

Mass Storage System Performance Prediction Using a Trace-Driven Simulator

 Bill Anderson
National Center for Atmospheric Research (NCAR)*

Boulder, CO 80305
andersnb@ucar.edu

Abstract*

Performance prediction of Mass Storage Systems can
be difficult because of the complexity of the systems and
the interdependence of the components. This difficulty
can lead to over or under provisioned systems and can
limit the ability to identify software algorithms (such as
cache management or request ordering algorithms) that
scale well and yield high performance. Moreover, as
Mass Storage Systems scale to a petabyte and beyond,
the ability to predict performance could become
increasingly important since errors in capacity planning
could also grow.

This paper discusses a trace-driven discrete event
simulator that we have developed to aid us in ranking
design and configuration alternatives. The simulator
reads in a configuration file, ingests a workload and
estimates multiple metrics, including average user
response times, cache hit ratios and device utilization.
Simulated components include tape drives, disk systems
and software components.

The simulator has been used to help us determine the
size of a disk cache that is used to offload reads from
tapes; we found that, for files with sizes under 50 MB, a
cache size of around 8 TB can provide a read hit ratio of
approximately 67%. The simulator has also been used
to estimate the number of STK 9940B tape drives
needed to replace our 9840A and 9940A drives. Based
on validation runs, we have found that metrics predicted
by the simulator are within approximately 20% of the
actual values.

1. Introduction

Mass Storage Systems are complex with many
interdependent components and configuring and tuning
them can be challenging[1]. NCAR’s Mass Storage

* The National Center for Atmospheric Research is sponsored by

the National Science Foundation and operated by the University
Corporation for Atmospheric Research.

System (MSS) currently holds 2 PB of total data in a
little over 24 million bitfiles. The MSS processes over
1.2 million user reads and writes each month plus a
similar number of reads and writes for internal data
migration. Given the complexity of the workload and of
the system itself, we have found that predicting the
performance of the system in response to configuration
changes can be difficult. For example, while we can
measure the current read hit ratio of a disk cache, it can
be hard to estimate if a larger disk cache will lead to a
commensurate increase in the hit ratio or if a smaller
cache would provide the same hit ratio. Another
example would be to estimate how average user
response time (calculated as the time from when a user
initiates a file transfer to when the transfer is completed)
varies as a function of number of tape drives in the
system. Would more tape drives improve user response
time significantly?

One way to determine the effect of a configuration
change is to make the change and then track the system
performance. However, that approach can be expensive
with an operational MSS, may bring no substantial
improvement to the system and can require months of
tracking the system performance to assess what effect
the change had. Also, the workload might change during
that time and it might be difficult to know if the
resulting changes in performance were due to the
system configuration changes or to workload changes.

Analytic models (e.g., those based on queueing
theory) are another option for estimating the effect of
configuration changes on performance. Most of these
models require many simplifications and assumptions
about the workload and system behavior, however,
limiting their accuracy[2].

To aid us in ranking design and configuration
alternatives, we developed a trace-driven discrete event
performance simulator of our MSS. A simulator allows
us to model the MSS system more accurately than
analytic approaches and provides a framework to
experiment with different configurations without having
to procure or test hardware and make possibly
disruptive changes to our production system. However,

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE

all approaches to performance analysis and modeling
have their weaknesses. While simulation modeling
offers the ability to model the system more accurately, it
also usually requires more time to develop a simulation
than to develop an analytic model. Our simulation
required approximately 1.5 person years to develop. The
investment appears to be commensurate with the
benefits, however.

We have used the simulator to help us in sizing a disk
cache to offload reads from tape and choosing disk
cache management policies. The simulator predicted
that a read hit ratio in the range of 65-68% was
attainable with a modest sized cache; beyond that,
greater cache sizes resulted in small gains in the read hit
ratio. Based in part on those simulator results, we chose
a cache configuration that the simulator predicted would
result in a read hit ratio of 67%. After the cache was put
into production, the actual average hit ratio from
February 2004 to July 2004 has been 65.6%, although it
does fluctuate from month to month as the workload
fluctuates.

The next section describes some related work and
Section 3 provides more details about the simulator.
Section 4 describes some results from the disk cache
study, section 5 describes some results from a tape drive
and disk cache study, section 6 describes some
limitations of the simulator and our conclusion and
summary are presented in section 7.

2. Related Work

Simulations and analytic models have been used to

improve and understand the performance of computer
systems and subsystems for decades. Detailed
simulators have been developed for disk subsystems
(e.g., the Pantheon disk subsystem simulator [3] and the
DiskSim disk subsystem simulator [4]) and for tape
libraries (e.g., [5]). In addition to subsystem-specific
work, simulation and analytic models of Mass Storage
Systems have also been developed (e.g., [6] and [7]).

Our work builds on this past work and extends it in a
couple of ways. First, our simulator incorporates all the
major hardware and software components of our MSS
rather than focusing on a subsystem. Simulators that
focus on a specific subsystem and that do not model the
other subsystems may not be able to estimate the net
effect of system changes on global metrics such as mean
user response time. Achieving high performance in one
subsystem may not result in high performance for the
system as a whole since another component could be the
bottleneck.

Second, our work extends the previous simulation
and analytic models of Mass Storage Systems that we
are aware of by increasing the accuracy of the results.

For example, the workload of our simulator is based on
traces of actual user activity that capture the detailed
workload patterns more accurately than analytic models
can and than previous simulators that we are aware of
have. Also, our simulator models the behavior of the
major software components in detail. The software used
to control Mass Storage Systems can be complex with
many algorithms that affect the performance of the
system. By modeling these components in detail, we can
also estimate their effect on performance.

3. Simulator Description

This section gives a high-level overview of the type
of simulator and its development environment. It then
provides a synopsis of the NCAR MSS, how the NCAR
MSS was simulated and how the simulator was
validated.

3.1. Simulator Type and Development
Environment

The simulator we developed is a discrete-event
simulator, which means the primary state variables of
the simulator (such as number of jobs in the system)
take on discrete values. The workload used to drive
simulators is usually either internally generated by the
simulator using random number generators or based on
traces. Traces are usually derived from an actual
workload on a system. Since we had traces of all user
read and write events in our MSS logs, we used a trace-
driven approach. The traces of the user reads and writes
over time periods of a month or more are ingested by
the simulator and used as the workload for the simulated
system. For a good overview of simulation modeling,
see [2] and its references.

There are numerous simulation languages and
packages available both commercially and freely. For
certain domains, such as telephone call centers and
factory assembly lines, there are packages that can be
easily tailored to model those systems and that would
save substantial time over developing a simulation from
scratch using a general purpose language. However, we
were not able to find an equivalent package for Mass
Storage Systems. After researching several languages
and packages, we decided to use Java along with a
package called JavaSim[8]. This combination resulted in
a nice environment for creating a detailed simulation of
our system using a contemporary, generally available
language.

The development environment is similar to the one
provided by the SIMULA language [9], but is a more

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE

readily available development environment. The
simulation approach that this environment provides is
generally referred to in simulation terminology as a
process-oriented approach (in contrast to an event-
oriented approach).

All components of the simulator are Java objects.
Additionally, each component of the simulator that
performs time dependent operations is also a Java thread
(a runnable or active object) and the simulator
management software controls the activity of the
threads. For example, a tape silo takes time to transfer a
tape from a cell to a drive, so each silo is modeled using
a thread. In contrast, a component that does not have
operations that require simulated time to perform is also
an object, but not a thread. For example, there are Java
classes to represent tape media. A medium has attributes
such as capacity and type; however, the medium
component itself does not simulate the passage of time.
Below is an example that provides an overview of how
the passage of time is simulated using threads.

Consider a single silo that receives requests to mount
and dismount tapes as shown in Figure 1.

Figure 1. Logical View of a Silo

Assume the silo is idle. At that point the silo thread
is in a suspended state. Then, a mount request arrives in
the silo queue. The silo thread is resumed at that point,
detects that it has a mount request, starts processing it
and then estimates how long it would take for a real silo
to mount the tape. In our current version of the
simulator, it obtains this estimate by looking in a table
of constant values. Suppose the estimate is 4.5 seconds.
The silo thread then makes a function call to the
simulator management software telling it to suspend it
and then to resume it after 4.5 simulated seconds have
elapsed. The simulator management software suspends
the silo thread at that point. When 4.5 seconds pass on
the simulator clock, the simulator management software
resumes the silo thread. The silo thread starts running
and sees that it has finished mounting the tape. It
updates internal data structures as necessary and then
requests that it be suspended until the next mount or

dismount request arrives. The passage of time is
simulated for the silo by suspending and resuming the
thread. The passage of time is simulated for the other
components in the same way. Note that while the
program has many threads, only one thread is running at
a time. The threads are used as a way to maintain state
and to simulate the passage of time for components and
not for parallel processing.

3.2. Simulating the NCAR MSS

The NCAR MSS uses an rcp (remote copy) approach
where users transfer complete files from the MSS to
client filesystems and from client filesystems to the
MSS; it roughly follows the IEEE MSS Reference
Model [10]. Figure 2 is a high level logical diagram of
the NCAR MSS.

Figure 2. Logical Diagram of NCAR MSS

The key hardware components are the client systems,
the high-speed data paths and switches, the storage
devices (disk arrays, tape drives), tape media, the tape
libraries and the Mass Store Control Processor (which
runs some of the software that manages the MSS). This
hardware is managed and controlled by numerous
software components.

The first step in modeling a component (hardware or
software) was to develop a conceptual model by
identifying the important operations for that component
and determining how any time delays associated with
the operations would be modeled. Once a conceptual
model was built, the model for that component was
implemented in the simulator software. The important
operations that a component performs were identified
from multiple sources, including other NCAR group
members for in-house developed software components
and vendors for hardware devices. Fortunately, many
operations often can be ignored (e.g., error recovery
from infrequently occurring errors that are known to
have a minimal impact on system performance). We

M d

silo

mount and dismount requests

queue

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE

modeled our components with the least amount of detail
that we thought would be consistent with the desired
accuracy, knowing that we could add more detail later if
we needed to improve the accuracy.

Once the key operations of a component were
identified and conceptually modeled, the time delays
associated with the operations were modeled. Examples
of delays include the time to mount a tape and the time
to position a tape for reading. We modeled delays in two
different ways, depending on the operation being
simulated.

The first approach was a deterministic approach that
was used where we could accurately calculate the delay
for an operation at any given point in time based on the
state of the system or when the delay value is known to
have a small effect on performance. In general, this
calculation could be a function of any of the simulator
state variables. In practice, for our system, this function
is usually a constant value since the time to perform
some operations is actually constant or nearly constant.
For example, the time to load a particular type of tape
on a particular type of tape drive is very close to a
constant value that can be measured or obtained from a
vendor.

The second approach was a probabilistic approach.
Some delays may be too difficult to determine
accurately at a given point in time and may have a
relatively large effect on performance. In those cases, a
probability distribution can be useful. For example, the
time to position a tape varies quite a bit and can be a
relatively long time. If one modeled the position of files
on a tape, the position time could be calculated
deterministically. However, we did not want to model
the system at that low level of detail. Instead, we use a
probability distribution to model those delays. Other
delays in the system are also modeled using probability
distributions. The probability distributions that we use at
this point are empirically derived from system logs. We
do not use the analytic distributions (e.g., exponential)
since our empirically derived ones appeared to capture
the behavior more accurately. Below is a description of
how the major delay parameters in the simulator
components are modeled.

Software Delays in executing software (for example,

updating a database entry) were modeled using constant
values. When simulating our current actual system, the
constant values were obtained from measurements.

Tape library Delays for tape mounts, dismounts and
pass-throughs (to other libraries) were modeled using
constant values. When simulating our current actual
system, the values were obtained from the vendor.

Tape drive Delays for tape loads and unloads were
modeled using constant values and, when simulating our
current actual system, the values used were obtained

from the vendor and measurements. Tape read
positioning and data transfer delays were modeled using
probability distributions. When simulating our current
actual system, the distributions were derived from
measurements and log records. However, for older tape
drives where log records did not contain positioning or
transfer time information and for other positioning
times, constant average values were used.

Disk subsystem Delays for data transfer were
modeled using probability distributions that were
created from measurements and log records.

Job arrivals Delays between user job arrivals were
calculated from the traces of user read and write events.

Delay parameters for a simulator run are specified in

a primitive ASCII configuration file along with other
parameters for a run such as the number of tape drives
of each type to use, size of disk caches, and internal
migration parameters. The configuration file makes it
fairly easy to simulate different configurations.
However, to simulate an entirely different Mass Storage
System, we would need to replace the code in the
simulator that simulates the behavior of the NCAR MSS
software components with code that simulates the
behavior of the other MSS software components. The
workload for the simulator, as stated earlier, is derived
from the actual MSS logs. The simulator is run on an
IBM Power4 host and takes about 8 wall clock hours
and 2 GB of memory to simulate 1 month’s worth of
MSS activity. Figure 3 shows a high level view of how
the simulator operates.

Figure 3. Simulator Operation

3.3. Simulator Validation

Validation is an important part of the simulator
project. By validation, we mean checking that the
simulator predictions closely match what would be
observed with a real system. All components of the
simulator were individually validated and the simulator
as a whole was also validated. Dozens of validation runs

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE

were performed for simplified cases where exact
answers are known. For example, we created simple
workloads that contained only a few data transfer
requests where we could calculate by hand the exact
response times, device utilizations, etc. and compare the
calculated values with the values generated by the
simulator.

Validation runs were also performed for cases where
the simulator was configured like the real MSS during
some time period (e.g., same number of tape drives,
same disk cache parameters, etc.). We used the trace of
user read and write events from that same time period
(usually a month long time period) to drive the
simulator and we compared the results from the
simulator with the actual results from the MSS for that
time period. Based on the comparison, we would add
more detail to one or more components to improve the
accuracy of the simulator. Validation is definitely an on-
going process and would be a part of any study that uses
the simulator.

While our initial goal was to have enough detail so
that all the metrics predicted by the simulator would be
within 10% of the actual values, we found that it would
require too much detail (and time) to reach that level of
accuracy so we currently only attain an accuracy of
20%. Table 1 shows some validation results comparing
simulator predicted values with the actual values for the
month of July 2004. The workload used to drive the
simulator was from the actual workload in June and July
of 2004. So that the cache would be in steady state when
the simulator statistics were collected, the simulator was
driven with the two-month workload June-July. Once
the June workload had been ingested, the statistics were
reset so that they cover the one month July time period.

4. Disk Cache Study

One of the ways we used the simulator was to help
us estimate the read hit ratios we would obtain with an
expanded disk cache. Initially we had a small 180 GB
disk cache and we allowed files with sizes up to 15 MB
in the cache. One of the purposes of the cache is to
handle reads that would otherwise have to come from
tapes. The cache can be especially beneficial for reads
of small files since the effective transfer rate (file size
divided by the total time to read the file) of a small file
from tape can be very low due to the time it takes to
mount, load and position a tape.

When a user writes a file to the MSS, if the file’s size
is less than the maximum size allowed in the cache and
its class of service parameters match the cache criteria

Table 1: Validation Results for July 2004

Metric Actual
value

Simulator
predicted

value

Relative
error (%)

Disk cache
read hit
ratio (%) 66 66 0.0
Number of
tape
mounts 160,984 162,291 0.8
Mean
overall user
response
time (s) 97 81 16.5
Mean write
user
response
time (s) 105 84 20.0
Mean read
user
response
time (s) 85 77 9.4

(e.g., the file is not identified as a backup file that is
unlikely to be read), it is written directly to disk. Files
with sizes bigger than the maximum size or with class
of service values that do not match the cache criteria are
written directly to tape. Files are aged off of the cache to
tape based on an LRU (least recently used) algorithm
during a migration cycle that usually takes place once a
day. Files that do not have a copy on disk, but that are
read frequently enough and that match the size and class
of service criteria will be copied back to the cache from
tape so that subsequent reads will come from disk.

We used the simulator to study the possible benefits
of expanding the size of the disk cache and the
maximum size of files allowed in the cache. We also
used the simulator to look at cache management
algorithms. Read hit ratio was the primary metric we
used in the study. Figure 4 is a plot of the predicted hit
ratio from the simulator for different sized caches. The
maximum allowed file size for the caches in the plot is
50 MB and the time period simulated was 01Aug03
through 31Oct03.

Figure 4 shows that the simulator predicts
diminishing returns and that much of the read hit ratio
benefit can be obtained with smaller cache sizes. Based
in part on these simulator predictions, we chose an
initial cache size of approximately 8 TB which the
simulator predicted would provide a 67% hit ratio. The
real cache was phased in over several months and was
in steady state (i.e., the cache had filled up) by February
2004. Figure 5 shows the actual hit ratio for the cache

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE

Figure 4. Predicted Hit Ratio

Figure 5. Actual and Predicted Hit Ratio

from February 2004 through July 2004 along with the
line showing the predicted hit ratio of 67%. Data
beyond July 2004 is not shown because the cache
configuration changed after that point so the comparison
between predicted and actual results is not valid beyond
that month.

As part of this study, we also evaluated different
cache management algorithms. As mentioned earlier,
files that do not have a copy in the disk cache, but that
are read frequently enough and match the size and class
of service criteria will be migrated (copied) back to the
cache. For example, if a small file was originally in the
cache but was aged off due to inactivity and then later
becomes active again (i.e., is reread frequently), it can
be beneficial to copy the file back to the disk cache so
that future reads come from disk rather than from tape.
We looked at how to decide when files that are not in
the disk cache but are read back should be copied to the
cache. We tried copying each file that met the cache

criteria to disk immediately following the first user read
of the file. We also tried copying each file to disk
immediately following the 2nd consecutive user read of
the file within some time period (e.g., 24 hours or 1
week). We found that copying files to disk after the first
read did improve the cache hit ratio moderately, but the
vast majority of the files copied back were never read
again before being aged off, so copying them to disk
would be unnecessary overhead. The small
improvement in the hit ratio did not justify the large
overhead needed to achieve it. We found that copying a
file to the cache after it is read twice within 24 hours
seemed to be a good approach.

5. Tape Drive and Disk Cache Study

In addition to the disk cache study, we have also
used the simulator to help us estimate mean user
response time as function of both the number of STK
9940B tape drives and the disk cache configuration. The
purpose of this study was to obtain some quantitative
estimates of performance as a function of those
parameters and to obtain some insight into the
performance tradeoffs of disk and tape. The first part of
this section provides more background on the
configuration and behavior of the NCAR MSS, the next
part describes the experiments that were conducted, and
the final part presents the results and conclusions from
the runs.

5.1. MSS Configuration and Behavior

At the start of these studies, our actual MSS
consisted of an ~8 TB RAID disk cache that accepted
files with sizes up to 50 MB, 38 STK 9940-A tape
drives, 14 STK 9840-A tape drives, 5 STK 9310
Powderhorn libraries and a number of GigE and Hippi
data paths. These tape drives and tape media were
distributed among the 5 libraries. For this study, we kept
the number of 9840-A and 9940-A tape drives constant
for all runs and also kept the library and the data path
configurations constant across all runs. We varied the
configuration of the disk cache (size of the cache and
maximum file size allowed in the cache) and the number
of 9940-B tape drives.

As mentioned in section 4, when a user writes a file
to the MSS, if the file attributes meet certain criteria (its
size is below the maximum size allowed in the disk
cache and its class of service attributes match the cache
criteria), it is written directly to the disk cache. Files
with attributes that do not match the criteria are written
to tape. Files that are initially written to the disk cache
are copied to tape approximately a day after they are
written to disk and are removed from disk based on an

Predicted Read Hit Ratio as a Function
of Cache Size

50

60

70

80

90

100

0 20 40 60

Cache Size (TB)

R
ea

d
H

it
R

at
io

 (%
)

hit ratio

Read Hit Ratio

0
20
40
60
80

100

Fe
b

A
pr

Ju
n

Month

R
ea

d
H

it
R

at
io

 (%
)

predicted

actual

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE

LRU (Least Recently Used) algorithm. This behavior
was kept the same for all simulator runs for this study.

When a file is read by a user from the MSS, if the
file resides on the disk cache, it is transferred from
there; otherwise, the file is transferred from tape. If a
file is not in the cache, is read twice within 24 hours and
its attributes match the cache criteria, the system copies
the file from tape to disk so that future reads can be
serviced by the disk cache. This behavior was also kept
the same for all simulated scenarios.

One attribute a user can specify for a file is the
“reliability” (which can have the value “normal” or
“economy”). If the user sets the reliability to “normal”,
two copies of the file are created when it is written to
tape, which occurs when the user first writes the file (if
the file is written initially to tape) or when the system
creates a tape copy (if the file is written initially to
disk). If the file is initially written to tape and two
copies are to be created, the user write command does
not return until both copies have been created whereas
for a user write that goes to disk, the user only has to
wait for a single disk copy to be created.

A disk cache can potentially help our MSS
performance in several ways. First, reads from the cache
are often faster than reads from tape due to the large
positioning time for tapes. Second, writes to the disk
cache can be faster than writes to tape if the disk
subsystem aggregate performance is greater than the
aggregate performance of the tape drives and also
because, for files that a user has specified should be
stored with “normal” reliability, the user only has to
wait for a single copy to be written when the file goes to
disk while they have to wait for two copies to be written
when the file goes directly to tape. However, files
written to disk are eventually written to tape (except for
those that are rewritten or deleted before the tape copy
is created) so the tape drives must be able to keep up
with the writes to the disk cache or writes to the disk
cache will block when the cache becomes full.

5.2. Description of Experiments

The simulation runs for this study used three month
workloads derived from the actual workload of the
system. The first two months were used to initialize the
system and “warm-up” the disk cache so that it was in
steady state. After the first two months, the statistics
were reset and collected over the final month. Two
different three month time periods (May2004-July2004
and Sep2004-Nov2004) were used so that we could see
the effects of different workloads on the results.

The primary metric used to evaluate the different
configurations was mean user response time. By
response time, we mean the time from when the

command to transfer a file to or from the MSS is
initiated to when the command is complete and exits.
We chose this metric since, of the set of performance
metrics, our users are probably most aware of response
time. Also, only the response time for user-initiated
transfers is included in our metric. The time for system-
initiated transfers is not included in the metric, but they
are simulated so they indirectly affect the response time
for user transfers.

As mentioned above, the parameters that were
varied for the runs were the number of 9940-B tape
drives and the disk cache configuration. All other
system parameters were kept constant. Each 9940-B had
a maximum transfer rate of 30.0 MB/sec, load and
unload times of 18.0 seconds, and position times that
were based on probability distribution or constant
averages. These values were kept the same for all runs;
only the number of 9940-B drives was changed. Also,
all 9940-B drives were in a single silo and most, but not
all 9940-B media were in that same silo. The disk cache
was assumed to have an aggregate transfer rate of 180.0
MB/second and that was kept constant for all runs; only
the size of the cache and the maximum size of files
allowed in the cache were varied. Table 2 below
summarizes these configuration parameters.

Table 2: 9940-B and Disk Cache Parameters

Parameter Value
9940-B load time 18.0 seconds
9940-B unload time 18.0 seconds
9940-B position times Probability distributions

and constant average
values

9940-B max data transfer
rate

30.0 MB/second

Disk cache aggregate data
transfer rate

180.0 MB/second

The number of 9940-B tape drives that were tried

was 20, 30, and 40. All writes to tape during the
simulated time period were written using the 9940-B
drives. The 9940-A and 9840-A drives were used for
reads of data written prior to the start of the simulated
workload. Three different disk cache configurations
were tried:

• A 7.8 TB cache with a maximum file size limit

of 50 MB
• A 36.1 TB cache with a maximum file size

limit of 500 MB
• A 62.6 TB cache with no maximum file size

limit

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE

The disk cache configurations were chosen using
the following steps. First, we chose the three maximum
cached file sizes to try for the experiments (50 MB, 500
MB, and no limit). For each of those maximum file
sizes, we ran some simulations using different sized
caches to estimate read hit ratio as a function of cache
size. Those values were plotted and the cache size that
resulted in a good hit ratio and that was a reasonable
size (the “knee” of the curve) was chosen as the cache
size to use with that maximum file size limit.

5.3. Results and Discussion

Figures 6 and 7 are plots of mean user response time

estimates (with standard deviations plotted as error bars)
as a function of the number of 9940-B tape drives and
the disk cache configurations for the May2004-
July2004 and Sep2004-Nov2004 workloads,
respectively. The simulations using both workloads
suggest that 20 tape drives is too few since the response
time would probably be too high, although caching
larger files does improve the response time for the 20
tape drive case. For 30 tape drives, there appears to be a
benefit to caching files up to about 500 MB, but not
much benefit in caching files bigger than that. There
seems to be little benefit to using 40 drives compared
with 30 drives, at least for these workloads.

In general, the data suggest that having a balance of
tape drives and disk cache is better than having a very
large amount of one or the other. The plots also
illustrate the non-linear behavior of response time. If the
system were under configured, response time would
potentially be much too large; if the system were over
configured, there may be little performance benefit to
having the additional hardware.

While we investigated the effect of different
workloads on performance (May2004-July2004 and
Sep2004-Nov2004), we did not investigate the effects of
workload changes that might be induced by the system
configuration changes, but we do discuss it a little more
in Section 6. We also did not study the economic costs
of the various scenarios, which likely would be an
important consideration. It would also be interesting to
experiment with different parameter values (constants
and those derived from probability distributions) to
estimate the effect those would have on the results.

6. Limitations

While the simulator has been a useful tool for us, it
has some important limitations. One limitation is that
the simulator cannot predict the future MSS workload.

Simulated Mean User Response Time for
July2004 Workload

1

10

100

1000

10000

0 20 40 60
number of 9940-B tape drives

m
ea

n
re

sp
on

se
 ti

m
e

(s
) 7.8 TB, file

size <= 50
MB

36.1 TB, file
size <= 500
MB

62.6 TB,
unlimited file
size

Figure 6. Estimated Response Time for July
2004 Workload

Simulated Mean User Response Time for
Nov2004 Workload

1

10

100

1000

10000

0 20 40 60
number of 9940-B tape drives

m
ea

n
re

sp
on

se
 ti

m
e

(s
) 7.8 TB, file

size <= 50
MB

36.1 TB, file
size <= 500
MB

62.6 TB,
unlimited file
size

Figure 7. Estimated Response Time for Nov.
2004 Workload

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE

Given the workload, it can predict the behavior of the
system, but it cannot predict the workload itself. This
limitation is important because the workload can change
due to the addition of new supercomputers or due to
changes in user behavior.

Changes to the workload can also be induced by
MSS configuration changes. For example, adding
additional hardware to improve the system performance
could result in users submitting more requests (since the
system is faster). However, all approaches to
configuring and managing the MSS are limited in the
same way. Whether we are doing simulations or back-
of-the-envelope calculations or using some other
approach, they are all limited by the inability to really
know what the future workload will be. We do have the
ability to create and ingest synthetic workloads in the
simulator so if we can estimate what a future workload
will be, we can use that to drive the simulator. Still, such
workloads would only be estimates so we have to keep
this limitation in mind.

An approach that one group has taken when
simulating I/O subsystems is to build an emulator that
can run applications that drive the simulator [11]. If one
configuration of the system being simulated runs faster
than another, the workload would automatically be
scaled. However, given the large number of user
applications that independently access our MSS, such an
approach would not be feasible for us.

In addition to the errors due to workload uncertainty,
our metrics are only averages and, based on validation
runs, are only within 20% of the actual values. Also,
while all the major components of the MSS have been
taken into account, there are some components that have
not been included in the simulator, and leaving them out
diminishes the validity of our results.

7. Summary

We have developed a trace-driven performance
simulator of our MSS to aid us in ranking design and
configuration alternatives. Validation runs have shown
that the simulator is able to predict average metrics
within 20% of the true values. The simulator reads in a
configuration file and ingests a workload derived from
the actual historical workload of our MSS and generates
statistics. The simulator has aided us in enhancing our
disk cache and we have also used it to help estimate user
response time as a function of number of tape drives and
disk cache size. We found that, for files under 50 MB,
an 8 TB cache provided a read hit ratio of a little over
60%. We also found that caching files above 500 MB
may not be worth doing.

References

[1] Reagan Moore, Joseph Lopez, Charles Lofton,
Wayne Schroeder, George Kremenek. Configuring
and Tuning Archival Storage Systems. In
Proceedings of the 16th IEEE Mass Storage
Systems Symposium, pages 158-168, 1999.

[2] Raj Jain, The Art of Computer Systems
Performance Analysis. John Wiley and Sons, Inc.,
1991.

[3] John Wilkes, The Pantheon storage-system
simulator. Technical Report HPL—SSP—95—14.
Storage Systems Program, Hewlett-Packard
Laboratories, Palo Alto, CA, December 1995.

[4] G. Ganger, B. Worthington, and Y. Patt. The
DiskSim Simulation Environment Version 1.0
Reference Manual. Technical Report CSE-TR-358-
98, Department of Electrical Engineering and
Computer Science, University of Michigan,
February 1998.

[5] Ann L. Drapeau and Randy H. Katz. Striping in
Large Tape Libraries. In Proceedings of the 1993
ACM/IEEE confererence on Supercomputing,
pages 378-387.

[6] J. J Bedet, L. Bodden, A. Dwyer, PC Hariharan, J.
Berbert, B. Kobler, P. Pease. Simulation of a Data
Archive and Distribution System at GSFC. In
Proceedings of the GSFC Mass Storage Systems
and Technologies Conference, 1993.

[7] Odysseas I. Pentakalos, Daniel A. Menasce, Milt
Halem, Yelena Yesha. An Approximate
Performance Model of a Unitree Mass Storage
System. In Proceedings of the 14th IEEE Mass
Storage Systems Symposium, pages 210-224, 1995.

[8] The University of Newcastle upon Tyne, UK.
javasim.ncl.ac.uk.

[9] SIMULA Standard. Swedish Standard SS 63 61 14,
SIS, Box 3295, Stockholm, Sweden, (1987).

[10] Sam Coleman and Steve Miller. Mass Storage
Systems Reference Model: Version 4. NASA GSFC
Conference on Mass Storage Systems and
Technologies, Volume 1, 1992.

[11] John Linwood Griffin, Jiri Schindler, Steven W.
Schlosser, John S. Bucy, and Gregory R. Ganger.
Timing-accurate Storage Emulation. In
Proceedings of the Conference on File and Storage
Technologies (FAST). January 2004, Monterey,
CA.

Acknowledgements

Thanks to Gene Harano, Mark Love, John Merrill,
Craig Ruff, Erich Thanhardt and George Williams (my
MSS colleagues at NCAR) for sharing their knowledge

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE

of the internals of various components of the NCAR
MSS and to my managers, Gene and John, for giving
me time to work on this project. Thanks also to my
shepherd, Jean Bedet, and to the anonymous reviewers
of this paper.

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005)
0-7695-2318-8/05 $20.00 © 2005 IEEE

