

Slash – The Scalable Lightweight Archival Storage Hierarchy

Paul Nowoczynski, Nathan Stone, Jason Sommerfield, Bryon Gill, J. Ray Scott
Pittsburgh Supercomputing Center

{pauln,nstone,jasons,bgill,scott}@psc.edu

Abstract*

Growing compute capacity coupled with advances in
parallel filesystem performance and stability mean that
HPC users will inevitably create and store larger
datasets. If data residing on parallel filesystems is not
efficiently offloaded to archival storage, disruptions in
the compute cycle will occur. Hierarchical storage
caches are a vital aspect of the HPC storage machine
because they offload and prime the compute engine’s
parallel filesystem. To keep pace with expanding HPC
data systems, these caches must adapt via new scalable
architectures.

 The Pittsburgh Supercomputing Center (PSC) has
developed a cooperative caching architecture to act as a
distributed front-end cache to a hierarchical storage
manager. SLASH, the Scalable Lightweight Archival
Storage Hierarchy, provides means for creating parallel
caching systems on an otherwise “monolithic” archival
storage system without requiring modifications the
archival system software.

1. Introduction

In the current realm of high-performance computing,
teraflop compute systems and gigabyte per second
parallel filesystems are becoming commonplace. As I/O
rates to parallel filesystems increase, users will inevitably
generate and store greater amounts of data. Efficient
data movement to and from tertiary storage systems is
crucial to proper management of parallel filesystems,
which direct-attach to specialized compute resources. To
support the growth of scientific datasets and capabilities
of parallel filesystems, archival storage must also be
given avenues for parallelism.

Traditional hierarchical storage managers consist of a
single symmetric multi-processor (SMP) attached to
some disks and an array of tape drives. The current
scalability barrier for large SMP machines (8 processors
or more) is that the cost per byte of I/O bandwidth is

much higher than that of smaller, distributed,
commodity-based architectures. While an SMP of this
category (>8 processors) is probably needed to run an
HSM managing several million files, the cost of scaling
these systems is very high while the ceiling for expansion
is relatively low.

Another disadvantage of most archival systems is that
they do not support the variety of interconnects that are
supported under linux, preventing the inclusion of the
archival system into the supercomputing network. The
motivation at PSC was to connect the “archiver” directly
to our Quadrics-based computational interconnect, taking
advantage of the high-bandwidth, remote DMA network
to provide an aggregate bandwidth that scales with the
number of machines on the network [2].

These factors demand a more modular expansion
route that makes use of commodity hardware and linux
drivers. PSC has developed a distributed caching system
called the "Scalable Lightweight Archival Storage
Hierarchy" - SLASH. SLASH enables the incorporation
of commodity hardware components into the standard
archiving scheme in a hardware layer external to the
traditional archiver SMP. SLASH accomplishes this by
logically extending the archiver’s internal namespace to
external caching nodes and performing out-of-band data
migration from the caches to the archiver SMP in a
coherent manner.

2. Design Goals

The primary goal of this project was to develop a
distributing caching system with flexible characteristics
without introducing fragile failure scenarios, static
interdependencies, or large complex management tasks
into the archiving system. The flexible characteristics
are defined as a set of capabilities that promote scalability
and ease of management.

2.1.1. Versatile Caching Facility
The distributed cache should have the ability to be

grown, shrunk, or disabled easily by the administrator.
This means that necessary system reconfigurations

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE

should not require system downtime or rearrangement of
cached data or system metadata. Caching elements that
leave the system should exit gracefully without causing
outages to the entire system.

2.1.2. Incorporation of Commodity Hardware
In contrast to building a large fiber channel SAN,

SLASH should make use of commodity storage,
commodity controllers, and relatively low-cost networks
like Gigabit Ethernet to build a scalable distributed
storage cluster.

Steering archival design toward networked, disk-based
systems [2] heeds popular arguments that tape-based
archiving is already obsolete with the advent of high-
volume, low-cost IDE-RAID disk solutions. Balancing
this trend is the fact that the comparative cost of raw
storage is still in the favor of tapes [1, 6]. By using
SLASH for distributed disk storage management and
archive integration, we are well situated to take
advantage of either storage media as these future trends
become present reality.

2.1.3. Caching System Operations are Transparent
Applications running on the caching nodes should

expect the same system behavior as if they were running
on the archiver SMP. Achieving the goal of transparency
requires that the filesystem API is upheld, preventing the
need for changes to applications. Transparency also
implies that each cache node will operate within the
same consistent namespace and have access to the most
recent data.

2.1.4. Cache Nodes Must Act Cooperatively
The primary function of SLASH is to provide read

caching support to the archiver SMP to minimize the
number tape mounts incurred during everyday use. The
most effective means of accomplishing this is to allow
caching nodes access to each other’s storage directly.

2.1.5. Interface with High Speed Interconnects
One method of optimizing data archiving is to place

archival interfaces on the supercomputer’s computational
interconnect. To do this device drivers must be available
for these archival systems. Most SMPs that operate
tertiary storage systems do not support interconnects
commonly found within HPC systems.

2.1.6. Single Metadata Image
Minimizing overhead is an explicit design goal for

this system. Overhead often comes in the form of extra
metadata management associated with the state and
location of files within the cache. While some solutions
employ databases for metadata management, SLASH was
designed without a need for databases, keeping

configuration and operational overhead low and
minimizing the metadata footprint.

3. Architecture

SLASH is based on a modular design that provides
abstractions allowing for distribution of HSM duties
across several nodes. The purpose of distribution is to
shift the disk and CPU load from the archiver SMP to
less expensive SLASH nodes. The archiver is still the
sole authority for offline data.

SLASH consists of three components: one or more
metadata servers, one or more data caching nodes and an
archiving node. The metadata service, SLMD, has three
primary duties: maintaining and exporting the logical
namespace, tracking cache status of files, and lock
management. The SLASH Cache Node, SLCN, is
responsible for handling data transfer applications, out-
of-band data migration, and management of its local
cache disk. The SLASH Archiver, or SLAR is
responsible for maintaining offline data. At PSC, the
SLAR is a Silicon Graphics machine running the “Data
Migration Facility” (DMF).

3.1. Logical Namespace Extension

SLASH facilitates access to a single namespace from
multiple nodes on a network. At this time, SLASH does
not have its own metadata export capability, but instead
relies on NFS to export the namespace from the SLMD to
the SLCNs. This is an appropriate choice because NFS
aptly performs the task, decreases development time, and
it is already required when the SLCN is operating in
“pass-through mode”.

Initial versions of SLASH exported the SLAR’s
namespace directly to the SLCNs, using the NFS mount
for namespace operations and as a target for migrating
data to the SLAR. More recent development has
abstracted the metadata and placed it on an external
server. To allow for multiple SLMDs and other
flexibilities, we chose to use an object-based scheme [4].
Indexing data with globally unique object identifiers
greatly simplifies namespace locking complexities
encountered in a system performing data migration into
filesystems imported from other nodes. These
complexities are largely caused by directory rename
operations occurring before migration of data from
SLCNs. Separation of data from metadata in
combination with an object naming scheme allows
namespace changes to occur completely independent of
the data management.

The SLMD is responsible for maintaining accurate
size, utimes, and permission information. Namespace

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE

query operations, such as “find” or “ls”, in general,
should not need to communicate with the SLCNs or
SLAR to obtain system metadata information. Only in
the case where newly uploaded data has not been
migrated will the SLCN be consulted for system metadata
information.

3.2. Metadata Management

Metadata internal to SLASH is stored in extended
metadata attributes within the metafile’s inode. This
eliminates the need for a separate database for storing
SLASH state. It would be possible to write other data
into the metafile but at this point, we have no reason to
do so.

The metadata naming scheme requires that files on
the SLMD can be directly accessed via their object
identifier, or FID, without traversing the user visible
namespace. This requirement exists because the SLCNs
are not aware of the file’s real path. Pushing namespace
state to the SLCNs causes severe complications when
renaming files and directories, especially when the SLCN
holds unmigrated data associated with the renamed
location. Providing direct access to data via the FID is
accomplished by hardlinking the SLMD “real” object to
one named after the FID. Similar to accessing a file via
its inode number, this simple technique allows certain
SLASH activities to access the metadata without
knowledge of the file’s path.

SLASH uses three of its own metadata items and one
system metadata item (modification time) to maintain the
coherency of the data system. Metadata is updated via a
simple remote procedure call system comprised of client
libraries on the SLCN and a server which runs on the
SLMD. The SLMD uses its own lock manager to verify
the atomicity of SLASH metadata modifications.

SLASH adds the following metadata items:

3.2.1. Object Identifier or “FID”
The FID is a string comprised of date information,

filesystem identification tag, and inode number. This
combination of items should guarantee unique identifier
creation with the SLASH system.

3.2.2. SLCN Identifier Array
This attribute is the list of SLCN_IDs which hold

valid cached copies of the respective object.

3.2.3. Migrated Tag
The migrated tag informs the system of the migration

status of the file. When set to false, it signifies that the
file has not been archived and only exists on the SLCN.

3.3. Client System Call Intercept Library

 All external requests into the namespace are
handled by applications running on the SLCNs.
Applications requesting I/O operations in the namespace
are intercepted and redirected through the client library.
The following calls are intercepted: open(), truncate(),
create(), close(), write(), and lstat(). Calls such as
opendir(), readdir(), rename(), etc. are handled by NFS
and ignored by the client library. SLASH clients operate
by inserting remote procedure calls into these system
calls which communicate with the SLMD on behalf of
the application.

3.3.1. Open and Create Protocol
“Open for writing” requests that the SLMD issues an

open() with the same options specified in the intercepted
open call. So, for example, if the application specified
(O_CREAT | O_TRUNC), the SLMD performs an open
on the specified pathname with the provided options. If
the server open is successful, then the file’s FID is
created and applied to the extended metadata attributes.
The SLCN identifier attribute is set to the SLCN_ID of
the requesting node. The FID and error code is returned
to the SLCN in the reply message. Using the FID as a
unique identifier within its local cache namespace, the
caching node opens a local file descriptor and returns it
to the application. The application behaves as though it
is operating in the global namespace, but in fact its
activity is being redirected to the local filesystem.

“Open for reading” operations, such as open() with
O_RDONLY, are also intercepted so that cache status can
first be determined. Again, the SLASH library inserts an
RPC which queries the SLMD for the cache location and
FID. The same operation occurs on behalf of lstat(). All
of the caching nodes function as entities in a cooperative
caching scheme. So if data is cached and accessible, it is
read and served directly from the local or remote cache.
In a situation where the data is not accessible, as in the
case of an SLCN failure, the requested data is
transparently read from the SLAR. While this may
require a tape mount, it frees the cache system from
having to maintain long-term replicated data for
redundancy and instead uses tertiary storage as a means
for redundancy [1]. At this point the file may be re-
cached while the requestor proceeds to access the data
directly from the SLAR.

Slash Cache Nodes do not modify each other’s local
caches, “open for reading and writing” operations, those
that do not specify O_TRUNC, are not optimal for
SLASH. The protocol for these is the same as that for
“open for reading”. If the SLCN_ID returned by the
SLMD is the equals the SLCN_ID of the requesting

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE

SLCN then the write operation may proceed as usual
utilizing the local cache disk. Otherwise, the request
must pass through directly to the SLAR via NFS and
modify the file there. Problems occur when the requested
file has not yet been migrated to the SLAR. In this
situation the request will block until the migration has
occurred. Though this issue would be disastrous for a
typical filesystem, the drawbacks within SLASH are
minimal because of the “get” and “put” nature of the
archiver. Some threaded data applications do use
techniques which require modifying writes but these
usually follow create/truncate operations, which presents
a less problematic case.

3.3.2. Write Protocol
The SLASH library’s procedures on behalf of write()

only begin after the first write call is issued. Depending
on the cache status of the respective file two things can
happen. If the file is cached on the SLCN, the slash
library notifies the SLMD, instructing it to set the
migrated tag to “false”, which signifies that the file needs
to be migrated. The SLCN creates a pointer to the
cached file which will be used in the migration phase. If
the file was being accessed directly on the SLAR then the
message instructs the SLMD to strike the SLCN
Identifier Array – removing any pointers to now invalid
cached copies. Should the remote procedure call fail the
I/O is aborted before any data is actually written.

3.3.3. Close Protocol

When a close is issued by the application, the
SLMD is requested to set the appropriate utimes on the
metadata file. In the case of close after write the filesize
is set on the SLMD and the SLCN schedules the file for
migration.

3.4. File Object Migration

The migration between the SLCNs and the SLAR is
very similar to the migration procedure in an archiver
where data moves between disk and tape. The fault
scenarios are similar as well. The state in which the data
exists only on the SLCN is a critical one. Even though
this new data is globally available for reading, only one
copy of the data exists until the migration is complete.
This fault scenario is similar to that of traditional
archivers in situations where the archiver filesystem fails
before the data is backed up to tape.

The procedure begins when the SLCN requests a file
object migration, the request may be either a put or get.
A connection is made to the SLAR’s migration server. If
the SLAR has an available migration token the node with

the file object is instructed to stream it. The migrating
file is streamed to a temporary location where upon
success is renamed to the FID. If the migration is
successful, the SLCN instructs the SLMD to mark the file
object’s extended attributes. An SLCN “put” transfer
requires that the migrated tag is set to true. After the
SLCN “get” transfer, the SLCN identifier array is
modified with the SLCN_ID.

Timely migration of data to and from the SLAR
should not impact the SLARs local disks in a way which
causes excessive disk thrashing. To deal with this
problem a load management system on the SLAR brokers
migrations from the SLCNs while taking into account
current tape activity.

4. Re-delegation of Archival Tasks

SLASH aims to lower the hardware cost of large
archival systems while providing avenues for expansion.
Shifting of archival workloads to cheaper satellite nodes
is the primary method of refocusing the archival
architecture away from the large SMP [2]. By
minimizing the workload of the large SMP we hopefully
can prolong the amount of time until an upgrade is
needed.

We’d like to reach a point where the archiver’s only
vital role is the management of tertiary storage. We’ve
identified several workload areas which are good
candidates for placement on lower cost nodes.

4.1. File Caching

Probably the most obvious task, file caching is
handled by the SLCNs instead of the local disk on the
SLAR. Shifting file caching to the SLCN provides
several advantages which have already been discussed in
Section 2. By enabling caching across a set of
cooperative machines, the capacity and bandwidth of the
cache can be expanded at a much lower cost than by
adding disk and network bandwidth to the archiver. The
larger cache inevitably lowers the number of tape mounts
needed to fulfill read requests.

4.2. User Data Movement Applications

Placing the users’ data tasks on the SLCNs is another
obvious method of task offloading. This is important
because it prevents excessive context switching across the
entire system. Load-balancing user requests across a
pool of SLCNs should be more efficient than directing all
requests to the SLAR, especially if the system is under
heavy duress from tape requests. In cases where

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE

encrypted data transfers are used it is preferred that the
tasks run on the cheaper SLCN processors.

4.3. Removal of Small Files From the Archiver
Managed Namespace

Many archivers are inundated with millions of small
files (< 1MB) [3], PSC’s archiver is no exception
Overwhelming numbers of small files can cause
headaches for system administrators because they lead to
excessive backup and restore times. The disk subsystems
connected to HPC data archivers are designed to handle
large sequential operations. Hence, the filesystem
blocksizes are generally large, creating an inefficient
scenario for small files. Under normal filesystem use, the
handling of small files will inevitably lead to filesystem
fragmentation. Shifting the management of small files to
archival software, such as DMF, can be wasteful due to
the database overhead needed to manage offline files.

These files, the bane of the archival systems, can be
managed more efficiently if moved from the SLAR’s
cache disk to other more suitable storage.

4.4. Exporting of Namespace

Moving namespace management to an external node
provides several means of load minimization. Since
SLASH uses NFS for namespace operations, having the
NFS server on a different node means that requests for
metadata will not interfere with the sequential I/O
operations taking place on the SLAR. In addition,
namespace queries can be fulfilled more rapidly since
there is less disk contention.

Shifting namespace responsibilities to an external
SLMD allows for SLASH to assume management of
small files as discussed in Section 4.1.3.

5. SLASH Storage Application – TCSIO

The “Terascale IO” system [7], developed at PSC, is
an object-oriented client-server toolkit. TCSIO provides a
client middleware library and the presence of I/O
daemons that run on each node where disk resources are
to be presented. The I/O daemons are conversant in
multiple transport protocols, including a reference
implementation in TCP/IP and an expansion to the
TCSCOMM library [7], which allows for transfers on the
Quadrics network fabric. The protocol for connecting to
an I/O daemon begins with a TCP/IP socket connection
and includes, among other things, a negotiation to the
highest performance protocol for bulk data transport.
Control data are always transmitted over the TCP/IP
connection.

Within the SLASH environment, TCSIO has been
tightly integrated with the SLASH client library. These
enhancements allow TCSIO to perform SLASH locator
RPCs to determine the location of cached files. The
cache location information is used in conjunction with
3rd party transfers to create a powerful “redirection”
mechanism for handling access to distributed data. Read
requests dispatched within TCSIO are seamlessly
redirected to the caching node which holds the relevant
data.

TCSIO client requests have built-in fail-over and
round-robin distribution capabilities for robustness and
parallelism. In the case of a node failure, TCSIO
contacts another eligible caching node to obtain the
requested data.

6. Benchmark Configuration and Results

We present several performance results for the
SLASH implementation currently in production at PSC.
The production version does not yet use an external
metadata server so only data throughput was tested. The
TCSIO system was used as the data transfer mechanism
and provided read request redirection. This means that
cached reads were served by the SLCN holding the data.
The hardware used was the quadrics-based
supercomputer, lemieux, six SLCNs, and a 12 processor
Silicon Graphics O-300 system (SLAR). To limit the
number of measured variables, no filesystems were used
on lemieux, /dev/null and /dev/zero were used instead.
The JFS filesystem was used on the SLCNs and XFS was
used on the SLAR.

6.1. SLCN Configuration

The SLCNs vary in system type though all are Xeon
based dual processors machines with four independent
PCI busses. At least one PCI bus in each SLCN was PCI-
X and was used for the quadrics card. The disk
subsystems were comprised of multiple 3ware cards or a
single dual-channel scsi card. Each SLCN type was not
equal in disk or network throughput. Of the six SLCNs
used for testing, two were of each type.

6.1.1. Type 1 SLCN

The type 1 SLCN is a dual processor 3.00 GHz 64-bit

Xeon processor with hyperthreading support enabled.
The machine has two gigabytes of main memory and uses
a Supermicro X6DHE-G2 motherboard. The disk
controller is a dual-channel LSI Logic card. The disks
are comprised of two 8-bay scsi shelves loaded with 7200
rpm parallel ATA disks. The shelves, responsible for data

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE

redundancy, do raid6 parity (6+2) in hardware. Both scsi
devices are striped into one logical unit with a peak write
bandwidth of 250 MB/sec. The linux kernel version is
2.6.7 with the ‘mm’ patch series and quadrics support.

6.1.2. Type 2 SLCN
The type 2 SLCN is also a dual processor Xeon but is

a 32-bit model running at 2.79 GHz. Hyperthreading
support is enabled here as well. Similar to type 1, this
machine has two gigabytes of main memory and uses a
Supermicro X5DPE-G2 motherboard. The disk
controllers are two 3ware 9500, 12-port, serial ATA
cards. The controllers perform raid5 in hardware and
have a peak write bandwidth of 125MB/sec. Both 3ware
devices are striped into one logical unit with a peak write
bandwidth of 250 MB/sec. Type 2 nodes use the same
kernel as type 1.

6.1.3. Type 3 SLCN
The type 3 SLCN is a dual processor, 32-bit, 2.66 GHz

Xeon with disabled hyperthreading. The Supermicro
X5DPE-G2 motherboard has two gigabytes of main
memory. The four disk controllers are 3ware 8500 series,
8-port, serial ATA cards. The controllers perform raid5
in hardware and have a peak write bandwidth of
75MB/sec. All four 3ware devices are striped into one
logical unit with a peak write bandwidth of 300 MB/sec.
The kernel is 2.4.21 based on Redhat Enterprise with
quadrics support added.

6.2. Test Results

The first benchmark provides a baseline for each type
of SLCN. It tests the TCSIO throughput of raw quadrics,
write, and read. Figures 1 through 3 illustrate the
performance of each SLCN type. Each machine type has
unique performance characteristics. The type 1 SLCN is
by far the best writer but is not the best reader. The type
2 nodes read very well but do not scale past two write
streams. Though the type 3 machine performs well at
three and four raw quadrics streams, when data is written
or read from the disk the performance greatly decreases.
Filesystem throughput tests on the type 3 SLCNs have
shown sequential write performance to be greater than
250 MB/sec. The subpar performance may be related to
the 2.4.21 kernel or the disabled hyperthreading. The
issue requires further investigation.

Demonstrating the effectiveness of SLASH’s
distributed caching ability, the second set of benchmarks
compares five uncached and cached read and write tests.
In each case the number of 10GB data streams is doubled
until sixteen is reached. At no point did any lemieux
node send more than a single data stream to SLASH.

All operations functioned in the way described in
Section 3. Cached operations first communicated with
the SLMD and then proceeded to direct incoming data to
its local disk. The SLMD ensures that this data is in fact
part of the logical namespace. Uncached operations were
directed into the SLAR’s namespace via NFS.
Arguments which dispute the performance of the SGI

0

50

100

150

200

250

300

350

1 2 3 4

Number of 10GB Streams

M
B

/s
ec

Type 1

Type 2

Type 3

Figure 1. Raw Tcsio / QSW Performance

0

50

100

150

200

250

1 2 3 4

Number of 10GB streams

M
B

/s
e

c T ype 1

T ype 2

T ype 3

Figure 2. Tcsio/Slash Write Bandwidth

0

50

100

150

200

250

1 2 3 4

Number of 10GB streams

M
B

/s
ec

T ype 1

T ype 2

T ype 3

Figure 3. Tcsio/Slash Read Bandwidth

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE

NFS server could be made but we had found each SLCN
type to be capable of NFS read and write speeds in excess
of 100MB/sec. This is largely due to the excellent
asynchronous NFS server implementation created be
SGI. The SLCNs and the SLAR are connected by
switched gigabit Ethernet.

Figures 4 and 5 contrast cached and non-cached read
and writes. The scaling of the SLASH caching system is
illustrated here. This test did not aim to show poor
SLAR performance but rather to offer a basis of
comparison with the cached operations. Though the
SLAR has 500MB/sec of disk bandwidth, this was not
achieved largely due to the volume group’s concatenation
scheme – which does not always allow disk operations to
exploit all of the disk spindles. At least half of the
SLAR’s disks were used at any one time.

0
100
200
300
400
500
600
700
800

1 2 4 8 16
Number of 10GB streams

M
B

/s
e

c NC Write

Cac Write

Figure 4. Cached vs. Non-Cached Writes

0

100

200

300

400

500

600

700

1 2 4 8 16
Number of 10GB streams

M
B

/s
e

c NC Read

Cac Read

Figure 5. Cached vs. Non-Cached Reads

Because of their mediocre performance, the type 3

SLCNs were not used until the 16 stream test – the only
test which used all six cache nodes. Different from the
first four tests, the 16 stream uploads used an unbalanced
distribution to favor the type 1 SLCNs. While this
provided the best scaling it proved harmful during the 16

stream read test. Since the type 1 SLCNs were not
superior readers, the overload of data there caused a
lower aggregate bandwidth on the read test. A better
aggregate read number could have been achieved if the
data layout in the cache had favored the type 2 SLCNs.

7. Related Work

The “dCache” [9] system, presented at MSST04 is
functionally very similar to SLASH. The creators of
dCache have implemented several of the concepts
discussed in this paper, such as separation of data from
metadata, use of commodity hardware to form a
distributed cache, system call intercept libraries, and
integration with tertiary storage. DCache is deployed in
several locations serving large physics datasets.

Lustre [10] is an object-based parallel filesystems used
in several HPC environments. Compared to SLASH,
which is designed to function in an HPC hierarchical
storage environment, Lustre is a more complex system
which is aimed at serving different HPC areas. For
performance reasons, most Lustre modules run inside of
the kernel, while SLASH is entirely usermode. Lustre’s
fault tolerance scheme requires storage devices to be
shared. Shared configurations likely increase the cost of
the system. The external metadata service is a key
concept to the flexibility of the filesystem. This idea
influenced the thoughts behind the design SLMD. At
this time Lustre does not handle offline data or file
migration.

The Storage Access Coordination System [5] was
designed to optimize the retrieval of high-energy physics
datasets from tertiary storage. STACS utilizes
sophisticated indexing schemes and request analysis in
an attempt to limit the number of tape mounts needed to
fulfill pending requests. Systems such as STACS are
needed to cope with the multidimensionality of HEP
datasets which are being access simultaneously by many
users [6]. Most large datasets in an environment such as
PSC are checkpoints from large compute jobs which are
needed to prime a user’s job. Unlike HEP data, in most
cases the entire checkpoint dataset needs to be read. In
the future when large SLASH requests are fed by the job
schedulers we may be able to take advantage of several
areas explored by STACS.

8. Future work

More effort needs to be focused on the pre-staging of
files into the cache at the beckon of the job schedulers.
Techniques explored in [8] could be applied in the
archiver realm. This would provide a powerful
mechanism for managing the availability of space on the

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE

parallel filesystems along with optimizing tape accesses.
Other possibilities provided by object-based storage could
be user specified access patterns, correlation of object-
identifiers which could be used for pre-caching, or
functions such MD5 checksum.

The scalability of the SLMD needs to be analyzed.
The design of SLASH allows for the use of multiple
SLMDs but this concept must be explored further. If
executed properly, the SLMD could be capable of
handling billions of files without the use of a database.

9. References

[1] B. Hillyer, A. Silbershatz, “Random I/O Scheduling
in Online Tertiary Storage Systems”, Proceedings
of the 1996 SIGMOD Conference, June 1996.

[2] T. Anderson, M. Dahlin, J Neefe, D. Patterson, D.
Roselli, R. Wang, “Serverless Network
Filesystems”, Proceedings from the SIGOPS ’95
Conference, December 1995.

[3] B. Sarnowska, T. Jones, “Architecture,
Implementation, and Deployment of a High
Performance High Capacity Resilient Mass Storage
Server”, Proceedings from the Eighteenth IEEE
Symposium on Mass Storage Systems and
Technologies, April 2001.

[4] M. Mesnier, G. Ganger, E. Reidel, “Object-Based
Storage”, IEEE Communications Magazine, August
2003.

[5] A. Shoshani, L. M. Bernardo, H. Nordberg, D.
Rotem, A. Sim, “Multidimensional Indexing and
Query Coordination for Tertiary Storage
Management”, Proceedings from the 11th
International Conference on Scientific and
Statistical Database Management, April 1999.

[6] L. M. Bernardo, A. Shoshani, A. Sim, H. Nordberg,
“Access Coordination of Tertiary Storage for High
Energy Physics Applications”, Proceedings from
the IEEE Symposium on Mass Storage Systems,
2000

[7] N. Stone, J. Kochmar, P. Nowoczynski, J. Scott, D.
Simmel, J. Sommerfield, C. Vizino, “Terascale I/O
Solutions”, Terascale Performance Analysis
Workshop (2003).

[8] R. H. Patterson, G. A. Gibson, E. Ginting, D.
Stodolsky, J. Zelenka, “Informed Prefetching and
Caching”, Proceedings of the 15th Symposium of
Operating Systems Principles, December 1995.
http://www.pdl.cmu.edu/PDL-FTP/TIP/SOSP15.pdf

[9] P. Fuhrmann, “dCache, the Commodity Cache”,
12th NASA Goddard, 21st IEEE
Conference on Mass Storage Systems and
Technologies, April 2004.

[10] Lustre, http://www.lustre.org

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE

