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Abstract* 

Growing compute capacity coupled with advances in 
parallel filesystem performance and stability mean that 
HPC users will inevitably create and store larger 
datasets.  If data residing on parallel filesystems is not 
efficiently offloaded to archival storage, disruptions in 
the compute cycle will occur.  Hierarchical storage 
caches are a vital aspect of the HPC storage machine 
because they offload and prime the compute engine’s 
parallel filesystem.  To keep pace with expanding HPC 
data systems, these caches must adapt via new scalable 
architectures. 

 The Pittsburgh Supercomputing Center (PSC) has 
developed a cooperative caching architecture to act as a 
distributed front-end cache to a hierarchical storage 
manager.  SLASH, the Scalable Lightweight Archival 
Storage Hierarchy, provides means for creating parallel 
caching systems on an otherwise “monolithic” archival 
storage system without requiring modifications the 
archival system software.   

1. Introduction 

In the current realm of high-performance computing, 
teraflop compute systems and gigabyte per second 
parallel filesystems are becoming commonplace.  As I/O 
rates to parallel filesystems increase, users will inevitably 
generate and store greater amounts of data.  Efficient 
data movement to and from tertiary storage systems is 
crucial to proper management of parallel filesystems, 
which direct-attach to specialized compute resources.  To 
support the growth of scientific datasets and capabilities 
of parallel filesystems, archival storage must also be 
given avenues for parallelism.   

Traditional hierarchical storage managers consist of a 
single symmetric multi-processor (SMP) attached to 
some disks and an array of tape drives.  The current 
scalability barrier for large SMP machines (8 processors 
or more) is that the cost per byte of I/O bandwidth is 

                                                        
 

much higher than that of smaller, distributed, 
commodity-based architectures.  While an SMP of this 
category (>8 processors) is probably needed to run an 
HSM managing several million files, the cost of scaling 
these systems is very high while the ceiling for expansion 
is relatively low.    

Another disadvantage of most archival systems is that 
they do not support the variety of interconnects that are 
supported under linux, preventing the inclusion of the 
archival system into the supercomputing network.  The 
motivation at PSC was to connect the “archiver” directly 
to our Quadrics-based computational interconnect, taking 
advantage of the high-bandwidth, remote DMA network 
to provide an aggregate bandwidth that scales with the 
number of machines on the network [2]. 

These factors demand a more modular expansion 
route that makes use of commodity hardware and linux 
drivers.  PSC has developed a distributed caching system 
called the "Scalable Lightweight Archival Storage 
Hierarchy" - SLASH.  SLASH enables the incorporation 
of commodity hardware components into the standard 
archiving scheme in a hardware layer external to the 
traditional archiver SMP.   SLASH accomplishes this by 
logically extending the archiver’s internal namespace to 
external caching nodes and performing out-of-band data 
migration from the caches to the archiver SMP in a 
coherent manner.  

2. Design Goals 

The primary goal of this project was to develop a 
distributing caching system with flexible characteristics 
without introducing fragile failure scenarios, static 
interdependencies, or large complex management tasks 
into the archiving system.  The flexible characteristics 
are defined as a set of capabilities that promote scalability 
and ease of management.  

2.1.1. Versatile Caching Facility 
The distributed cache should have the ability to be 

grown, shrunk, or disabled easily by the administrator. 
This means that necessary system reconfigurations 

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005) 
0-7695-2318-8/05 $20.00 © 2005 IEEE 



  

should not require system downtime or rearrangement of 
cached data or system metadata.  Caching elements that 
leave the system should exit gracefully without causing 
outages to the entire system. 

2.1.2. Incorporation of Commodity Hardware  
In contrast to building a large fiber channel SAN, 

SLASH should make use of commodity storage, 
commodity controllers, and relatively low-cost networks 
like Gigabit Ethernet to build a scalable distributed 
storage cluster.   

Steering archival design toward networked, disk-based 
systems [2] heeds popular arguments that tape-based 
archiving is already obsolete with the advent of high-
volume, low-cost IDE-RAID disk solutions.  Balancing 
this trend is the fact that the comparative cost of raw 
storage is still in the favor of tapes [1, 6].  By using 
SLASH for distributed disk storage management and 
archive integration, we are well situated to take 
advantage of either storage media as these future trends 
become present reality. 

2.1.3. Caching System Operations are Transparent 
Applications running on the caching nodes should 

expect the same system behavior as if they were running 
on the archiver SMP.  Achieving the goal of transparency 
requires that the filesystem API is upheld, preventing the 
need for changes to applications.  Transparency also 
implies that each cache node will operate within the 
same consistent namespace and have access to the most 
recent data. 

2.1.4. Cache Nodes Must Act Cooperatively 
The primary function of SLASH is to provide read 

caching support to the archiver SMP to minimize the 
number tape mounts incurred during everyday use.  The 
most effective means of accomplishing this is to allow 
caching nodes access to each other’s storage directly.   

2.1.5. Interface with High Speed Interconnects 
One method of optimizing data archiving is to place 

archival interfaces on the supercomputer’s computational 
interconnect.  To do this device drivers must be available 
for these archival systems.  Most SMPs that operate 
tertiary storage systems do not support interconnects 
commonly found within HPC systems.   

2.1.6. Single Metadata Image 
Minimizing overhead is an explicit design goal for 

this system.  Overhead often comes in the form of extra 
metadata management associated with the state and 
location of files within the cache.  While some solutions 
employ databases for metadata management, SLASH was 
designed without a need for databases, keeping 

configuration and operational overhead low and 
minimizing the metadata footprint. 

3. Architecture 

SLASH is based on a modular design that provides 
abstractions allowing for distribution of HSM duties 
across several nodes.  The purpose of distribution is to 
shift the disk and CPU load from the archiver SMP to 
less expensive SLASH nodes.  The archiver is still the 
sole authority for offline data.   

SLASH consists of three components: one or more 
metadata servers, one or more data caching nodes and an 
archiving node.  The metadata service, SLMD, has three 
primary duties:  maintaining and exporting the logical 
namespace, tracking cache status of files, and lock 
management.  The SLASH Cache Node, SLCN, is 
responsible for handling data transfer applications, out-
of-band data migration, and management of its local 
cache disk.  The SLASH Archiver, or SLAR is 
responsible for maintaining offline data.  At PSC, the 
SLAR is a Silicon Graphics machine running the “Data 
Migration Facility” (DMF).  

3.1. Logical Namespace Extension 

SLASH facilitates access to a single namespace from 
multiple nodes on a network.  At this time, SLASH does 
not have its own metadata export capability, but instead 
relies on NFS to export the namespace from the SLMD to 
the SLCNs.  This is an appropriate choice because NFS 
aptly performs the task, decreases development time, and 
it is already required when the SLCN is operating in 
“pass-through mode”.    

Initial versions of SLASH exported the SLAR’s 
namespace directly to the SLCNs, using the NFS mount 
for namespace operations and as a target for migrating 
data to the SLAR.  More recent development has 
abstracted the metadata and placed it on an external 
server.  To allow for multiple SLMDs and other 
flexibilities, we chose to use an object-based scheme [4].  
Indexing data with globally unique object identifiers 
greatly simplifies namespace locking complexities 
encountered in a system performing data migration into 
filesystems imported from other nodes.  These 
complexities are largely caused by directory rename 
operations occurring before migration of data from 
SLCNs.  Separation of data from metadata in 
combination with an object naming scheme allows 
namespace changes to occur completely independent of 
the data management.  

The SLMD is responsible for maintaining accurate 
size, utimes, and permission information.  Namespace 
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query operations, such as “find” or “ls”, in general, 
should not need to communicate with the SLCNs or 
SLAR to obtain system metadata information.  Only in 
the case where newly uploaded data has not been 
migrated will the SLCN be consulted for system metadata 
information. 

3.2. Metadata Management 

Metadata internal to SLASH is stored in extended 
metadata attributes within the metafile’s inode.  This 
eliminates the need for a separate database for storing 
SLASH state.  It would be possible to write other data 
into the metafile but at this point, we have no reason to 
do so.   

The metadata naming scheme requires that files on 
the SLMD can be directly accessed via their object 
identifier, or FID, without traversing the user visible 
namespace.  This requirement exists because the SLCNs 
are not aware of the file’s real path.  Pushing namespace 
state to the SLCNs causes severe complications when 
renaming files and directories, especially when the SLCN 
holds unmigrated data associated with the renamed 
location.  Providing direct access to data via the FID is 
accomplished by hardlinking the SLMD “real” object to 
one named after the FID.  Similar to accessing a file via 
its inode number, this simple technique allows certain 
SLASH activities to access the metadata without 
knowledge of the file’s path. 

SLASH uses three of its own metadata items and one 
system metadata item (modification time) to maintain the 
coherency of the data system.  Metadata is updated via a 
simple remote procedure call system comprised of client 
libraries on the SLCN and a server which runs on the 
SLMD.  The SLMD uses its own lock manager to verify 
the atomicity of SLASH metadata modifications.   

SLASH adds the following metadata items: 

3.2.1. Object Identifier or “FID” 
The FID is a string comprised of date information, 

filesystem identification tag, and inode number.  This 
combination of items should guarantee unique identifier 
creation with the SLASH system. 

3.2.2. SLCN Identifier Array 
This attribute is the list of SLCN_IDs which hold 

valid cached copies of the respective object. 

3.2.3. Migrated Tag 
The migrated tag informs the system of the migration 

status of the file.  When set to false, it signifies that the 
file has not been archived and only exists on the SLCN.  

3.3. Client System Call Intercept Library 

 All external requests into the namespace are 
handled by applications running on the SLCNs.  
Applications requesting I/O operations in the namespace 
are intercepted and redirected through the client library.  
The following calls are intercepted: open(), truncate(), 
create(), close(), write(), and lstat().  Calls such as 
opendir(), readdir(), rename(), etc. are handled by NFS 
and ignored by the client library.  SLASH clients operate 
by inserting remote procedure calls into these system 
calls which communicate with the SLMD on behalf of 
the application.  

3.3.1. Open and Create Protocol 
“Open for writing” requests that the SLMD issues an 

open() with the same options specified in the intercepted 
open call. So, for example, if the application specified 
(O_CREAT | O_TRUNC), the SLMD performs an open 
on the specified pathname with the provided options.  If 
the server open is successful, then the file’s FID is 
created and applied to the extended metadata attributes.  
The SLCN identifier attribute is set to the SLCN_ID of 
the requesting node.  The FID and error code is returned 
to the SLCN in the reply message.  Using the FID as a 
unique identifier within its local cache namespace, the 
caching node opens a local file descriptor and returns it 
to the application.  The application behaves as though it 
is operating in the global namespace, but in fact its 
activity is being redirected to the local filesystem.   

“Open for reading” operations, such as open() with 
O_RDONLY, are also intercepted so that cache status can 
first be determined.  Again, the SLASH library inserts an 
RPC which queries the SLMD for the cache location and 
FID.  The same operation occurs on behalf of lstat().  All 
of the caching nodes function as entities in a cooperative 
caching scheme.  So if data is cached and accessible, it is 
read and served directly from the local or remote cache.  
In a situation where the data is not accessible, as in the 
case of an SLCN failure, the requested data is 
transparently read from the SLAR.  While this may 
require a tape mount, it frees the cache system from 
having to maintain long-term replicated data for 
redundancy and instead uses tertiary storage as a means 
for redundancy [1].  At this point the file may be re-
cached while the requestor proceeds to access the data 
directly from the SLAR.   

Slash Cache Nodes do not modify each other’s local 
caches, “open for reading and writing” operations, those 
that do not specify O_TRUNC, are not optimal for 
SLASH.  The protocol for these is the same as that for 
“open for reading”.  If the SLCN_ID returned by the 
SLMD is the equals the SLCN_ID of the requesting 
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SLCN then the write operation may proceed as usual 
utilizing the local cache disk.  Otherwise, the request 
must pass through directly to the SLAR via NFS and 
modify the file there.  Problems occur when the requested 
file has not yet been migrated to the SLAR.  In this 
situation the request will block until the migration has 
occurred.  Though this issue would be disastrous for a 
typical filesystem, the drawbacks within SLASH are 
minimal because of the “get” and “put” nature of the 
archiver.  Some threaded data applications do use 
techniques which require modifying writes but these 
usually follow create/truncate operations, which presents 
a less problematic case.   

3.3.2. Write Protocol 
The SLASH library’s procedures on behalf of write() 

only begin after the first write call is issued.  Depending 
on the cache status of the respective file two things can 
happen.  If the file is cached on the SLCN, the slash 
library notifies the SLMD, instructing it to set the 
migrated tag to “false”, which signifies that the file needs 
to be migrated.  The SLCN creates a pointer to the 
cached file which will be used in the migration phase.  If 
the file was being accessed directly on the SLAR then the 
message instructs the SLMD to strike the SLCN 
Identifier Array – removing any pointers to now invalid 
cached copies.  Should the remote procedure call fail the 
I/O is aborted before any data is actually written. 

3.3.3. Close Protocol 

When a close is issued by the application, the 
SLMD is requested to set the appropriate utimes on the 
metadata file.  In the case of close after write the filesize 
is set on the SLMD and the SLCN schedules the file for 
migration.  

3.4.  File Object Migration 

The migration between the SLCNs and the SLAR is 
very similar to the migration procedure in an archiver 
where data moves between disk and tape.  The fault 
scenarios are similar as well. The state in which the data 
exists only on the SLCN is a critical one.  Even though 
this new data is globally available for reading, only one 
copy of the data exists until the migration is complete.  
This fault scenario is similar to that of traditional 
archivers in situations where the archiver filesystem fails 
before the data is backed up to tape. 

The procedure begins when the SLCN requests a file 
object migration, the request may be either a put or get.  
A connection is made to the SLAR’s migration server.  If 
the SLAR has an available migration token the node with 

the file object is instructed to stream it.  The migrating 
file is streamed to a temporary location where upon 
success is renamed to the FID.  If the migration is 
successful, the SLCN instructs the SLMD to mark the file 
object’s extended attributes.  An SLCN “put” transfer 
requires that the migrated tag is set to true.  After the 
SLCN “get” transfer, the SLCN identifier array is 
modified with the SLCN_ID. 

Timely migration of data to and from the SLAR 
should not impact the SLARs local disks in a way which 
causes excessive disk thrashing.  To deal with this 
problem a load management system on the SLAR brokers 
migrations from the SLCNs while taking into account 
current tape activity.   

4. Re-delegation of Archival Tasks 

SLASH aims to lower the hardware cost of large 
archival systems while providing avenues for expansion.  
Shifting of archival workloads to cheaper satellite nodes 
is the primary method of refocusing the archival 
architecture away from the large SMP [2].  By 
minimizing the workload of the large SMP we hopefully 
can prolong the amount of time until an upgrade is 
needed.    

We’d like to reach a point where the archiver’s only 
vital role is the management of tertiary storage.  We’ve 
identified several workload areas which are good 
candidates for placement on lower cost nodes.   

4.1. File Caching 

Probably the most obvious task, file caching is 
handled by the SLCNs instead of the local disk on the 
SLAR.  Shifting file caching to the SLCN provides 
several advantages which have already been discussed in 
Section 2.  By enabling caching across a set of 
cooperative machines, the capacity and bandwidth of the 
cache can be expanded at a much lower cost than by 
adding disk and network bandwidth to the archiver.  The 
larger cache inevitably lowers the number of tape mounts 
needed to fulfill read requests.   

4.2. User Data Movement Applications 

Placing the users’ data tasks on the SLCNs is another 
obvious method of task offloading.  This is important 
because it prevents excessive context switching across the 
entire system.  Load-balancing user requests across a 
pool of SLCNs should be more efficient than directing all 
requests to the SLAR, especially if the system is under 
heavy duress from tape requests. In cases where 
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encrypted data transfers are used it is preferred that the 
tasks run on the cheaper SLCN processors.  

4.3. Removal of Small Files From the Archiver 
Managed Namespace 

Many archivers are inundated with millions of small 
files (< 1MB) [3], PSC’s archiver is no exception  
Overwhelming numbers of small files can cause 
headaches for system administrators because they lead to 
excessive backup and restore times.  The disk subsystems 
connected to HPC data archivers are designed to handle 
large sequential operations.  Hence, the filesystem 
blocksizes are generally large, creating an inefficient 
scenario for small files.  Under normal filesystem use, the 
handling of small files will inevitably lead to filesystem 
fragmentation. Shifting the management of small files to 
archival software, such as DMF, can be wasteful due to 
the database overhead needed to manage offline files.    

These files, the bane of the archival systems, can be 
managed more efficiently if moved from the SLAR’s 
cache disk to other more suitable storage. 

4.4. Exporting of Namespace 

Moving namespace management to an external node 
provides several means of load minimization.  Since 
SLASH uses NFS for namespace operations, having the 
NFS server on a different node means that requests for 
metadata will not interfere with the sequential I/O 
operations taking place on the SLAR.  In addition, 
namespace queries can be fulfilled more rapidly since 
there is less disk contention.   

Shifting namespace responsibilities to an external 
SLMD allows for SLASH to assume management of 
small files as discussed in Section 4.1.3. 

5. SLASH Storage Application – TCSIO 

The “Terascale IO” system [7], developed at PSC, is 
an object-oriented client-server toolkit. TCSIO provides a 
client middleware library and the presence of I/O 
daemons that run on each node where disk resources are 
to be presented. The I/O daemons are conversant in 
multiple transport protocols, including a reference 
implementation in TCP/IP and an expansion to the 
TCSCOMM library [7], which allows for transfers on the 
Quadrics network fabric.  The protocol for connecting to 
an I/O daemon begins with a TCP/IP socket connection 
and includes, among other things, a negotiation to the 
highest performance protocol for bulk data transport. 
Control data are always transmitted over the TCP/IP 
connection.  

Within the SLASH environment, TCSIO has been 
tightly integrated with the SLASH client library.  These 
enhancements allow TCSIO to perform SLASH locator 
RPCs to determine the location of cached files.  The 
cache location information is used in conjunction with 
3rd party transfers to create a powerful “redirection” 
mechanism for handling access to distributed data.  Read 
requests dispatched within TCSIO are seamlessly 
redirected to the caching node which holds the relevant 
data.     

TCSIO client requests have built-in fail-over and 
round-robin distribution capabilities for robustness and 
parallelism.  In the case of a node failure, TCSIO 
contacts another eligible caching node to obtain the 
requested data.   

6. Benchmark Configuration and Results 

We present several performance results for the 
SLASH implementation currently in production at PSC.  
The production version does not yet use an external 
metadata server so only data throughput was tested.  The 
TCSIO system was used as the data transfer mechanism 
and provided read request redirection.  This means that 
cached reads were served by the SLCN holding the data.    
The hardware used was the quadrics-based 
supercomputer, lemieux, six SLCNs, and a 12 processor 
Silicon Graphics O-300 system (SLAR).  To limit the 
number of measured variables, no filesystems were used 
on lemieux, /dev/null and /dev/zero were used instead.  
The JFS filesystem was used on the SLCNs and XFS was 
used on the SLAR.   

6.1. SLCN Configuration 

The SLCNs vary in system type though all are Xeon 
based dual processors machines with four independent 
PCI busses.  At least one PCI bus in each SLCN was PCI-
X and was used for the quadrics card.  The disk 
subsystems were comprised of multiple 3ware cards or a 
single dual-channel scsi card. Each SLCN type was not 
equal in disk or network throughput.   Of the six SLCNs 
used for testing, two were of each type. 

6.1.1. Type 1 SLCN 
 
The type 1 SLCN is a dual processor 3.00 GHz 64-bit 

Xeon processor with hyperthreading support enabled.  
The machine has two gigabytes of main memory and uses 
a Supermicro X6DHE-G2 motherboard.  The disk 
controller is a dual-channel LSI Logic card.  The disks 
are comprised of two 8-bay scsi shelves loaded with 7200 
rpm parallel ATA disks.  The shelves, responsible for data 
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redundancy, do raid6 parity (6+2) in hardware.  Both scsi 
devices are striped into one logical unit with a peak write 
bandwidth of 250 MB/sec.  The linux kernel version is 
2.6.7 with the ‘mm’ patch series and quadrics support. 

6.1.2. Type 2 SLCN 
The type 2 SLCN is also a dual processor Xeon but is 

a 32-bit model running at 2.79 GHz.  Hyperthreading 
support is enabled here as well.  Similar to type 1, this 
machine has two gigabytes of main memory and uses a 
Supermicro X5DPE-G2 motherboard.  The disk 
controllers are two 3ware 9500, 12-port, serial ATA 
cards.  The controllers perform raid5 in hardware and 
have a peak write bandwidth of 125MB/sec.  Both 3ware 
devices are striped into one logical unit with a peak write 
bandwidth of 250 MB/sec.  Type 2 nodes use the same 
kernel as type 1. 

6.1.3. Type 3 SLCN 
The type 3 SLCN is a dual processor, 32-bit, 2.66 GHz 

Xeon with disabled hyperthreading.  The Supermicro 
X5DPE-G2 motherboard has two gigabytes of main 
memory.  The four disk controllers are 3ware 8500 series, 
8-port, serial ATA cards.  The controllers perform raid5 
in hardware and have a peak write bandwidth of 
75MB/sec.  All four 3ware devices are striped into one 
logical unit with a peak write bandwidth of 300 MB/sec.  
The kernel is 2.4.21 based on Redhat Enterprise with 
quadrics support added.   

6.2. Test Results 

The first benchmark provides a baseline for each type 
of SLCN.  It tests the TCSIO throughput of raw quadrics, 
write, and read.  Figures 1 through 3 illustrate the 
performance of each SLCN type.  Each machine type has 
unique performance characteristics.  The type 1 SLCN is 
by far the best writer but is not the best reader.  The type 
2 nodes read very well but do not scale past two write 
streams.  Though the type 3 machine performs well at 
three and four raw quadrics streams, when data is written 
or read from the disk the performance greatly decreases.  
Filesystem throughput tests on the type 3 SLCNs have 
shown sequential write performance to be greater than 
250 MB/sec.  The subpar performance may be related to 
the 2.4.21 kernel or the disabled hyperthreading.  The 
issue requires further investigation.   

Demonstrating the effectiveness of SLASH’s 
distributed caching ability, the second set of benchmarks 
compares five uncached and cached read and write tests.  
In each case the number of 10GB data streams is doubled 
until sixteen is reached.  At no point did any lemieux 
node send more than a single data stream to SLASH.   

All operations functioned in the way described in 
Section 3.  Cached operations first communicated with 
the SLMD and then proceeded to direct incoming data to 
its local disk.  The SLMD ensures that this data is in fact 
part of the logical namespace.  Uncached operations were 
directed into the SLAR’s namespace via NFS.  
Arguments which dispute the performance of the SGI 
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Figure 1.  Raw Tcsio / QSW Performance 
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Figure 2.  Tcsio/Slash Write Bandwidth 
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Figure 3.  Tcsio/Slash Read Bandwidth 
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NFS server could be made but we had found each SLCN 
type to be capable of NFS read and write speeds in excess 
of 100MB/sec.  This is largely due to the excellent 
asynchronous NFS server implementation created be 
SGI.  The SLCNs and the SLAR are connected by 
switched gigabit Ethernet. 

Figures 4 and 5 contrast cached and non-cached read 
and writes.  The scaling of the SLASH caching system is 
illustrated here.  This test did not aim to show poor 
SLAR performance but rather to offer a basis of 
comparison with the cached operations.  Though the 
SLAR has 500MB/sec of disk bandwidth, this was not 
achieved largely due to the volume group’s concatenation 
scheme – which does not always allow disk operations to 
exploit all of the disk spindles.  At least half of the 
SLAR’s disks were used at any one time. 
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Figure 4.  Cached vs. Non-Cached Writes 
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Figure 5.  Cached vs. Non-Cached Reads 

 
Because of their mediocre performance, the type 3 

SLCNs were not used until the 16 stream test – the only 
test which used all six cache nodes.  Different from the 
first four tests, the 16 stream uploads used an unbalanced 
distribution to favor the type 1 SLCNs.  While this 
provided the best scaling it proved harmful during the 16 

stream read test.  Since the type 1 SLCNs were not 
superior readers, the overload of data there caused a 
lower aggregate bandwidth on the read test.  A better 
aggregate read number could have been achieved if the 
data layout in the cache had favored the type 2 SLCNs. 

7. Related Work 

The “dCache” [9] system, presented at MSST04 is 
functionally very similar to SLASH.  The creators of 
dCache have implemented several of the concepts 
discussed in this paper, such as separation of data from 
metadata, use of commodity hardware to form a 
distributed cache, system call intercept libraries, and 
integration with tertiary storage.  DCache is deployed in 
several locations serving large physics datasets. 

Lustre [10] is an object-based parallel filesystems used 
in several HPC environments.  Compared to SLASH, 
which is designed to function in an HPC hierarchical 
storage environment, Lustre is a more complex system 
which is aimed at serving different HPC areas.  For 
performance reasons, most Lustre modules run inside of 
the kernel, while SLASH is entirely usermode.  Lustre’s 
fault tolerance scheme requires storage devices to be 
shared.  Shared configurations likely increase the cost of 
the system.  The external metadata service is a key 
concept to the flexibility of the filesystem. This idea 
influenced the thoughts behind the design SLMD.  At 
this time Lustre does not handle offline data or file 
migration.   

The Storage Access Coordination System [5] was 
designed to optimize the retrieval of high-energy physics 
datasets from tertiary storage.  STACS utilizes 
sophisticated indexing schemes and request analysis in 
an attempt to limit the number of tape mounts needed to 
fulfill pending requests.  Systems such as STACS are 
needed to cope with the multidimensionality of HEP 
datasets which are being access simultaneously by many 
users [6].  Most large datasets in an environment such as 
PSC are checkpoints from large compute jobs which are 
needed to prime a user’s job.  Unlike HEP data, in most 
cases the entire checkpoint dataset needs to be read.  In 
the future when large SLASH requests are fed by the job 
schedulers we may be able to take advantage of several 
areas explored by STACS.      

8. Future work 

More effort needs to be focused on the pre-staging of 
files into the cache at the beckon of the job schedulers.  
Techniques explored in [8] could be applied in the 
archiver realm.  This would provide a powerful 
mechanism for managing the availability of space on the 
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parallel filesystems along with optimizing tape accesses.  
Other possibilities provided by object-based storage could 
be user specified access patterns, correlation of object-
identifiers which could be used for pre-caching, or 
functions such MD5 checksum.   

The scalability of the SLMD needs to be analyzed.  
The design of SLASH allows for the use of multiple 
SLMDs but this concept must be explored further.  If 
executed properly, the SLMD could be capable of 
handling billions of files without the use of a database.   
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