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Abstract*

Fault recovery has become an essential capability for
systems that process large data-intensive workloads.
Processor-embedded distributed storage architectures offload
user-level processing to the peripheral from the host
servers. Our earlier work investigated the performance
benefits of such architectures for disk- and MEMS-based
smart storage devices. In this paper, we focus on the issue
of fault recovery. We propose recovery schemes for TPC-H
based workloads, and evaluate several recovery scenarios
applicable to both disk- and MEMS-based smart storage
architectures.

1. Introduction

Apart from meeting the challenges of latency,
bandwidth and storage capacity, effective storage
architectures must also address the issue of reliability. For
optimal bandwidth and load balancing, data in a storage
system are usually partitioned across all storage nodes in
ways that exploit the access patterns of the target
workloads. While many methods exist in providing fault
recovery, the basic principles used by these methods are
similar. Existing fault tolerance methods enable a storage
system to withstand failures with minimal interruption of
processing; and the system is said to be operating in the
degraded mode.  This entails a real-time data recovery
method to be deployed to reconstruct the data lost in the
failed node; and the reconstructed data must be placed on
another spare node before the system returns to its normal
operation, when the failed node can be repaired or replaced
offline at a later time.

This paper proposes and evaluates data reconstruction
designs for distributed smart storage architectures. These
proposed designs are intended to balance the demand for
the best possible performance under the constraint of
required level of fault tolerance. To present our designs and
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Award DE-FC02-01ER25485; and conducted at the USCL Laboratory
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methodologies, Section 2 briefly reviews the work related
to smart storage architecture, and the background work for
fault recovery. In Section 3, we propose our data recovery
schemes. Section 4 explains the workloads and scenarios
for our evaluation. Section 5 presents our experiments as
well as simulation platform and model. Conclusions and
future work are discussed in Section 6.

2. Background

2.1. Redundant Array of Inexpensive Disks

To improve data bandwidth and reliability, RAID was
proposed in the mid-1980s for high storage performance
by clustering multiple disks to appear as a single and large
disk [6]. The methods of data striping and mirroring of
RAID provided techniques that are valuable to a distributed
storage environment. Configuration of a RAID also
depends on the characteristics of the workload, impacting
system size, data partition and data replication for fault
recovery. The primary objective of RAID is two-told:
fault recovery and data availability – for normal as well as
degraded operating modes of the storage system.

2.2. Processor-Embedded Smart Storage

Our previous work [2,3] proposed distributed disk- and
MEMS-based smart storage systems, and provided the
performance and processing models to evaluate their
potential benefits. Such a system takes advantage of the
increasing processing power on the storage device by
performing I/O-intensive operations directly at the device
and in parallel across multiple devices. This approach
helped reduce both the system and storage network traffic,
and offloaded the host processor, thus increasing the
aggregate system power and I/O bandwidth. The objectives
of the system are to: (1) maximize parallelism for data-
intensive portion of the workload, (2) use primitives for
resource availability, and (3) maximize (application-level)
code isolation at each smart storage node. Figure 1 depicts
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the high-level architectural design of the smart storage
system.  A disk-based smart node (SN) is also called a
smart disk (SD). Likewise, a disk-based smart storage
group (SSG) is also called a smart disk group (SDG). For
MEMS-based systems, the terms SM and SMG are used,
respectively.

Figure 1.   Smart storage architecture
with smart nodes (SN) organized into
multiple smart storage groups (SSG)
for disk- and MEMS-based systems o n
the InfiniBand [4] storage network.

2.3. Operations Bundling and Processing Model

The work in [5] proposed the “operations bundling”
technique to combine elementary database operations that
share common data dependencies.  For example, the Sort,
Group and Aggregate nodes executed consecutively in the
query plan depicted in the upper portion of Figure 2 can be
combined into a single “AggGrpSort” node (thus called a
bundle). This new execute node is semantically equivalent
(in SQL) to the original sequence of nodes, and can enable
the entire query to be processed with a higher efficiency.
For distributed storage architectures, operations bundling
is a logical approach to improve performance. With
software architecture specified in [2], processing model of
a smart storage system will be as illustrated in Figure 3,
using disk-based systems as an example. An application
inputs a query or executable code through the parser that
decides the input as either valid (and passes it to the
optimizer) or invalid (and passes it to the error handler).
The optimizer takes database catalogs and system
parameters as input, and constructs cost models to
optimize the query. In the case of executable code, only
the system parameters are used for code optimization. The
optimized query or code is then distributed to the SNs of
the involved SSGs, and execution commences. Processing

leading up to this stage is performed by the client (host)
before the control is handed to the designated SN within
each SSG. Upon completion, the system responds to the
user with the final results through the designated SNs.
The software architecture proposed in [2] provides an on-
device kernel (SD OS) to support the execution control,
data access, memory buffer management, signaling,
code/data recovery, etc. to facilitate this processing model.

Figure 2.   Two user queries showing
operations bundling in SQL syntax.

Figure 3.   Processing model for t h e
smart storage system for various DB
and non-DB workloads.
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2.4. MEMS-Based Storage Devices

MEMS are micron-sized devices fabricated from
photolithographic processes. Instead of using a rotating
spindle and dividing a disk into sectors, tracks and
cylinders, MEMS-based storage devices consist of a
moving rectangular media sled and an array of read/write
tips. The media sled is spring-mounted over the tips and
can be moved by actuators in the X, Y and Z directions.
While the system ”seeks” in the X direction and
reads/writes data in the Y direction, it also moves in the Z
direction to control the distance between the tips and the
media sled. For example, in Carnegie Mellon University’s
CHIPS [9] storage device, the MEMS-based system
contains an array of 80 x 80 tips with each tip accessing a
region of 2,500 x 2,500 bits. The characteristics of
MEMS-based storage necessitate re-evaluation of several
design issues, including data layout and I/O scheduling.

2.5. TPC-H Benchmark

Developed by the Transaction Processing Performance
Council, The TPC-H benchmark [8] consists of a suite of
ad-hoc queries as well as concurrent data modifications.
The queries and data populating the databases have been
designed to represent decision support systems (DSS) that
manipulate large data sets and execute complex queries.
The performance metric used by TPC-H reflects a DSS’s
processing power and query throughput. Each TPC-H
query is composed of basic database operations such as
scan, sort, join, group-by, aggregate; and may also include
data re-distribution functions such as hash. The queries
together cover both intra- and inter-SDG communication
and data filtering in their access patterns.

3. Proposed Data Recovery Schemes

3.1. Mirror Scheme with Spare Storage

Using disk-based SN (i.e. the SD) and SSG (i.e. the
SDG) as an example, Figure 4 proposes our first scheme.
SDG A holds row-wise data and SDG B, its mirror, holds
the column-wise data, on their SDs: D0, D1, D2 and D3.
Each SDG processes its respective application, application
A and application B, each with different I/O access
patterns. The fault condition occurs when D1 of SDG A
malfunctions midstream during processing. To recover the
data 1-5-9-13 originally held by D1 onto disk Sp of SDG
A, a parallel read of D0, D1, D2 and D3 of SDG B is
performed. The recovered Sp then joins with D0, D2 and
D3 of SDG A to resume the processing.

Figure 4.  Mirror recovery scheme with
dedicated spare storage in SDG A.

3.2. Mirror Scheme with Load Migration

In this scheme, the workload (application code only) is
migrated from SDG A to SDG B, and both applications
are processed on SDG B after the recovery. Since SDG B
holds the needed data already, fault recovery operation
overhead is reasonably reduced. However, overall system
performance will be negatively impacted since: (1) SDG B
must now process both workloads, and (2) the migrated
workload on SDG B can no longer exploit the data access
pattern provided by SDG A for maximum bandwidth and
I/O throughput.

3.3. Mirror Scheme with Load Re-distribution

For large data-intensive applications, e.g. scientific
simulations or DSS databases, it is common to perform
data dumps or backups of intermediate results. Check-
pointing stores the results produced from the intermediate
steps to enable the processing to resume without complete
restarts. In Figure 5, SDG A mirrors the intermediate
results to SDG B. Then, D1 of SDG A fails during an
intermediate step. The most recent check-pointed data are
distributed between the remaining SDs, and the processing
of application A is continued. The objective is to amortize
the cost of load re-distribution with all available SDs in
post-recovery processing.
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Figure 5.  Mirror recovery scheme with
load re-distribution.

3.4. Parity Scheme with Single Parity Device

Figure 6 shows a scheme based on the level 4 RAID
[6] configuration by providing block-level data striping
with a dedicated parity SD. The Figure contrasts the
scheme with that of a centralized I/O server, using a 100-
block I/O request as an example. When a SD fails, data
recovery is performed by XORing the last check-pointed
data on the remaining SDs with those on the parity disk,
e.g. SD P for the SDG.

4. Workloads and Scenarios

We used the following tasks as our workloads: the
database Scan and TPC-H Q1. Again, using disk-based
systems as examples, scenario 0 for each workload
represents normal mode of operation, and was used as the
basis for comparison with the other recovery scenarios.

4.1. Scenarios 0, 1 and 2 for the Scan Workload

In scenario 0, a Scan (i.e. SQL SELECT) operation is
performed to select tuples from the input table, and is
allowed to complete without disruption, denoting the
normal operation of the Scan. Scenario 1 simulates the
same Scan operation, except that a fault is induced on one
of the SDs within the main SDG. To recover the data lost

in the failed SD, data (the original partition of the input
table) are sent from its mirroring SDG to the spare SD
within the main SDG. Then the operation is resumed
from the beginning. For scenario 2, a dedicated “parity”
SD is used to reconstruct the lost data, as discussed in
Section 3.4.

Figure 6.  Parity-based scheme with a
100-block I/O request.

4.2. Considerations for the TPC-H Q1 Workload

TPC-H Q1 can be processed with the following query
plan: Scan→Sort→Group-by+Aggregate+LocalSort,
where Group-by+Aggregate+LocalSort represents an
“operations bundle”. While the scenarios for Q1 are similar
to those for Scan, they are more complex due to the
multiple primitives (nodes) involved. Our Q1 scenarios
incorporate the design to update the mirror (or parity)
SDG with intermediate results at the granularity of a
primitive. Hence post-recovery processing need only be
backtracked by one primitive (or one operations bundle).

4.3. Scenarios 0, 1, 2, 3 and 4 for the TPC-H Q1
Workload

In scenario 0, the processing of Q1 is to be completed
without interruption. Scenario 1 assumes that the main
SDG, i.e. the SDG that is performing the Q1 query, has a
spare SD. Processing of Q1 continues through Scan and
Sort, then a fault condition occurs just before the Group-
by+Aggregate+LocalSort is to commence. The lost data is
recovered by sending the data from the mirror to the spare
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SD node. Post-recovery processing resumes with Group-
by+Aggregate+LocalSort within the main SDG. Note that
unlike the scenarios for Scan, only the most recent check-
pointed data are required to be sent during data recovery for
these scenarios, not the original input data.

For scenario 2, the remaining processing load is
migrated to the mirroring SDG after one of the SDs in the
main SDG faults. Note that only code is needed because
the mirroring SDG already has the intermediate results
from the last check point. The mirroring SDG will also
be responsible for completing the processing. Scenario 3
attempts to evaluate the tradeoffs of having all but the
faulted SD participate in post-recovery processing. As the
fault condition is induced, the check-pointed data are re-
distributed onto the SDs across both the main SDG and
the mirroring SDG, except for the failed SD. The
processing of Q1 then resumes with all the remaining SDs
from both SDG A and SDG B until completion.

Scenario 4 for parity-based recovery scheme works as
follows. After Scan is executed, parity blocks are built and
stored onto the parity SD. Likewise, new parity blocks are
built and stored after Sort is completed. Hence, when the
fault condition occurs, the lost data on the failed SD are
reconstructed using last check-pointed data from the
remaining SDs and the parity SD. The post-recovery
processing is similar to the other scenarios. Note that this
scenario also assumes the existence of a spare SD to hold
the reconstructed data for post-recovery processing.

5. Experiments and Simulation Model

We evaluate the recovery schemes for both disk- and
MEMS-based systems using the workloads and scenarios
discussed in Section 4. Our platform consists of 9
Pentium III Linux PCs running at 500 MHz, each with 9
GB of disk space; and the PCs are interconnected via fast
Ethernet. A 64-MB maximum on-device memory has been
configured for our simulation environment. We used the
TPC-H database generator [8] to populate synthetic data
into input tables with scale factor of 1.0, denoting a 1-GB
size for the input data (i.e. the Lineitem table).

5.1. Simulation Environment and Structure

A simulation environment was developed to simulate
computation, communication and I/O behaviors of our
system. The environment employs the DiskSim 3.0 [1]
storage simulator to estimate the cost of accessing storage
devices, and is programmed to include the algorithms and
data needed to process the given workloads. Message-
passing interface (MPI) was used for data and signal
communication during processing. Figure 7 depicts the

simulation structure for a single SN, where processes
representing the on-device embedded processor, storage
controller, DMA engine and storage mechanism interact
with one another to service the requests by a workload.
The Figure also shows two DiskSim validated device
models for MEMS and disks, which are used to obtain
accurate I/O access times for the respective devices during
our simulations.

5.2. Disk- and MEMS-based Device Models

A validated DiskSim module for the HP C2490A hard
disk is used for our comparison between MEMS-based and
disk-based active storage devices, and the performance
characteristics of HP C2490A disk are as specified in [3].
The device-level models for our MEMS-based storage are
from those described in [3] and [7]. Of the three MEMS-
based storage devices G1, G2 and G3, the G3 device
represents the most advanced device with a 1000 Kb/s data
rate and a maximum throughput at 320 MB/s. These
MEMS devices have been shown to exhibit a significantly
higher I/O performance than disks in device-level
simulations, and we are interested in their impact at the
system level as well. Table 1 specifies the essential
parameters for the MEMS-based storage devices as in [7].

Figure 7.  DiskSim simulation model.

5 .2 .1 .  The DiskSim Storage Simulator

Developed by G. Ganger et al. originally at the
University of Michigan, DiskSim includes modules that
simulate disks, controllers, buses, device drivers, request
schedulers, disk block caches, and disk array data layouts;
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and has been accurately validated against several
production disks. DiskSim also included accurate MEMS-
based storage device modules. Together with its disk drive
modules, DiskSim was used as the comparison platform
for disk- and MEMS-based storage systems investigated in
this paper, and our previous work in [2] and [3].

Table 1. Parameters for three types o f
MEMS-based storage devices

Parameter G1 G2 G3
 Bit width (nm) 50 40 30

sled acceleration (g) 70 82 105
access speed (Kbits/s) 400 700 1000
X settling time (ms) 0.431 0.215 0.144
total number of tips 6400 6400 6400

number of active tips 640 1280 3200
max throughput (MB/s) 25.6 89.6 320
Number of media sleds 1 1 1
per-sled capacity (GB) 2.56 4.00 7.11
bi-directional access no yes yes

5.3. Recovery on Disk-based Storage Systems

Figure 8 shows the execution times for the three
scenarios for Scan. It is noted that while the parity-based
scheme (scenario 2) required a smaller system size as
compared to the mirroring scheme (5 vs. 9 total number
of SDs), it incurred a higher recovery time due to the I/O
cost associated with building and re-constructing data
using parity blocks. This parity-based recovery scheme
also incurred a higher data communication cost due to the
bottleneck at the single parity device.

Scan Scenarios 0, 1 and 2 for HP C2490A Disk-based Systems, SF=1.0
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Figure 8.  Scenarios for Scan on disk-
based storage at scale factor 1.0.

Figure 9 presents the execution times for the scenarios
evaluated for TPC-H Q1. Most noticeable is the
communication cost for scenario 3, where load re-
distribution is performed after the fault. Group-by I/O, the
dominant component of post-recovery processing, is
reduced by approximately 75% to 80% in scenario 3 when
compared to the other scenarios. However, such saving
was overwhelmed by the communication cost of workload
re-distribution, which was exacerbated by the serialization
of I/O requests by the SCSI protocol implemented for our
platform. These results suggest strongly for non-blocking
switched interconnects, such as InfiniBand.

TPC-H Q1 Scenarios 0, 1, 2, 3 and 4 for HP C2490A Disk-based Systems, SF=1.0
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Figure 9.  Scenarios for TPC-H Q 1 o n
disk-based systems at scale factor 1.0.

5.4. Recovery on MEMS-based Storage Systems

Figure 10 presents the execution times for scenarios 0,
1 and 2 for the Scan on G3 MEMS-based systems. Note
the diminishing I/O dominance with scenario 2, instead
the communication cost attributed to building and using
the parity blocks took over as the dominant component
due to the reduced I/O cost by the MEMS devices.

Scan Scenarios 0, 1 and 2 for G3 MEMS-based Systems, SF=1.0
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Figure 11 continues with the trends as we observed in
Figure 9, i.e. the dominating communication component
attributed to the load re-distribution phase of scenario 3.
This suggests that to fully benefit from the post-recovery
load re-distribution design, a low-latency high-bandwidth
interconnect is essential. On the other hand, scenario 2
incurred the least overall execution time, since the scheme
only required the code to be migrated to the mirroring
SDG. For data-intensive workloads such as Scan and Q1,
the benefit of this approach is significant. As the
underlying storage devices shifted from slower disk-based
devices to faster MEMS-based devices, scenario 1 became
increasingly attractive. This is because in scenario 1 only
one mirroring SD is involved in recovery and no
mirroring SD is needed in post-recovery processing,
whereas in scenario 2 all the mirroring SDs are involved
in post-recovery processing. Should the mirroring SDG be
also processing another workload simultaneously, its
performance will be worse as that workload will be
contending for the same SDG resources.

TPC-H Q1 Scenarios 0, 1, 2, 3 and 4 for G3 MEMS-based Systems, SF=1.0
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Figure 11.  Scenarios for TPC-H Q 1 o n
MEMS-based (G3) storage systems at
scale factor 1.0.

5.5. Additional Design Considerations

The fault tolerance schemes evaluated in this work
must also be considered from the performance perspective
of processor-embedded distributed storage, the hardware and
software architectures of which were investigated in details
in [2] and [3]. With new and emerging storage and
interconnect technologies such as InfiniBand and MEMS,
the offloading of application-level code to the storage
device is becoming attractive and feasible. Ultimately this
could result in advanced computation-storage integration
becoming a viable alternative when configuring high-
performance computing systems.

Figure 12 shows a higher scalability limit after an
original system is changed by employing additional or
new hardware, e.g. from disks to MEMS-based storage.
The upgraded system can now handle a larger throughput,
and still maintain the same acceptable execution time. A
new improved limit is reached at the intersection between
the new curve and the acceptable execution time line.
Such consideration applies to both performance as well as
reliability issues.

Figure 12.   Throughput vs. execution
time before and after device changes.

6. Conclusions and Future Work

For storage systems that process large data-intensive
workloads, having effective and scalable fault tolerance
capabilities is no less critical than high processing power
and throughput. Furthermore, to be able to continue
processing after a fault condition occurs is of significant
importance, especially for workloads that require a
tremendous amount of time to process, and would be
inefficient to be resumed from the beginning each time a
system fault occurs. In this paper, we presented several
preliminary designs for fault recovery from the perspective
of a distributed processor-embedded storage system, using
I/O-intensive workloads.

This paper also suggests the need to exploit emerging
storage technologies, such as MEMS, to cope with the
performance issues that arise during the processing of I/O-
intensive applications. We found it necessary to balance
the tradeoffs among various fault recovery schemes.
Schemes proposed in this work, when coupled with
appropriate middleware, can be extended to computational
or storage grids to further improve data access,
management and analysis. We plan to investigate the
impact of novel interconnect protocols, combined with
emerging storage device designs, both at the device level
and the memory system level (i.e. memory organization),
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in the near future. While our investigation was conducted
based on simulation, due largely to the unavailability of
MEMS-based storage devices at the present time, it will
be desirable to construct a hardware platform with the
components discussed in this paper. Construction of the
individual smart nodes (SN) along with their InfiniBand-
based I/O interconnects should provide our future studies
in active storage with further improved precision.
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