as
an object, more details about the data, such as QoS require-
ments, may be stored with it. Information may be commu-
nicated to the OSD explicitly or implicitly and this infor-

mation can be used to provide QoS information for I/O op-
erations. This type of functionality goes beyond the limits
of block-based disk storage systems where only the bytes
of file data are stored and a richer attribute mechanism to
describe the data is missing. Since current storage systems
store files only in this simple form, there exists no ability
to understand QoS attributes. As disk-based storage sys-
tems become larger and more highly interconnected with
a multi-user/multi-application environment (e.g., Storage
Area Networks), the best effort response mechanism used
by traditional block-based disk systems will no longer be
sufficient for applications that require some level of QoS.
This shift toward storage area networks makes OSDs more
attractive since OSDs may provide predictable I/O to ap-
plications. In this work, we take the existing OSD ref-
erence implementation created by Intel Research and add
to it the mandatory commands defined in the OSDR9 [8].
We further extend its capabilities by adding the OSD at-
tribute mechanism that was defined in the OSDR9. We then
use this enhanced reference implementation to demonstrate
how the attribute mechanism may be used to communicate
QoS attributes to an OSD target. Once these QoS attributes
are communicated from initiator to OSD target, the target
may then interpret the attributes to provide a soft real-time
QoS.

2. Background and Motivation

In May 2004 the Storage Networking Industry Associ-
ation (SNIA) released the OSD protocol specification Re-
vision 9 [8]. This protocol defines the communication be-
tween SCSI initiators and SCSI OSD targets to promote
interoperability. With this specification, Intel Research de-
veloped a reference implementation [5] to foster experi-
mentation and testing of Internet Small Computer Systems
Interface (iSCSI) and OSD. The reference implementa-
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tion contains basic OSD functionality along with the iSCSI
communication mechanism.

With the OSD protocol to guide us, we look at the details
needed for QoS. QoS may be summarized as the ability to
offer and guarantee an individual requirement or attribute.
Techniques for QoS in network communications [7] can
be applied to OSD. Either Integrated Services (IntServ) or
Differentiated Services (DiffServ) may be used to provide
a framework for QoS. The major difference between these
two frameworks for QoS lie in how each performs quality
guarantees. IntServ performs quality guarantees with reser-
vations from end-to-end, thus points along the communica-
tion channel understand the IntServ protocol. DiffServ ag-
gregates service into classes which receive a provision of
the resource rather than a reserved amount and only end-
points determine how to handle the classes. Applying net-
working communications QoS techniques to OSD is pos-
sible since both networking communications and disk stor-
age possess requirements that may need to be guaranteed.
These requirements may be distilled into attributes specific
to the application involved. In audio-video applications this
may lead to at least nine different attributes [3], such as
frame size, frame rate or image clarity.

Classifying disk requests on disk-based storage systems
to guarantee QoS has been studied by Wijayaratne and
Reddy [9]. The desired outcome is consistent bandwidth
with predictable latency. Historically, block-based stor-
age systems do not perform well in providing consistent
bandwidth with predictable latency due to the inability to
communicate QoS requirements. This inability to com-
municate the QoS requirements to the storage system has
led to many different approaches to scheduling disk re-
quests [1, 2, 3, 4, 6]. These scheduling mechanisms are
done in front of the disk system since scheduling attributes
are not understood by the disk system. Unfortunately, it
is increasingly challenging to perform external scheduling
because internally the disk drives themselves may reorder
block read requests thwarting attempts to schedule these
requests. A coarse-grained approach to shaping best-effort
requests that have no quality guarantees may work around
the disk’s internal reordering of I/O requests [10].

This coarse-grained approach shows promise in a mixed
workload environment where best effort requests are throt-
tled in favor of soft real-time requests for disk I/O opera-
tions. However, a mechanism with more precise control is
needed to smooth out startup spikes in data rates. The to-
ken bucket filter used in the coarse-grained approach can
be applied to QoS in OSDs. Admission control with appli-
cations that may function on reduced resources [6] proves
to be effective in offering QoS.

Over-provisioning a storage system presents a simple
solution for providing QoS on OSDs. However, this naive
solution underutilizes the storage system and increases

Table 1. Mandatory OSD Protocol Revision 9
Commands

Command Name Added/Updated

APPEND Added
CREATE Updated
CREATE WRITE Added
CREATE PARTITION Updated
FLUSH OBJECT Added
FORMAT OSD Added
GET ATTRIBUTES Updated
LIST Added
PERFORM SCSI COMMAND Added
PERFORM TASK MGMT FUNCTION Added
READ Updated
REMOVE Updated
REMOVE PARTITION Updated
SET ATTRIBUTES Updated
SET KEY Added
SET MASTER KEY Added
WRITE Updated

hardware cost. Even though it is a simple solution, over-
provisioning will not guarantee real-time QoS and my not
guarantee soft real-time QoS either.

IntServ requires QoS attributes to be communicated
end-to-end. This then sets up a reservation for required at-
tributes. In an OSD, this reservation is accomplished with
the attribute mechanism defined by the OSDR9. Admission
control needed for IntServ can be determined by the OSD
target given that it knows the experimentally demonstrated
disk system and communication limits.

DiffServ QoS requires 1) classification, 2) traffic shap-
ing, and 3) monitoring of requests. Within the OSD spec-
ification, a class of request can be communicated using an
attribute for bandwidth requirement. Traffic shaping and
monitoring can be conducted inside the OSD target. Traf-
fic shaping and monitoring affect the response times of re-
quests and are not part of the OSD protocol.

As we show in Section 4, once specific requirements are
communicated to the OSD using OSD attributes, the neces-
sary data rates and deadlines can be met in a soft real-time
setting. Our implementation of the OSD protocol spec-
ification with a target and an initiator demonstrates how
OSD attributes can be used in communicating QoS, thus al-
lowing the OSD target to provision the available resources
to match the incoming I/O requests. This implementation
communicates the attributes needed to provide QoS for a
single initiator or multiple initiators connected to the same
OSD target.
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3. Methodology

In order to demonstrate how OSDR9 can be used to
communicate QoS requirements, we first extend the capa-
bilities of the v20 reference implementation developed by
Intel Research [5]. With the new functionality added to
the reference implementation, we have a toolkit to assist in
developing an application framework for communicating,
interpreting, and enforcing QoS attributes. We then define
the attributes we use to describe QoS. We investigate the
OSD target and what it needs to enforce QoS. Finally, we
use the Linux operating system, kernel 2.4.20, for testing
the negotiated aspects of QoS.

3.1. Additions to the Reference Implementation

When using the Linux operating system and its file sys-
tem, the reference implementation provides the simulation
environment to test an OSD. With the reference implemen-
tation we develop an OSD target that portrays objects with
files using Linux file system routines. Therefore, when an
object is created, a file or files on a Linux file system are
created. Attributes that relate to the object are simulated by
additional files that follow a similar naming scheme which
helps organize the attributes for lookups. Therefore, the
front side of the OSD target speaks the OSD protocol at a
basic level. The back side translates these basic object rou-
tines into standard Linux file system function calls such as
open(), read() and write().

The Intel reference implementation was chosen due to
its progress on the OSD protocol framework. The ba-
sic implementation of iSCSI OSD functionality in the ref-
erence implementation was designed for optimal perfor-
mance. There are few buffer copies and macros are used
to eliminate the need for some function calls. Most signifi-
cantly, the code is organized well enough to easily add new
commands to current functionality.

Table 1 displays the OSD commands added to this ref-
erence implementation [8]. This table is a full list of
mandatory OSD commands dictated by the OSDR9. Be-
cause these OSD commands are designated mandatory by
the OSDR9 protocol specification, they are implemented.
These commands are useful for testing the functionality of
the OSD. In the OSD specification, objects and partitions
are represented with a corresponding numerical Object ID
and Partition ID respectively. Objects and attributes are
simulated as files associated with a similar name. Parti-
tions are simulated with a directory given the name of the
Partition ID. The Logical Unit Number (LUN) makes up
the topmost directory name for the OSD. This format is il-
lustrated in Figure 1.

Storing object attributes, specifically vendor attributes
used to communicate QoS, is new to the reference imple-

LUN 0
Partition ID 0x21
Object ID 0x10

lun_0

0x21

0x10

0x10.0x0.0x0

0x20

0x11

data filename: /lun 0/0x21/0x10
attribute filename: /lun 0/0x21/0x10.0x0.0x0

Figure 1. Example OSD Back-end Files

mentation. OSDR9 provides details about storing, pro-
cessing, and accessing these OSD attributes. All attributes
have a Page number and Attribute number associated with
them. Some attributes stored with the object are defined by
OSD with specific functionality. Other attributes defined
by OSD are not given specific functional use. Rather, these
attributes, which are known as Vendor attributes, are stored
on disk or in memory, or are used in other ways. One other
way to use the Vendor attributes is to describe the differ-
ent communication parameters required by the initiator for
QoS.

Illustrated in Figure 1 is attribute 0 on page 0 for the ob-
ject with Object ID 0x10. This is the Page Identification
attribute which is used internally by the OSD. The OSD
assigns this information to the object’s In Page Identifica-
tion. This attribute is a statically stored value that may be
read, but not modified by, an initiator. This functionality is
required by OSDR9.

Attributes that are used by the OSD running environ-
ment are valuable and will be used to communicate QoS
attributes. These attributes have little use when stored since
their meaning is specific to the current session only. This
attribute mechanism is missing from block-based disk stor-
age system and proves to be critical for making communi-
cation of QoS-specific information possible.

With an attribute mechanism in place, ordering opera-
tions that read and modify the attributes is critical. The
getting and setting of attributes can accompany other com-
mands, such as a CREATE object command, or FORMAT
OSD command. The GET and SET of attributes may also
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be done as a command by itself, rather than an additional
function of a command. The order of processing these
“dual” commands is important as a GET of an attribute
before the CREATE command would return an error be-
cause the object was not yet created. This example demon-
strates the possibility of a CREATE command having an
attached GET attribute functionality. The SET operation
associated with a READ operation is defined to behave dif-
ferently than we need. We discuss a potential change in this
processing in Section 4.

The GET and a SET operations may be performed at the
same time. This is done with a GET ATTRIBUTE com-
mand and a SET attribute option. The correct function-
ality is to GET the requested attributes before the associ-
ated SET command is completed. This behavior is different
compared to most commands in the specification that have
all SET operations completed first, and the GET request
performed last.

OSDR9 protocol specification covers security mecha-
nisms for OSD commands and describes checksums for
the Command Descriptor Block (CDB). The CDB is the
structure used to communicate command information be-
tween the initiator and the OSD target. Neither the security
mechanism nor the checksum scheme are implemented for
this work. Neither are deemed necessary since, in the sim-
ple OSD client server model, there are only point-to-point
links. These links are secure enough to disregard the se-
curity mechanism. The checksum mechanism is likewise
skipped since TCP network communications provides data
correction mechanisms at lower levels.

With the enhanced reference implementation, we create
a test application called 1cmd



is determined by the initiator. This attribute is fed back to
the OSD target before the next read command. With the
round-trip attribute, the OSD target is informed of the time
it took to perform the operation from the initiator’s view.
The OSD target has calculated the desired response time,
and may compare the desired response time to this actual
round-trip attribute to then adjust its next actions accord-
ingly.

The following example clarifies the attribute commu-
nication. We desire a 22 megabyte per second data link
for our application, or more precisely 22,000,000 bytes per
second. One second is a long time, and we will not read all
this data in one buffer, so it must be broken up into multi-
ple reads, with a buffer size of 22,000 bytes. That would
imply we need to produce one thousand read requests from
the initiator to the target in a one second time interval, or
request a read every one thousandth of a second. For this
example the buffer size and bandwidth requirement are ar-
bitrary. However applications have different requirements
and memory limits, so these attributes are important and
must be communicated to the OSD target before any data
is transfered.

In the example given, both the initiator and the OSD
target become aware of the bandwidth required and they
would both know how often to expect a read request to oc-
cur. The OSD target can use this information to prevent
cheating from the initiator if it requested a response more
often. The OSD target would be ready to service a request
that came in late by caching the response. It is optional to
acknowledge this late request and skip over it. This option
may be communicated as another attribute, but we have not
yet modeled it. We instead work with the premise that
late is better than not at all. The clock for the next read
is adjusted to compensate for this late read. All following
reads will be late with respect to the original time since the
request-response model of OSD restricts any sooner deliv-
ery to the initiator.

3.3. QoS in the OSD Target

With test applications ready to test the initiator side of
the experiment, we now develop an OSD target application.
The original reference implementation target application is
used and enhanced with OSD attribute capabilities. This
enhanced initiator is implemented as a Linux kernel mod-
ule. As a kernel module, the enhanced OSD target runs
with full privileges under Linux. This full privilege level
gives the best response time and access to operating system
resources. Each new initiator connects to a new thread in
the OSD target. This is done to sidestep bottlenecks within
the code of the OSD target.

To provide a simple DiffServ QoS, we use a token
bucket filter. The token bucket filter provides a means to

Initiators

Object-
 based
Storage

qostest

QoS requests

1cmd

best effort
 requests

feedback attribute

token bucket
filter

OSD Target

Figure 3. Simulation Environment

limit the best effort requests to the OSD target thereby pro-
viding timely responses for the QoS requests. Best effort
requests are distinguished from QoS requests by their lack
of QoS attributes. Best effort requests are not guaranteed
any type of service, but are guaranteed not to starve with
the token bucket filter. Our token bucket filter represented
in Figure 3 operates similar to that proposed by Wu and
Brandt [10]. The missed deadline notification that is used
to tune the filter described by Wu and Brandt, is accom-
plished in our model by using the round-tip time delay and
comparing it with the expected response time. If it turns
out to be longer, the deadline is missed. If there is a delayed
response on one operation, it must signal an improved re-
sponse on the following operation with all other variables
remaining the same. The token bucket filter provides at best
a soft real-time QoS.

In order to provide a hard real-time QoS, a close watch
on time must be done. Responses to requests have dead-
lines associated with them. Failure to meet these dead-
lines may either result in an acknowledgement of the re-
quest with no data, or a delayed response. This type of
failure recovery may be signaled with another attribute, but
this functionality is not modeled with our implementation.
IntServ QoS model is a good choice for hard real-time QoS
since the reservation of resources ahead of time helps deter-
mine if requests can be serviced with the associated dead-
line.

Hard real-time QoS on an OSD target is implemented
with a Linux kernel module. The Linux operating system
has a timer mechanism that allows the scheduling and ex-
ecution of an event at an exact time in the future. Kernel
timers in Linux run in interrupt time which, among other
things, means they are polled about 100 times per second.
This granularity is enough to test a lightly loaded OSD pro-
viding QoS.

To prepare the OSD target for a hard real-time QoS ses-
sion, the initiator sets QoS attributes for bandwidth and
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buffer size. The response time is defined as:

respond �
bu f f ersize
bandwidth

A timer within the OSD target is set to unblock the OSD
target and respond at the future time. The OSD target then
blocks. When the timer expires, the response is finished.
Unfortunately this approach can fail due to limitations in-
herent in the Linux kernel. The unblocking of a request
does not occur predictably. Deadlines are missed because
of the unpredictable late periods. The attribute mechanism
for communicating QoS is not the point-of-failure. Rather,
it is the hard real-time implementation in Linux.

3.4. Simulation Environment

The experimental environment consists of a single com-
puter with multiple initiators communicating with a single
OSD target. The single computer model helps reduce or
eliminate the affects of using networking QoS protocols.
We are not focusing on the limits of the hardware in the
testing environment. Those limitations may be looked at as
infinite for our tests. The focus is directed on OSDR9 and
its ability to communicate QoS attributes.

In addition to using a single computer for the testing
environment, large files, over 300,000,000 bytes, are used
with I/O operations. The reasoning is that smaller files
would exploit the available buffering and so would yield
suspiciously fast responses due to buffering in the Linux
I/O subsystem. With larger files the buffering effect is
amortized through the cycle of reading or writing the ob-
ject. On our test system the average maximum attainable
throughput from the disk system, obtained empirically, is
32,850,000 bytes per second for sequential reads.

Within our token bucket filter, best effort requests are
not given any QoS. Their performance will suffer at the
sake of QoS guaranteed requests. There is a built-in starva-
tion prevention mechanism that ensures that at least some
best effort requests will obtain service. Figure 3 displays a
representation of the token bucket filter. There exists within
the token bucket filter an ability for the best effort requests
to regain additional service once the QoS requests have fin-
ished to ensure full utilization when no QoS requests are
present. When an initiator sets the QoS attributes, all op-
erations are now considered higher priority than best ef-
fort requests. However, between QoS requests there is no
differentiation. Therefore the QoS requests are compet-
ing against themselves. The round robin scheduling effect
from the process scheduling is the equalizing force between
them.
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9 . 0 E + 0 7
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time in microsecondsthroughput in bytes Q o S  1Q o S  2Q o S  3B e s t  E f f o r t Figure 4. Throughput over time4. ResultsThe results from running four initiators with a singleOSD target are displayed in Figure 4. This run displays
the three QoS initiators along with one best effort initia-
tor performing read requests to the same OSD target and
object at the time. This is a scatter plot with the X axis
representing the time elapsed in microseconds and the Y
axis displaying the throughput in bytes. A trend line is dis-
played with the scattered points to assist with the analysis
of the results. The beginning of all plots demonstrates the
initial performance boost that is inherent in the buffering
of the read requests from the file system layer. This lev-
els out to 10,000,000 bytes per second for all of the QoS
initiators due to the bandwidth capabilities of the underly-
ing hard disk drive. The best effort initiator loses perfor-
mance faster over time in favor of the QoS requests. This
degraded response continues because of the token bucket
filter, and towards the end regains some performance as ex-
pected when the QoS requests have finished.Figures 5 and 6 depict three sequential runs of the ini-tiators alone. Figure 5 shows that best effort requests
while Figure 6 shows the QoS requests. These are scat-
ter plots of the data obtained from sequentially running the
tests. Each perform similar when not competing for ser-
vice. Not surprisingly, there is boosted performance ob-
served after a number of runs. The initial best effort run dis-
plays the poorest performance with improvements continu-
ing through to the best performance noticed from the QoS
request. This type of irregularity is likely due to buffering
in the lower file system layer. Since the same object is read
each time, the file associated with it is cached by the file
system layer to improve performance for its repeated use.
There also is an upward trend at the end of each plot. This
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the Digital Technology Center’s Intelligent Storage Con-
sortium (DISC).
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