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Abstract

Accurate disk workloads are crucial for storage systems
design, but I/O traces are difficult to obtain, unwieldy to
work with, and unparameterizable. I/O traces are often
bursty and difficult to characterize. Although good mod-
els of I/O workloads would be extremely useful, such bursty
traces cannot accurately be modeled using exponential or
Poisson arrival times. Much experimental evidence sug-
gests that I/O traces are self-similar, which researchers
have hoped might help to model bursty traces. In this paper,
we show that self-similarity at large time scales does not
significantly affect disk behavior with respect to response
times. This allows us to generate synthetic arrival patterns
at relatively small time scales, improving the accuracy of
trace generation. The relative error of our method, with in-
put parameters suitable for the workload, ranges from ap-
proximately 8% to 12%.

1. Introduction

Performance analysis and architecture of storage sys-
tems depend heavily upon traces and simulations. Unfortu-
nately, I/O traces are difficult to obtain, extremely large and
unwieldy, and cannot be parameterized. Thus, system re-
searchers often resort to benchmarks, whose accuracy usu-
ally depends heavily on the underlying workload models.

Ideally, one would like to monitor any disk workload and
model it accurately (with respect to some important per-
formance metrics) with some small number of parameters.
This vision is far from reality; however, this paper identifies
parameters that can capture request interarrival burstiness.

We consider an I/O trace that consists of a set of times-
tamped values each containing a disk offset, a read/write
flag, and a length. This low-level description accommo-
dates a primitive application-level or SCSI I/O interface.
We wish to model these streams accurately enough so that

accesses synthesized from the model cause a storage hierar-
chy to behave “similarly” to the real trace. For a single disk
drive, similar behavior is measured by checking whether
the distributions of response times as well as queue lengths
resemble those created by the original workload.

We show that long-range dependence in I/O traffic does
not significantly affect disk behavior. This allows us to gen-
erate synthetic interarrival patterns at relatively small time
scales, improving the accuracy of trace generation.

The paper is organized as follows. We describe related
work in Section 2. We introduce self-similarity and the
Hurst coefficient as a way to approximate long-range de-
pendence and show that long-range dependence has little
effect upon disk response times in Section 3. Binomial mul-
tifractals can generate bursty traffic; Section 4 describes
this model. In Section 5 we describe a novel I/O request
synthesis technique using multifractal models. We evaluate
our method in Section 6 and conclude with directions for
future work in Section 7.

2. Related Work

Generating realistic disk traces is a difficult and un-
solved problem [5]. Much experimental evidence shows
that disk I/O, file, network, and Web traffic shares some
common properties, such as burstiness and long-range de-
pendence, with self-similar and multifractal processes [4,
6, 7, 10]. These properties cannot accurately be modeled
using exponential or Poisson arrival times.

Several researchers have used self-similarity to model
bursty traces, particularly network traces. Chen et al. [2]
examined ATM variable bit rate traffic and found that the
higher the Hurst coefficient, a measure of self-similarity,
the burstier the traffic. Multifractal models, or general-
izations of self-similar traffic models, have been shown
to model some kinds of traffic more effectively than self-
similar models [3]. Wang et al. [19] proposed to use bino-
mial multifractals to model bursty disk traffic. The model
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Figure 1. Estimating the Hurst parameter.

is parsimonious, depending only upon a single parameter,
bias p, which can be estimated from real traces. Wang
et al. [18] further proposed a two-dimensional multifrac-
tal model that characterizes both the temporal and spatial
behaviors of data accesses and captures the spatio-temporal
correlations using the joint entropy of the two-dimensional
disk request arrival events (time and space).

Grossglauser and Bolot [8] demonstrated that it was not
useful to model long-range dependence in network traffic
at time scales disproportionate to the performance metrics
under observation. Neidhardt and Wang [12] showed that
queuing behavior depends not only on the Hurst coefficient,
but a combination of system parameters. Our approach is to
investigate whether this is true for I/O traffic, and whether
this fact is useful for improving multifractal synthesis tech-
niques.

3. Relevance of Long-Range Dependence in
Disk Traffic

Some researchers have claimed that bursty I/O work-
loads have a structure that might help to model them called
self-similarity. Informally, in this context, to say a time
series is self-similar implies that it looks qualitatively the
same at different time scales. Self-similar traffic has the
property of long-range dependence: the data set exhibits a
slow decay in its autocorrelation function. This correlation
structure is significant because self-similar traffic may be
more bursty than that generated by other sources. However,
we show here that long-range dependence, as measured by
the Hurst coefficient, has little effect upon disk response
times.

3.1. Self-Similarity

A more rigorous definition of self-similarity from [1]
is as follows: Let Yt be a stochastic process with contin-

uous time parameter t. Yt is called self-similar with self-
similarity parameter H, if for any positive stretching factor
c, the rescaled process with time scale ct, c � HYct , is equal
in distribution to the original process Yt . The parameter
H is also known as the Hurst coefficient, and a value of
H between 1

2 and 1 indicates the degree of self-similarity.
Generally speaking, the Hurst coefficient is a predominant
way to quantify long-range dependence in a stochastic pro-
cess. A comprehensive treatment of the Hurst parameter is
presented by Meakin [11].

There are several exploratory analytic tools that are used
to estimate H; two such methods are applied to a small
UNIX workstation disk trace [14] in Figures 1(a) and 1(b).
The first method, shown in Figure 1(a), is the variance plot.
We plot the logarithm of the variance of an aggregated
(averaged) series against the logarithm of the aggregation
level. The slope of this plot should be equal to H � 1. The
second method, shown in Figure 1(b), is the R � S plot. This
method plots (in logscale) the R � S statistic, or the rescaled
adjusted range against logn. The rescaled adjusted range
is the data range normalized by the standard deviation. The
precise definition of how to calculate this statistic can be
found in [1, 17]. If there is long-range dependence in the
process, the slope of the curve generated by this plot pro-
vides an estimate of H; if not, logR � S should be randomly
scattered around a straight line with a slope of 0.5 [1].

3.2. Long-Range Dependence in Disk Traffic

Our hypothesis is that previous events cannot affect disk
behavior beyond a certain threshold, determined by system
parameters, so modeling long-range dependence at large
time scales is unnecessary. To test this hypothesis, we study
how disk response time changes as we gradually destroy
long-range dependence in the traces by shuffling increas-
ingly smaller intervals. This approach is identical to the ex-
perimental approach taken by [8], and is illustrated in Fig-
ure 2. Figure 2(a) shows a trace that has been divided into
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Figure 2. Shuffling traces removes long-range dependence.
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Figure 3. Response time distributions for traces shuffled using small intervals.
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Figure 4. In the limit, all temporal locality is
lost when we shuffle a snake trace.

six intervals. These intervals are then randomly rearranged
to create a new trace (Figure 2(b)). Within each interval,
the temporal relationships are preserved, but the new trace
has no long-range dependence beyond the interval width.

Our selected workloads, described in more detail in [14],
are the cello news disk trace (HP2204A) and the snake

usr2 disk trace (HP97560) gathered between 05/30/92 and
06/06/92. The average I/O loads on these disks are small:
approximately three requests for the cello news disk and
one request for the snake usr2 disk per second. However,
the maximum queue length can be very large: over 1000 re-
quests cello and over 60 requests on snake. In general snake
is more bursty than cello, and the logical sequentiality (per-
centage of requests that are at adjacent disk addresses or ad-
dresses spaced by the file system interleave factor) of cello
and snake is 2% and 29%, respectively.

We examine the numerical metric of disk performance
that was previously used to validate disk models [15]: the
root mean squared (RMS) horizontal distance between the
cumulative distribution functions (CDF) of I/O response
times. The distributions of queue lengths of traces shuf-
fled at intervals more than one second are similar to those
of the real traces [9], and are not presented separately.

We vary the shuffle interval length from 10 seconds to
0.1 second and use both the shuffled and original traces to
drive the Pantheon disk simulator [20]. Shuffling traces us-
ing intervals smaller than 0.5 second results in significantly
skewed disk response time distributions, as shown in Fig-
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Figure 5. Response time distributions for traces shuffled using large intervals.
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Figure 6. Effect of shuffling.

ures 3(a) and 3(b). In the limit, we destroy all temporal lo-
cality by randomizing all events and the obtained response
time distribution curve extremely differs from the original
one, as shown in Figure 4. In contrast, although at interval
sizes of one second and above there is virtually no long-
range dependence left in the shuffled traces, the relative er-
rors are very small, as shown in Figures 5(a) and 5(b).

Shuffling removes long-range dependence in I/O traces.
The Hurst coefficient is a measure of long-range depen-
dence; as intuition dictates, the smaller the time interval, the
fewer long-range correlations are preserved and the lower
the Hurst coefficient, as shown in Figure 6(a). In compari-
son, the original Hurst coefficient is 0.89 for cello and 0.79
for snake, respectively.

Despite the lack of long-range dependence, particularly
indicated by the fluctuation of the Hurst coefficient at small
intervals (less than one second), the relative error, measured
by RMS [15], for the shuffled traces is relatively small and
decreases with the increase of the shuffle interval length, as
shown in Figure 6(b). In general the relative error is larger
for snake than for cello: at one second it is approximately
5% for cello and 9% for snake. The error for snake can

be bounded under 5% by using shuffle intervals larger than
five seconds.

3.3. Choosing an Interval

To better understand how to select an appropriate inter-
val length to bound the error for each trace, we study the
relative error as a function of workload burstiness. We mul-
tiply the traced interarrival times by a factor of 0.5 or 0.25
to artificially increase the burstiness of the traces, creating
more disk request queuing.

Figures 7(a) and 7(b) show the effect of scaling on rel-
ative error for cello and snake, respectively. In general, as
the shuffle interval length increases, the relative error de-
creases. However, the interval length necessary to maintain
the same relative error does not automatically increase as
we scale down the traced interarrival time, and the curves
are quite different for the two workloads.

Cello has fewer long “gaps” between activities than
snake. Almost all of the cello requests have interarrival
times less than 0.1 second; in contrast, 63% of the snake
requests arrive after the previous one within 0.1 second,
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Figure 7. Effect of shuffling on relative error for scaled traces.

and 7% of the snake requests have interarrival times longer
than 10 seconds (see Figure 10). Shuffling has less effect
on the request interarrival time distribution for cello than
for snake. Cello is less sequential than snake so shuffling
does not perturb access spatial locality for cello as much as
for snake. Thus, the error caused by shuffling the original
trace is lower for cello than for snake.

When the traced interarrival times are shortened, queue
lengths increase. For cello, this improves average seek
time thanks to request scheduling optimization. Shuffling
changes this queuing behavior and causes higher errors than
in the original trace. Snake has a disk cache and is more se-
quential but less busy than cello, resulting in much lower
average queue length. Therefore, this queuing effect is not
as important for snake. In addition, shortening request in-
terarrival times can, to some degree, preserve more tempo-
ral relations in the workload under the same shuffle interval
length. Thus, errors for the shuffled scaled snake traces are
actually lower than those for the shuffled original trace at
small intervals, and increase with larger shuffle intervals.

3.4. Modern Traces

The traces described here were from 1992. A re-
configured cello was re-traced in 1999, but we have not yet
been able to repeat our experiments on those traces. How-
ever, to generalize our results on long-range dependence
to modern traces, we study the characteristics of new cello
news disk traces, obtained from a Seagate ST19171W disk,
for one week (09/09/1999 to 09/15/1999). The I/O load
has increased to about 16 requests per second but the max-
imum queue length is still in the same range as cello in
1992, from 700 to 1300. The logical sequentiality of cello
(1999) is less than 1%. The Hurst coefficient is 0.89, simi-
lar to that of the 1992 cello trace. Experiments on the scaled
1992 cello traces (Figure 7) approximate the characteristics
of the modern traces with respect to the Hurst coefficient
and mean interarrival time. We believe that the shuffle in-

terval required to minimize errors for modern traces may be
slightly longer, but otherwise the behavior is the same.

We can conclude from our experiments that long-range
dependence does not significantly affect disk behavior with
respect to response times. For the purpose of performance
evaluation, we need only consider I/O activities at time
scales related to the system we are evaluating. For mea-
suring disk response times and queuing behaviors, an ap-
propriate interval length is estimated empirically to be be-
tween 3 and 10 seconds for the cello and snake workloads.

4. Binomial Multifractals

Self-similarity is a measure of fractal-like scaling behav-
iors over multiple time scales, characterized by the single
Hurst parameter. In contrast, multifractals are a general-
ization of monofractal self-similar processes that allow for
time-dependent scaling laws, and are based on multiplica-
tive schemes. They have a bursty appearance similar to that
of real I/O traffic. We introduce binomial multifractals, for
the purpose of modeling I/O traffic, below. A rigorous in-
troduction to binomial measures and multifractals can be
found in [13].

4.1. Property of Self-Similarity

We first define a self-similar binomial measure on the
unit interval in a recursive construction. Figure 8 shows
the first two stages of the construction, which starts with
the uniform probability measure µ0 on the unit interval I
= [0, 1] with mass 1 (Figure 8a). At the first stage (Fig-
ure 8b), I is split into two equal-length subintervals I0 = [0,
1/2] and I1 = [1/2, 1] and the masses m0 � p � p � 1 � 2 �
and m1 � 1 � m0 � 1 � p are spread uniformly on them.
The density on I0 and I1 is 2p and 2 � 1 � p � , respectively.
At the second stage (Figure 8c), I0 is split into two equal-
length subintervals I00 = [0, 1/4] and I01 = [1/4, 1/2] and
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the masses m00 � p2 and m01 � p � 1 � p � are spread uni-
formly on them; I1 is split into two equal-length subin-
tervals I10 = [1/2, 3/4] and I11 = [3/4, 1] and the masses
m10 � p � 1 � p � and m11 � � 1 � p � 2 are spread uniformly on
them; The density on I00, I01, I10 and I11 is 4p2, 4p � 1 � p � ,
4p � 1 � p � and � 1 � p � 2, respectively. This construction con-
tinues recursively. Formally, at stage n, n � N, each interval
Iε1ε2 	 	 	 εn 
 1 in stage n � 1 is split into two equal-length subin-
tervals Iε1ε2 	 	 	 εn 
 1εn with mass mε1mε2 ����� mεn 
 1mεn , εi � 0 
 1.
Therefore, µ � Iε1ε2 	 	 	 εn � � mε1mε2 ����� mεn . This defines a se-
quences of measures µn on the unit interval I, which con-
verge weakly towards a probability measure µ, the binomial
measure. From the procedure of construction, it is clear that
µ is strictly self-similar, as shown in Figure 9.

We extend this construction by randomizing the alloca-
tion of the mass in the recursive subdivisions. In this case,
we may randomly choose the left multiplier as m0 or m1

(each with probability of 0.5), instead of always choosing
m0. Such randomization leads to binomial multifractals and
makes them difficult to repeat, analyze, and predict. Real
I/O traces could resemble more closely multifractals be-
cause of the unpredictability in workloads.

4.2. Property of Burstiness

Roughly speaking, the Hurst coefficient H describes
global burstiness. However, local burstiness in disk I/Os
is more interesting in practice. Multifractals can represent
local burstiness, as described by the local Hölder exponent
and multifractal spectrum of binomial measures.

For any x ��� 0 
 1 � , there is a unique subinterval Iε1ε2 	 	 	 εn

containing it in stage n. Let us denote it as I � n � � x � . For
convenience, we assume m0 � m1. For some x, the den-

sity on I � n � � x � , defined as µ � I � n � � x ����
I � n � � x � � �

mε1 mε2 	 	 	mεn
2 
 n , tends to

infinity when n � ∞, as shown by the points in the leftmost
subintervals in Figures 8 and 9. Here µ � I � n � � x ��� is the mass
on I � n � � x � and � I � n � � x � � is the length of I � n � � x � . The coarse
graining in this interval has the property of burstiness. We
can use a singularity exponent, the Hölder exponent, α � x �

0

5

10

15

20

25

30

0 0.2 0.4 0.6 0.8 1

range

density

Figure 9. Probability density function for a
sample binomial multifractal with bias 0.7.

to describe how fast the value approaches infinity:

α � x � � lim
n � ∞

α � n � � x �

� lim
n � ∞

log2 µ � I � n � � x ���
log2 � I � n � � x � �

� lim
n � ∞

log2 mε1mε2 ����� mεn

log2 2 � n

� � lim
n � ∞

log2 ∏n
i � 1 mεi

n � (1)

The multifractal spectrum f � α � describes the global distri-
bution of Hölder exponent α � x � :

f � α � � lim
n � ∞

f � n � � α �

� lim
n � ∞

log2 N � n � � α �
n


 (2)

where N � n � � α � denotes the number of subintervals I � n � with
the Hölder exponent value of α.

At stage n, n!
i! � n � i � ! � � N � n � � α ��� subintervals have the

same mass of mn � i
0 mi

1. Therefore,

α � n � � ��� log2 mn � i
0 mi

1 ��� n
� ��� i � n � log2 m1 ��� 1 � i � n � log2 m0 (3)

� � i � n � αmax � � 1 � i � n � αmin 
 (4)

where αmin � � log2 m0 � � log2 p and αmax � � log2 m1 �
� log2 � 1 � p � . According to the Stirling’s formula,

n!
i! � n � i � ! � � 2 � n � � E � i  n � 
 (5)

where E � i � n � � ��� i � n � log2 � i � n �!�"� 1 � i � n � log2 � 1 � i � n � .
Combining above equations, we can find

f � α � � � αmax � α
αmax � αmin

log2 � αmax � α
αmax � αmin

� (6)

� α � αmin

αmax � αmin
log2 � α � αmin

αmax � αmin
� 
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where αmin # α # αmax. This function has the same form as
the entropy function, which provides us a way to estimate
m0 (bias p).

5. Multifractal I/O Request Synthesis

Multifractals represent local bursty I/O behaviors more
accurately than other means of generating self-similar traf-
fic. Here we introduce a method to use multifractals to
model I/O request interarrival times at small time scales.

5.1. Estimation of Bias

The parameter bias p in binomial multifractals (or m0 in
binomial measures) describes the local burstiness behavior,
which can be estimated from real traces. There are several
ways to estimate bias p and we only introduce the two we
used in our experiments.

The first way to estimate p is from the multifractal spec-
trum f � α � of binomial multifractals. We know that f � α �
has the same shape as an entropy function. Bias p deter-
mines the location of the curve and how it is stretched. We
can find the best fitting bias by visually judging how well
the practical curve fits the theoretical ones.

The second way to estimate p is from the entropy value
of real traces. Wang et al. [19] proposed this method be-
cause of its robustness and efficiency.

Assume that S is an information source that emits in-
dependent symbols from alphabet $ s0 
 s1 
 ����� 
 sk � 1 % with
probabilities $ p0 
 p1 
 ����� 
 pk � 1 % . By definition, ∑ pi � 1.
The average amount of information we obtain by observ-
ing the output of S is called entropy [16] and is defined as:

E � p0 
 ����� 
 pk � 1 � � �
k � 1

∑
i � 0

pi log2 pi � (7)

The disk traces can be viewed as a discrete time se-
quence Yt , whose length can be normalized to be 1. For
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the purpose of model fitting, we can aggregate it at level n:

Y � n �t � k � �
& � k ' 1 � 2 
 n

k2 
 n
Yt dt 
 (8)

where k � 0 
 1 
 ����� 
 2n � 1. At level n, the sequence Y � n �t
can be considered as a distribution of an information source
with alphabet $ s0 
 s1 
 ����� 
 s2n � 1 % , whose entropy is given by

E � n �p � �
2n � 1

∑
k � 0

Y � n �t � k �( 1
0 Ytdt

log2
Y � n �t � k �( 1

0 Yt dt � (9)

If we plot the value E � n �p against n, the points should

form a line with slope E � 1 �p for a self-similar process like
binomial measures, as proved in [19]. Thus, we can esti-

mate E � 1 �p from these points, and bias p using Equation 10:

E � 1 �p � � p log2 p �"� 1 � p � log2 � 1 � p � � (10)

5.2. Verification of Estimation of Bias p

Not every I/O trace can be fit to a multifractal distribu-
tion. We empirically qualify the necessary characteristics
of an I/O trace for accurate estimation of bias p.

We divide each trace interval into x bins and aggregate
the requests within each bin. We estimate bias p for each
trace interval by using its entropy value and Equation 10.
Choice of an appropriate bin size is crucial to the success
of this method; if it is too large, bursty requests are ag-
gregated, destroying local burstiness. If the bin size is too
small, the fraction of empty bins is too large and there are
not enough samples to estimate p accurately. In intervals
with little I/O activity, it may simply not be possible to es-
timate p.

From Section 3, we should choose an trace interval be-
tween 3–10 seconds to keep the error under 5%. We also
need to choose a bin size that yields a reasonable percent-
age of non-empty bins without over-aggregating. Figure 10
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CALCULATE-P

INPUT: length l, trace interval w.
OUTPUT: bias p.
ALGORITHM:

for each i from 1 to log2l
calculate the entropy value E � i � of w using Equation 9
array � i )+* E � i �

end for
estimate bias p from entropy values in array using linear

regression
return p

Figure 12. Bias p estimation algorithm.

shows typical cumulative distribution functions of request
interarrival times for cello and snake. The percentage of
requests with interarrival times less than 10 ms is 15% for
cello and 20% for snake; these percentages are relatively
small. Based on this observation, we select a bin size of
10 ms to avoid over-aggregating requests. We choose an
trace interval size of 5.12 seconds so that the number of
bins within an interval is a power of 2.

To determine what fraction of non-empty bins is neces-
sary to obtain a good estimate of p, we calculate p using
both the entropy method and the spectrum method for se-
lected data sets with certain percentages of non-empty bins,
as shown in Figure 11. We could not exhaustively test all
the data because the estimation of p using multifractal spec-
tra is a visual test. Therefore, we selected a subset of data
sets as follows. Because the data sets with the same per-
centage of non-empty bins might have different aggrega-
tion ratios (number of requests in the interval / number of
non-empty bins), we used the histogram of aggregation ra-
tios to further round out our sample data sets. For example,
if 20% of the trace intervals with 5% non-empty bins have
an aggregation ratio of 1.6 (rounding to the nearest tenth),
20% of our samples have those characteristics.

We require that the fraction of non-empty bins be at least
3% for meaningful estimation of p. If the fraction of non-
empty bins is smaller than 3% we can use any distribution,
for example, a uniform distribution, to fit the data.

5.3. Multifractal Interarrival Synthesis Algo-
rithm

We propose a new algorithm to synthesize the patterns
of disk request interarrival times based on real traces. The
approach is to divide the real trace into non-overlapping
intervals with equal time length and fit each trace interval
to a binomial multifractal distribution. The parameter bias
p is calculated using the entropy method (Equations 8–10),
as shown in Figure 12, where w is a real trace interval and
log2 l is the maximum aggregation level in Equation 9.

IMPROVED-BINOMIAL-MULTIFRACTAL-GENERATION

INPUT: bias p, length l, initial mass m, common request
size r.

OUTPUT: a timestamped request sequence
��� t1 
 m1 � 
 � t2 
 m2 � 
 ����� 
 � tn 
 mn ��� .

ALGORITHM:

1. Initialize the stack and push pair � l 
 m � onto the stack;
initialize the logical clock c.

2. If the stack is empty, return; otherwise, go on to Step
3.

3. Pop a pair � li 
 mi � from the stack. If li � 1, distribute
the mass mi in requests of size r in the time interval
� c 
 c � 1 � , advance c by 1, and then go back to Step 2;
if 0 � 5 , r - mi - 1 � 5 , r, try to combine the top item
� li ' 1 
 mi ' 1 � in the stack to generate output, advance c
by li or li � li ' 1 accordingly, and then go back to Step
2. Each generated request � tk 
 mk � has a size associated
with a logical timestamp.

4. Flip a coin. If head, push pairs � li � 2 
 mi , p � and
� li � 2 
 mi ,.� 1 � p ��� into the stack; if tail, push them
in reverse order. Go back to Step 2.

Figure 13. Binomial multifractal I/O request
generation.

SYNTHETIC-TRACE-GENERATION

INPUT: interval length s, bin size b, original trace file f ,
common request size r.

OUTPUT: synthetic trace file.
ALGORITHM:

for each non-empty interval w in f
if the fraction of non-empty bins - 3%, p � 0 � 5else p = CALCULATE-P(s � b, w)
resolution = 1 ms
length = s/resolution
mass = aggregated request size in interval w
IMPROVED-BINOMIAL-MULTIFRACTAL-GENERATION

� p 
 length 
 mass 
 r �
map local timestamps to real timestamps

end for

Figure 14. Synthetic I/O trace generation al-
gorithm.

The key idea of synthesis is to use the aggregated re-
quest size (mass) from the original trace interval and redis-
tribute the mass in time according to the calculated bias.
Figure 13 shows our algorithm for multifractal trace gener-
ation, based on [19]. The input of initial mass m indicates
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Figure 15. Relative error of interarrival time and request size syntheses.

the amount of data accessed in the interval while bias p
defines the burstiness of data accesses. Length l is deter-
mined by the time length of a real trace interval and the
desired granularity of synthetic request timestamps. Bino-
mial multifractal generation is an iterative process and log2l
defines the maximum iteration level. This algorithm uses a
logical clock c to keep track of the time advance in trace
generation. Due to the multiplicative nature of the genera-
tion, the original algorithm from [19], which proceeds the
iteration until the maximum iteration level is reached, often
creates many small requests, which can induce synthetic er-
rors as high as 800%. To avoid this, we use the knowledge
that the size of 70–80% of disk requests in the cello and
snake traces, generated under HP-UX, are 8 KB [14], and
define the common request size r of 8 KB as an input to the
algorithm, which stops unnecessary higher-level iterations
when the mass being distributed becomes too small.

Figure 14 shows how to use IMPROVED-BINOMIAL-
MULTIFRACTAL-GENERATION to synthesize a trace. This
algorithm divides the real trace f into non-overlapping in-
tervals and treats them as independent of each other because
of the irrelevance of long-range dependence beyond the in-
terval length s. Consequently, the trace synthesis process in
each generation interval is also independent. The algorithm

also takes as input a selected bin size b for the purpose of
calculating p, as described in Section 5.2. The iteration of
binomial multifractal generation in an interval stops when
the resolution of one millisecond is reached.

6. Simulation Results

We use our proposed I/O trace generation method, as de-
scribed in Figure 14, to generate synthetic workloads. Be-
cause we do not attempt to synthesize request starting lo-
cations or read/write operations, we retain the same sector
identifiers and operations from the original trace, preserv-
ing spatial locality in the workload. Therefore, our baseline
for comparison is the original trace. We use both origi-
nal and synthetic traces to excise the Pantheon disk simula-
tor [20] and evaluate the synthesis accuracy by measuring
the relative error (RMS) between the cumulative distribu-
tion functions of disk response times for the original and
synthetic traces.

To measure the improvement obtained by using synthe-
ses based on fine-grained trace parameters, we compare
our method, MF-PWB, to a simple exponential interarrival
model, EXP, and a variant of the method proposed by Wang
et al. [19], MF-P. In MF-P, bias p is calculated over the en-

Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST 2005) 
0-7695-2318-8/05 $20.00 © 2005 IEEE 



R
e
la

tiv
e
 E

rr
o

r

  EXP  MF-P                       MF-PWB

w (s)      1.28            2.56           5.12

b (ms)  5 / 10          5 / 10         5 / 10

0%

20%

40%

60%

80%

100%

120%

140%

(a) Snake 05/30/92

R
e
la

tiv
e
 E

rr
o

r

  EXP  MF-P                       MF-PWB

w (s)      1.28            2.56           5.12

b (ms)  5 / 10          5 / 10         5 / 10

0%

20%

40%

60%

80%

100%

120%

140%

(b) Snake 06/06/92

Figure 16. Relative error of interarrival time synthesis.
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Figure 17. Relative error of request size synthesis.

tire trace, but we use the algorithm in Figure 13 to adjust the
generated trace for the most common request size. The key
difference between MF-P and MF-PWB is that MF-PWB
uses more parameters and does not model long-range de-
pendence at time scales greater than w, which is the trace
interval length. Another parameter of MF-PWB is the bin
size b.

Figures 15(a)–15(d) show the relative errors, measured
by RMS of response time distributions, of EXP, MF-P and
MF-PWB with different parameters for the cello and snake
traces in 05/30/92 and 06/06/92. We selected these specific
days because they have the maximum and minimum mean
response times for the snake traces, which in general are
more bursty and harder to model than cello. Note that EXP
generates synthetic interarrival times only. The relative er-
ror of MF-PWB ranges from 7.7% to 44.6%, depending
upon the trace itself and the parameters w and b; the error
of MF-P ranges from 13.5% to 121.6%; and the error of
EXP ranges from 16.7% to 91.6%, which is at least twice
the error of MF-PWB.

In general, MF-PWB reproduces interarrival patterns
more accurately than MF-P; computing p at smaller time

intervals generally translates into more accurate synthesis.
This improvement is significant for snake but less signifi-
cant for cello if we select poor values of b. However, the
results for cello and snake are still comparable.

To better illustrate the quality of synthetic request ar-
rival times and sizes, we isolate the effect of each. Fig-
ures 16(a) and 16(b) show the relative errors, caused by in-
terarrival time synthesis, of EXP, MF-P and MF-PWB for
snake. Only arrival times are synthetic; we obtain all of
the other request parameters from the original trace. The
errors are almost the same as those from traces with both
synthetic request arrival times and sizes, as shown in Fig-
ures 15(c) and 15(d).

Figures 17(a) and 17(b) show the relative errors, caused
by request size synthesis, of MF-P and MF-PWB for snake.
Here only request sizes are synthetic. We exclude EXP in
comparison because it does not generate synthetic request
sizes. Request size synthesis accounts for less than 10% of
the synthesis error, and MF-P is slightly better than MF-
PWB for that component of synthesis. The results of syn-
thesis error analysis for cello are similar [9]. Thus, for both
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cello and snake the majority of synthesis errors by MF-P
and MF-PWB comes from synthetic arrival times.

7. Conclusions and Future Work

For the purpose of performance evaluation, we need only
consider I/O activities at time scales related to the system
we are evaluating. For measuring disk response times and
queuing behaviors, we determined that a interval length of
five seconds bounded the error to less than 5% for two
workloads, one random and one sequential.

However, accurately capturing I/O burstiness is ex-
tremely important. We demonstrated a method of synthe-
sizing interarrival times using binomial multifractals that
exploits the fact that long-range dependence is unnecessary
beyond certain time scales. Using this method, we synthe-
sized traces with a relative error that ranged from approxi-
mately 8% to 12% on random and sequential workloads.

We are currently working on methods that can automati-
cally determine the appropriate interval length, and on com-
bining this model for temporal locality with a similar one
for spatial locality in I/O workloads.
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