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Abstract* 

Performance prediction of Mass Storage Systems can 
be difficult because of the complexity of the systems and 
the interdependence of the components. This difficulty 
can lead to over or under provisioned systems and can 
limit the ability to identify software algorithms (such as 
cache management or request ordering algorithms) that 
scale well and yield high performance. Moreover, as 
Mass Storage Systems scale to a petabyte and beyond, 
the ability to predict performance could become 
increasingly important since errors in capacity planning 
could also grow.  

This paper discusses a trace-driven discrete event  
simulator that we have developed to aid us in ranking 
design and configuration alternatives. The simulator 
reads in a configuration file, ingests a workload and 
estimates multiple metrics, including average user 
response times, cache hit ratios and device utilization. 
Simulated components include tape drives, disk systems 
and software components. 

The simulator has been used to help us determine the 
size of a disk cache that is used to offload reads from 
tapes; we found that, for files with sizes under 50 MB, a 
cache size of around 8 TB can provide a read hit ratio of 
approximately 67%. The simulator has also been used 
to estimate the number of STK 9940B tape drives 
needed to replace our 9840A and 9940A drives. Based 
on validation runs, we have found that metrics predicted 
by the simulator are within approximately 20% of the 
actual values. 
 

1. Introduction 

Mass Storage Systems are complex with many 
interdependent components and configuring and tuning 
them can be challenging[1]. NCAR’s Mass Storage 
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System (MSS) currently holds 2 PB of total data in a 
little over 24 million bitfiles. The MSS processes over 
1.2 million user reads and writes each month plus a 
similar number of reads and writes for internal data 
migration. Given the complexity of the workload and of 
the system itself, we have found that predicting the 
performance of the system in response to configuration 
changes can be difficult. For example, while we can 
measure the current read hit ratio of a disk cache, it can 
be hard to estimate if a larger disk cache will lead to a 
commensurate increase in the hit ratio or if a smaller 
cache would provide the same hit ratio.  Another 
example would be to estimate how average user 
response time (calculated as the time from when a user 
initiates a file transfer to when the transfer is completed) 
varies as a function of number of tape drives in the 
system.  Would more tape drives improve user response 
time significantly?  

One way to determine the effect of a configuration 
change is to make the change and then track the system 
performance. However, that approach can be expensive 
with an operational MSS, may bring no substantial 
improvement to the system and can require months of 
tracking the system performance to assess what effect 
the change had. Also, the workload might change during 
that time and it might be difficult to know if the 
resulting changes in performance were due to the 
system configuration changes or to workload changes. 

Analytic models (e.g., those based on queueing 
theory) are another option for estimating the effect of 
configuration changes on performance. Most of these 
models require many simplifications and assumptions 
about the workload and system behavior, however, 
limiting their accuracy[2].   

To aid us in ranking design and configuration 
alternatives, we developed a trace-driven discrete event 
performance simulator of our MSS. A simulator allows 
us to model the MSS system more accurately than 
analytic approaches and provides a framework to 
experiment with different configurations without having 
to procure or test hardware and make possibly 
disruptive changes to our production system. However, 
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all approaches to performance analysis and modeling 
have their weaknesses. While simulation modeling 
offers the ability to model the system more accurately, it 
also usually requires more time to develop a simulation 
than to develop an analytic model. Our simulation 
required approximately 1.5 person years to develop. The 
investment appears to be commensurate with the 
benefits, however. 

We have used the simulator to help us in sizing a disk 
cache to offload reads from tape and choosing disk 
cache management policies. The simulator predicted 
that a read hit ratio in the range of 65-68% was 
attainable with a modest sized cache; beyond that, 
greater cache sizes resulted in small gains in the read hit 
ratio. Based in part on those simulator results, we chose 
a cache configuration that the simulator predicted would 
result in a read hit ratio of 67%. After the cache was put 
into production, the actual average hit ratio from 
February 2004 to July 2004 has been 65.6%, although it 
does fluctuate from month to month as the workload 
fluctuates. 

The next section describes some related work and 
Section 3 provides more details about the simulator. 
Section 4 describes some results from the disk cache 
study, section 5 describes some results from a tape drive 
and disk cache study, section 6 describes some 
limitations of the simulator and our conclusion and 
summary are presented in section 7. 

 
 

2. Related Work 
 
Simulations and analytic models have been used to 

improve and understand the performance of computer 
systems and subsystems for decades. Detailed 
simulators have been developed for disk subsystems 
(e.g., the Pantheon disk subsystem simulator [3] and the 
DiskSim disk subsystem simulator [4]) and for tape 
libraries (e.g., [5]). In addition to subsystem-specific 
work, simulation and analytic models of Mass Storage 
Systems have also been developed (e.g., [6] and [7]).  

Our work builds on this past work and extends it in a 
couple of ways. First, our simulator incorporates all the 
major hardware and software components of our MSS 
rather than focusing on a subsystem. Simulators that 
focus on a specific subsystem and that do not model the 
other subsystems may not be able to estimate the net 
effect of system changes on global metrics such as mean 
user response time. Achieving high performance in one 
subsystem may not result in high performance for the 
system as a whole since another component could be the 
bottleneck.  

Second, our work extends the previous simulation 
and analytic models of Mass Storage Systems that we 
are aware of by increasing the accuracy of the results.  

For example, the workload of our simulator is based on 
traces of actual user activity that capture the detailed 
workload patterns more accurately than analytic models 
can and than previous simulators that we are aware of 
have. Also, our simulator models the behavior of the 
major software components in detail. The software used 
to control Mass Storage Systems can be complex with 
many algorithms that affect the performance of the 
system. By modeling these components in detail, we can 
also estimate their effect on performance. 
 

3. Simulator Description 

This section gives a high-level overview of the type 
of simulator and its development environment. It then 
provides a synopsis of the NCAR MSS, how the NCAR 
MSS was simulated and how the simulator was 
validated. 
 

3.1. Simulator Type and Development 
Environment 

The simulator we developed is a discrete-event 
simulator, which means the primary state variables of 
the simulator (such as number of jobs in the system) 
take on discrete values. The workload used to drive 
simulators is usually either internally generated by the 
simulator using random number generators or based on 
traces. Traces are usually derived from an actual 
workload on a system. Since we had traces of all user 
read and write events in our MSS logs, we used a trace-
driven approach. The traces of the user reads and writes 
over time periods of a month or more are ingested by 
the simulator and used as the workload for the simulated 
system. For a good overview of simulation modeling, 
see [2] and its references.  

There are numerous simulation languages and 
packages available both commercially and freely. For 
certain domains, such as telephone call centers and 
factory assembly lines, there are packages that can be 
easily tailored to model those systems and that would 
save substantial time over developing a simulation from 
scratch using a general purpose language. However, we 
were not able to find an equivalent package for Mass 
Storage Systems. After researching several languages 
and packages, we decided to use Java along with a 
package called JavaSim[8]. This combination resulted in 
a nice environment for creating a detailed simulation of 
our system using a contemporary, generally available 
language.  

The development environment is similar to the one 
provided by the SIMULA language [9], but is a more 
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readily available development environment. The 
simulation approach that this environment provides is 
generally referred to in simulation terminology as a 
process-oriented approach (in contrast to an event-
oriented approach).  

All components of the simulator are Java objects. 
Additionally, each component of the simulator that 
performs time dependent operations is also a Java thread 
(a runnable or active object) and the simulator 
management software controls the activity of the 
threads.  For example, a tape silo takes time to transfer a 
tape from a cell to a drive, so each silo is modeled using 
a thread. In contrast, a component that does not have 
operations that require simulated time to perform is also 
an object, but not a thread. For example, there are Java 
classes to represent tape media. A medium has attributes 
such as capacity and type; however, the medium 
component itself does not simulate the passage of time. 
Below is an example that provides an overview of how 
the passage of time is simulated using threads. 

Consider a single silo that receives requests to mount 
and dismount tapes as shown in Figure 1. 

 
 
 
 
 
 
 
 
 
   

 
 
 

Figure 1.   Logical View of a Silo 
 

Assume the silo is idle. At that point the silo thread 
is in a suspended state. Then, a mount request arrives in 
the silo queue. The silo thread is resumed at that point, 
detects that it has a mount request, starts processing it 
and then estimates how long it would take for a real silo 
to mount the tape. In our current version of the 
simulator, it obtains this estimate by looking in a table 
of constant values. Suppose the estimate is 4.5 seconds. 
The silo thread then makes a function call to the 
simulator management software telling it to suspend it 
and then to resume it after 4.5 simulated seconds have 
elapsed. The simulator management software suspends 
the silo thread at that point. When 4.5 seconds pass on 
the simulator clock, the simulator management software 
resumes the silo thread. The silo thread starts running 
and sees that it has finished mounting the tape. It 
updates internal data structures as necessary and then 
requests that it be suspended until the next mount or 

dismount request arrives. The passage of time is 
simulated for the silo by suspending and resuming the 
thread. The passage of time is simulated for the other 
components in the same way. Note that while the 
program has many threads, only one thread is running at 
a time. The threads are used as a way to maintain state 
and to simulate the passage of time for components and 
not for parallel processing. 
 

3.2. Simulating the NCAR MSS 

The NCAR MSS uses an rcp (remote copy) approach 
where users transfer complete files from the MSS to 
client filesystems and from client filesystems to the 
MSS; it roughly follows the IEEE MSS Reference 
Model [10]. Figure 2 is a high level logical diagram of 
the NCAR MSS.   

 
 

 
 

Figure 2.   Logical Diagram of NCAR MSS  
 

The key hardware components are the client systems, 
the high-speed data paths and switches, the storage 
devices (disk arrays, tape drives), tape media, the tape 
libraries and the Mass Store Control Processor (which 
runs some of the software that manages the MSS). This 
hardware is managed and controlled by numerous 
software components. 

The first step in modeling a component (hardware or 
software) was to develop a conceptual model by 
identifying the important operations for that component 
and determining how any time delays associated with 
the operations would be modeled.  Once a conceptual 
model was built, the model for that component was 
implemented in the simulator software. The important 
operations that a component performs were identified 
from multiple sources, including other NCAR group 
members for in-house developed software components 
and vendors for hardware devices. Fortunately, many 
operations often can be ignored (e.g., error recovery 
from infrequently occurring errors that are known to 
have a minimal impact on system performance). We 
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modeled our components with the least amount of detail 
that we thought would be consistent with the desired 
accuracy, knowing that we could add more detail later if 
we needed to improve the accuracy.   

Once the key operations of a component were 
identified and conceptually modeled, the time delays 
associated with the operations were modeled. Examples 
of delays include the time to mount a tape and the time 
to position a tape for reading. We modeled delays in two 
different ways, depending on the operation being 
simulated.  

The first approach was a deterministic approach that 
was used where we could accurately calculate the delay 
for an operation at any given point in time based on the 
state of the system or when the delay value is known to 
have a small effect on performance. In general, this 
calculation could be a function of any of the simulator 
state variables. In practice, for our system, this function 
is usually a constant value since the time to perform 
some operations is actually constant or nearly constant. 
For example, the time to load a particular type of tape 
on a particular type of tape drive is very close to a 
constant value that can be measured or obtained from a 
vendor.  

The second approach was a probabilistic approach.  
Some delays may be too difficult to determine 
accurately at a given point in time and may have a 
relatively large effect on performance. In those cases, a 
probability distribution can be useful. For example, the 
time to position a tape varies quite a bit and can be a 
relatively long time. If one modeled the position of files 
on a tape, the position time could be calculated 
deterministically. However, we did not want to model 
the system at that low level of detail. Instead, we use a 
probability distribution to model those delays. Other 
delays in the system are also modeled using probability 
distributions. The probability distributions that we use at 
this point are empirically derived from system logs. We 
do not use the analytic distributions (e.g., exponential) 
since our empirically derived ones appeared to capture 
the behavior more accurately.   Below is a description of 
how the major delay parameters in the simulator 
components are modeled. 

 
Software  Delays in executing software (for example, 

updating a database entry) were modeled using constant 
values. When simulating our current actual system, the 
constant values were obtained from measurements.   

Tape library  Delays for tape mounts, dismounts and 
pass-throughs (to other libraries) were modeled using 
constant values. When simulating our current actual 
system, the values were obtained from the vendor. 

Tape drive  Delays for tape loads and unloads were 
modeled using constant values and, when simulating our 
current actual system, the values used were obtained 

from the vendor and measurements. Tape read 
positioning and data transfer delays were modeled using 
probability distributions. When simulating our current 
actual system, the distributions were derived from   
measurements and log records. However, for older tape 
drives where log records did not contain positioning or 
transfer time information and for other positioning 
times, constant average values were used.  

Disk subsystem  Delays for data transfer were 
modeled using probability distributions that were 
created from measurements and log records.  

Job arrivals  Delays between user job arrivals were 
calculated from the traces of user read and write events. 

 
Delay parameters for a simulator run are specified in 

a primitive ASCII configuration file along with other 
parameters for a run such as the number of tape drives 
of each type to use, size of disk caches, and internal 
migration parameters. The configuration file makes it 
fairly easy to simulate different configurations. 
However, to simulate an entirely different Mass Storage 
System, we would need to replace the code in the 
simulator that simulates the behavior of the NCAR MSS 
software components with code that simulates the 
behavior of the other MSS software components. The 
workload for the simulator, as stated earlier, is derived 
from the actual MSS logs.  The simulator is run on an 
IBM Power4 host and takes about 8 wall clock hours 
and 2 GB of memory to simulate 1 month’s worth of 
MSS activity. Figure 3 shows a high level view of how 
the simulator operates.   

 

 
 
Figure 3.   Simulator Operation 

3.3. Simulator Validation 

Validation is an important part of the simulator 
project. By validation, we mean checking that the 
simulator predictions closely match what would be 
observed with a real system. All components of the 
simulator were individually validated and the simulator 
as a whole was also validated. Dozens of validation runs 
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were performed for simplified cases where exact 
answers are known.  For example, we created simple 
workloads that contained only a few data transfer 
requests where we could calculate by hand the exact 
response times, device utilizations, etc. and compare the 
calculated values with the values generated by the 
simulator.  

Validation runs were also performed for cases where 
the simulator was configured like the real MSS during 
some time period (e.g., same number of tape drives, 
same disk cache parameters, etc.). We used the trace of 
user read and write events from that same time period 
(usually a month long time period) to drive the 
simulator and we compared the results from the 
simulator with the actual results from the MSS for that 
time period. Based on the comparison, we would add 
more detail to one or more components to improve the 
accuracy of the simulator.  Validation is definitely an on-
going process and would be a part of any study that uses 
the simulator.  

While our initial goal was to have enough detail so 
that all the metrics predicted by the simulator would be 
within 10% of the actual values, we found that it would 
require too much detail (and time) to reach that level of 
accuracy so we currently only attain an accuracy of 
20%. Table 1 shows some validation results comparing 
simulator predicted values with the actual values for the 
month of July 2004. The workload used to drive the 
simulator was from the actual workload in June and July 
of 2004. So that the cache would be in steady state when 
the simulator statistics were collected, the simulator was 
driven with the two-month workload June-July. Once 
the June workload had been ingested, the statistics were 
reset so that they cover the one month July time period.    

 

4. Disk Cache Study 

One of the ways we used the simulator was to help 
us estimate the read hit ratios we would obtain with an 
expanded disk cache. Initially we had a small 180 GB 
disk cache and we allowed files with sizes up to 15 MB 
in the cache. One of the purposes of the cache is to 
handle reads that would otherwise have to come from  
tapes.  The cache can be especially beneficial for reads 
of small files since the effective transfer rate (file size 
divided by the total time to read the file) of a small file 
from tape can be very low due to the time it takes to 
mount, load  and position a tape.  

When a user writes a file to the MSS, if the file’s size 
is less than the maximum size allowed in the cache and 
its class of service parameters match the cache criteria  
 
 

Table 1: Validation Results for July 2004 

Metric Actual 
value 

Simulator 
predicted 

value 

Relative 
error (%) 

Disk cache 
read hit 
ratio (%) 66 66 0.0 
Number of 
tape 
mounts 160,984 162,291 0.8 
Mean 
overall user 
response 
time (s) 97 81 16.5 
Mean write 
user 
response 
time (s) 105 84 20.0 
Mean read 
user 
response 
time (s) 85 77 9.4 

 
(e.g., the file is not identified as a backup file that is 
unlikely to be read), it is written directly to disk. Files 
with sizes bigger than the maximum size or with class 
of service values that do not match the cache criteria are 
written directly to tape. Files are aged off of the cache to 
tape based on an LRU (least recently used) algorithm 
during a migration cycle that usually takes place once a 
day. Files that do not have a copy on disk, but that are 
read frequently enough and that match the size and class 
of service criteria will be copied back to the cache from 
tape so that subsequent reads will come from disk.  

We used the simulator to study the possible benefits 
of expanding the size of the disk cache and the 
maximum size of files allowed in the cache. We also 
used the simulator to look at cache management 
algorithms. Read hit ratio was the primary metric we 
used in the study. Figure 4 is a plot of the predicted hit 
ratio from the simulator for different sized caches. The 
maximum allowed file size for the caches in the plot is 
50 MB and the time period simulated was 01Aug03 
through 31Oct03.  

Figure 4 shows that the simulator predicts 
diminishing returns and that much of the read hit ratio 
benefit can be obtained with smaller cache sizes. Based 
in part on these simulator predictions, we chose an 
initial cache size of approximately 8 TB which the 
simulator predicted would provide a 67% hit ratio. The 
real cache was phased in over several months and was 
in steady state (i.e., the cache had filled up) by February 
2004. Figure 5 shows the actual hit ratio for the cache 
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Figure 4.   Predicted Hit Ratio 
 

Figure 5.   Actual and Predicted Hit Ratio 
 
 

from February 2004 through July 2004 along with the 
line showing the predicted hit ratio of 67%.  Data 
beyond July 2004 is not shown because the cache 
configuration changed after that point so the comparison 
between predicted and actual results is not valid beyond 
that month. 

As part of this study, we also evaluated different 
cache management algorithms. As mentioned earlier, 
files that do not have a copy in the disk cache, but that 
are read frequently enough and match the size and class 
of service criteria will be migrated (copied) back to the 
cache. For example, if a small file was originally in the 
cache but was aged off due to inactivity and then later 
becomes active again (i.e., is reread frequently), it can 
be beneficial to copy the file back to the disk cache so 
that future reads come from disk rather than from tape. 
We looked at how to decide when files that are not in 
the disk cache but are read back should be copied to the 
cache. We tried copying each file that met the cache 

criteria to disk immediately following the first user read 
of the file. We also tried copying each file to disk 
immediately following the 2nd consecutive user read of 
the file within some time period (e.g., 24 hours or 1 
week). We found that copying files to disk after the first 
read did improve the cache hit ratio moderately, but the 
vast majority of the files copied back were never read 
again before being aged off, so copying them to disk 
would be unnecessary overhead. The small 
improvement in the hit ratio did not justify the large 
overhead needed to achieve it. We found that copying a 
file to the cache after it is read twice within 24 hours 
seemed to be a good approach.  

 
5. Tape Drive and Disk Cache Study 
 

In addition to the disk cache study, we have also 
used the simulator to help us estimate mean user 
response time as function of both the number of STK 
9940B tape drives and the disk cache configuration. The 
purpose of this study was to obtain some quantitative 
estimates of performance as a function of those 
parameters and to obtain some insight into the 
performance tradeoffs of disk and tape.  The first part of 
this section provides more background on the 
configuration and behavior of the NCAR MSS, the next 
part describes the experiments that were conducted, and 
the final part presents the results and conclusions from 
the runs. 

 
5.1. MSS Configuration  and Behavior 
 

At the start of these studies, our actual MSS 
consisted of an ~8 TB RAID disk cache that accepted 
files with sizes up to 50 MB, 38 STK 9940-A tape 
drives, 14 STK 9840-A tape drives, 5 STK 9310 
Powderhorn libraries and a number of GigE and Hippi 
data paths. These tape drives and tape media were 
distributed among the 5 libraries. For this study, we kept 
the number of 9840-A and 9940-A tape drives constant 
for all runs and also kept the library and the data path 
configurations constant across all runs. We varied the 
configuration of the disk cache (size of the cache and 
maximum file size allowed in the cache) and the number 
of 9940-B tape drives.  

As mentioned in section 4, when a user writes a file 
to the MSS, if the file attributes meet certain criteria (its 
size is below the maximum size allowed in the disk 
cache and its class of service attributes match the cache 
criteria), it is written directly to the disk cache. Files 
with attributes that do not match the criteria are written 
to tape. Files that are initially written to the disk cache 
are copied to tape approximately a day after they are 
written to disk and are removed from disk based on an 
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LRU (Least Recently Used) algorithm. This behavior 
was kept the same for all simulator runs for this study. 

When a file is read by a user from the MSS, if the 
file resides on the disk cache, it is transferred from 
there; otherwise, the file is transferred from tape. If a 
file is not in the cache, is read twice within 24 hours and 
its attributes match the cache criteria, the system copies 
the file from tape to disk so that future reads can be 
serviced by the disk cache. This behavior was also kept 
the same for all simulated scenarios. 

One attribute a user can specify for a file is the 
“reliability” (which can have the value “normal” or 
“economy”). If the user sets the reliability to “normal”, 
two copies of the file are created when it is written to 
tape, which occurs when the user first writes the file (if 
the file is written initially to tape) or when the system 
creates a tape copy (if the file is written initially to 
disk). If the file is initially written to tape and two 
copies are to be created, the user write command does 
not return until both copies have been created whereas 
for a user write that goes to disk, the user only has to 
wait for a single disk copy to be created.  

A disk cache can potentially help our MSS 
performance in several ways. First, reads from the cache 
are often faster than reads from tape due to the large 
positioning time for tapes. Second, writes to the disk 
cache can be faster than writes to tape if the disk 
subsystem aggregate performance is greater than the 
aggregate performance of the tape drives and also 
because, for files that a user has specified should be 
stored with “normal” reliability, the user only has to 
wait for a single copy to be written when the file goes to 
disk while they have to wait for two copies to be written 
when the file goes directly to tape. However, files 
written to disk are eventually written to tape (except for 
those that are rewritten or deleted before the tape copy 
is created) so the tape drives must be able to keep up 
with the writes to the disk cache or writes to the disk 
cache will block when the cache becomes full.  

 
 

5.2. Description of Experiments 
 

The simulation runs for this study used three month 
workloads derived from the actual workload of the 
system. The first two months were used to initialize the 
system and “warm-up” the disk cache so that it was in 
steady state. After the first two months, the statistics 
were reset and collected over the final month. Two 
different three month time periods (May2004-July2004 
and Sep2004-Nov2004) were used so that we could see 
the effects of different workloads on the results.  

The primary metric used to evaluate the different 
configurations was mean user response time. By 
response time, we mean the time from when the 

command to transfer a file to or from the MSS is 
initiated to when the command is complete and exits. 
We chose this metric since, of the set of performance 
metrics, our users are probably most aware of response 
time. Also, only the response time for user-initiated 
transfers is included in our metric. The time for system-
initiated transfers is not included in the metric, but they 
are simulated so they indirectly affect the response time 
for user transfers. 

As mentioned above, the parameters that were 
varied for the runs were the number of 9940-B tape 
drives and the disk cache configuration. All other 
system parameters were kept constant. Each 9940-B had 
a maximum transfer rate of 30.0 MB/sec, load and 
unload times of 18.0 seconds, and position times that 
were based on probability distribution or constant 
averages. These values were kept the same for all runs; 
only the number of 9940-B drives was changed.  Also, 
all 9940-B drives were in a single silo and most, but not 
all 9940-B media were in that same silo. The disk cache 
was assumed to have an aggregate transfer rate of 180.0 
MB/second and that was kept constant for all runs; only 
the size of the cache and the maximum size of files 
allowed in the cache were varied.  Table 2 below 
summarizes these configuration parameters. 

 
Table 2: 9940-B and Disk Cache Parameters 

Parameter Value 
9940-B  load time 18.0 seconds 
9940-B unload time 18.0 seconds 
9940-B position times Probability distributions 

and constant average 
values 

9940-B max data transfer 
rate 

30.0 MB/second 

Disk cache aggregate data 
transfer rate 

180.0 MB/second 

 
 
The number of 9940-B tape drives that were tried 

was 20, 30, and 40. All writes to tape during the 
simulated time period were written using the 9940-B 
drives. The 9940-A and 9840-A drives were used for 
reads of data written prior to the start of the simulated 
workload. Three different disk cache configurations 
were tried:  

 
• A 7.8 TB cache with a maximum file size limit 

of 50 MB 
• A 36.1 TB cache with a maximum file size 

limit of 500 MB 
• A 62.6 TB cache with no maximum file size 

limit 
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The disk cache configurations were chosen using 
the following steps. First, we chose the three maximum 
cached file sizes to try for the experiments (50 MB, 500 
MB, and no limit). For each of those maximum file 
sizes, we ran some simulations using different sized 
caches to estimate read hit ratio as a function of cache 
size. Those values were plotted and the cache size that 
resulted in a good hit ratio and that was a reasonable 
size (the “knee” of the curve) was chosen as the cache 
size to use with that maximum file size limit.   

 
 

5.3.  Results and Discussion 
 
Figures 6 and 7 are plots of mean user response time 

estimates (with standard deviations plotted as error bars) 
as a function of the number of 9940-B tape drives and 
the disk cache configurations for the May2004-
July2004 and Sep2004-Nov2004 workloads, 
respectively. The simulations using both workloads 
suggest that 20 tape drives is too few since the response 
time would probably be too high, although caching 
larger files does improve the response time for the 20 
tape drive case. For 30 tape drives, there appears to be a 
benefit to caching files up to about 500 MB, but not 
much benefit in caching files bigger than that. There 
seems to be little benefit to using 40 drives compared 
with 30 drives, at least for these workloads.  

In general, the data suggest that having a balance of 
tape drives and disk cache is better than having a very 
large amount of one or the other.  The plots also 
illustrate the non-linear behavior of response time. If the 
system were under configured, response time would 
potentially be much too large; if the system were over 
configured, there may be little performance benefit to 
having the additional hardware.   

While we investigated the effect of different 
workloads on performance (May2004-July2004 and  
Sep2004-Nov2004), we did not investigate the effects of 
workload changes that might be induced by the system 
configuration changes, but we do discuss it a little more 
in Section 6. We also did not study the economic costs 
of the various scenarios, which likely would be an 
important consideration. It would also be interesting to 
experiment with different parameter values (constants 
and those derived from probability distributions) to 
estimate the effect those would have on the results.  
 
6. Limitations 
 

While the simulator has been a useful tool for us, it 
has some important limitations. One limitation is that 
the simulator cannot predict the future MSS workload.  
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Figure 6.   Estimated Response Time for July 
2004 Workload  
 
 

Simulated Mean User Response Time for 
Nov2004 Workload
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Figure 7.  Estimated Response Time for Nov. 
2004 Workload  
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Given the workload, it can predict the behavior of the 
system, but it cannot predict the workload itself. This 
limitation is important because the workload can change 
due to the addition of new supercomputers or due to 
changes in user behavior.  

Changes to the workload can also be induced by 
MSS configuration changes. For example, adding 
additional hardware to improve the system performance 
could result in users submitting more requests (since the 
system is faster). However, all approaches to 
configuring and managing the MSS are limited in the 
same way. Whether we are doing simulations or back-
of-the-envelope calculations or using some other 
approach, they are all limited by the inability to really 
know what the future workload will be. We do have the 
ability to create and ingest synthetic workloads in the 
simulator so if we can estimate what a future workload 
will be, we can use that to drive the simulator. Still, such 
workloads would only be estimates so we have to keep 
this limitation in mind.  

An approach that one group has taken when 
simulating I/O subsystems is to build an emulator that 
can run applications that drive the simulator [11]. If one 
configuration of the system being simulated runs faster 
than another, the workload would automatically be 
scaled. However, given the large number of user 
applications that independently access our MSS, such an 
approach would not be feasible for us. 

In addition to the errors due to workload uncertainty, 
our metrics are only averages and, based on validation 
runs, are only within 20% of the actual values. Also, 
while all the major components of the MSS have been 
taken into account, there are some components that have 
not been included in the simulator, and leaving them out 
diminishes the validity of our results.  

 
 

7. Summary 
 

We have developed a trace-driven performance 
simulator of our MSS to aid us in ranking design and 
configuration alternatives. Validation runs have shown 
that the simulator is able to predict average metrics 
within 20% of the true values.  The simulator reads in a 
configuration file and ingests a workload derived from 
the actual historical workload of our MSS and generates 
statistics. The simulator has aided us in enhancing our 
disk cache and we have also used it to help estimate user 
response time as a function of number of tape drives and 
disk cache size.  We found that, for files under 50 MB, 
an 8 TB cache provided a read hit ratio of a little over 
60%. We also found that caching files above 500 MB 
may not be worth doing. 
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