Fault Recovery Designs for Processor-Embedded Distributed Storage Architectures with I/O-Intensive DB Workloads

22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies

Steve C. Chiu[†], Alok N. Choudhary[‡], Mahmut T. Kandemir[§] Benedict College[†], Northwestern University[‡], Penn State University[§]

April 13, 2005

MSST 2005

Outline

Motivation **Related Work** Architecture **Device Model Recovery Schemes** Workloads and Scenarios **Preliminary Results** Summary Future Work

Motivation

Computation in storage brings processing closer to data and reduces interconnect traffic, thus higher system performance. However, efficient and scalable fault tolerance capabilities are equally important!

Related Work

Network-attached secure disks (NASD) for offloading certain file system's performance-critical operations

Related Work

Intelligent Disk (IDISK) with IRAM and cross bar switch for full connectivity – each IDISK supports complete OS and DBMS functionality

Architecture

Active storage architecture with smart nodes (SN) organized into multiple smart storage groups (SSG) for disk- and MEMS-based systems interconnected via the InfiniBand® storage network.

Architecture

Courtesy of the Carnegie Mellon University CHIPS Research Project, URL: http://www.lcs.ece.cmu.edu/research/MEMS

April 13, 2005

MSST 2005

April 13, 2005

MSST 2005

Architecture

MEMS-based storage devices:

- Made from photolithographic processes
- Moving rectangular media sled
- Array of READ/WRITE tips
- Seek in X direction, access in Y direction
- Room for new data placement designs
- Room for new I/O scheduling algorithms

Architecture: Interconnect

InfiniBand switched fabric replaces PCI shared bus for higher interconnect bandwidth and lower latency.

Cascaded switches provide better scalability than PCI buses since TCA is no longer within the server.

Architecture: Software

SD device firmware/hardware (including SCSI driver)

Architecture: Optimized Processing

Architecture: Software

Processing model:

- Based on the SD software architecture
- For DB and more general workloads

Device Model

MEMS-Based vs. Disk-Based Storage Systems

Processing model for SD system remains applicable, except for device-specific parameters R_{read} and R_{write} . Replace with MEMS values.

Parameter	G1	G2	G3
bit width (nm)	50	40	30
sled acceleration (g)	70	82	105
access speed (Kbits/s)	400	700	1000
X settling time (ms)	0.431	0.215	0.144
total number of tips	6400	6400	6400
number of active tips	640	1280	3200
max throughput (MB/s)	25.6	89.6	320
number of media sleds	1	1	1
per-sled capacity (GB)	2.56	4.00	7.11
bi-directional access	no	yes	yes

MEMS G1, G2 and G3

Parameter	Value
RPM	6,400
max bandwidth (MB/s)	10
avg seek time R/W (ms)	9.2/17
number of data surfaces	18
number of cylinders	2630
sector size (bytes)	512
diameter of disk	3.5"
height of disk	1.63"

HP C2490A Disk

Mirroring with Spare Storage

Reliability:

- D1 of SDG A faults
- Send last check-point data from D1 of SDG B to Sp of SDG A
- Processing resumes with D0, D2, D3 and Sp of SDG A

Performance:

- SDG A and SDG B each processes different access pattern workloads
- READ from either SDG A or SDG B for faster I/O access
- WRITE must be performed to both SDG A and SDG B

Mirroring with Workload Migration

Reliability:

- D1 of SDG A faults
- Migrate the workload (code only) from SDG A to SDG B
- Processing continues with SDG B while D1 of SDG A is repaired

Performance:

- SDG A and SDG B each processes different access pattern workloads
- READ from either SDG A or SDG B for faster I/O access
- WRITE must be performed to both SDG A and SDG B
- No need to migrate check-point data so recovery cost is reduced

Code only, no data.

Mirroring with Workload Re-distribution

Reliability:

- D1 of SDG A faults
- Re-distribute the last check-point data among SDG A and SDG B
- Processing resumes with remaining SDs within SDG A and SDG B

Performance:

- SDG A and SDG B each processes different access pattern workloads
- READ from either SDG A or SDG B for faster I/O access
- WRITE must be performed to both SDG A and SDG B
- Amortize cost of recovery with reduced workload on every SD

Re-distribute data from the last checkpoint on SDG A and SDG B except D1 of SDG A. Then re-send the code and resume work.

MSST 2005

Parity with Dedicated Single Parity Device

Reliability:

- D1 of SDG faults
- Recover data by XORing D0, D2, D3 and DP (onto a spare, Sp)
- Processing resumes with D0, D2, D3 and Sp after recovery

Performance:

- Optimal speedup of 4 with more conservative system size
- Communication cost is 50*4 compared to 75*4 for servers
- Parity disk becomes the bottleneck for I/O and communication

Workloads and Scenarios

Fault Recovery for DB Workloads:

Scenario 0 for database *scan*: normal operation Scenario 1 for database *scan*: mirroring with spare storage Scenario 2 for database *scan*: parity with single parity device

Scenario 0 for TPC-H Q_1 : normal operation Scenario 1 for TPC-H Q_1 : mirroring with spare storage Scenario 2 for TPC-H Q_1 : mirroring with load migration Scenario 3 for TPC-H Q_1 : mirroring with load re-distribution Scenario 4 for TPC-H Q_1 : parity with single parity storage

Special Considerations for TPC-H Q₁:

Scenarios for Q_1 incorporate check-pointing, i.e. updating mirror or parity SDG/SMG with intermediate results at the granularity of one primitive. Thus, post-recovery processing backtracks by 1 stage only.

Sort

Aggregate

Group

Sort

Seq. Scan

Lineitem

 \mathbf{Q}_1

Simulation Setup

Simulation Structure for a Single SN

Simulation Platform & Tools

Platform: Cluster of 9 500-MHz Pentium III Linux PC, 64 MB on-device RAM, 9 GB local disk space, and Ethernet

Input data generator: *dbgen*: populates TPC-H tables at scale factor 1.0 (~ 1 GB size)

Performance Components:

I/O: simulated with *DiskSim 3.0* for disks and MEMS storage Computation: measured with timers with MPI_Wtime() calls Communication: measured with timers with MPI_Wtime() calls

Scan Scenarios 0, 1 and 2 for HP C2490A Disk-based Systems, SF=1.0

■ initial R I/O	■ initial R compute	□ parity build F I/O	□ parity build F compute
parity build F communication	■ initial F I/O	initial F compute	□ from R to F I/O
■ from R to F compute	■ from R to F communication	parity recovery F I/O	parity recovery F compute
■ parity recovery F communication	resumed F I/O	resumed F compute	

Scenario 2 (parity scheme) incurs higher I/O and communication costs but requires smaller system size than Scenario 1 (mirroring scheme).

TPC-H Q1 Scenarios 0, 1, 2, 3, 4 for HP C2490A SD Systems, SF=1.0

■scan I/O	scan compute	scan communication	□ pre-sampling I/O
pre-sampling compute	pre-sampling communication	re-distribution I/O	re-distribution compute
re-distribution communication	internal sort I/O	internal sort compute	external merge I/O
external merge compute	external merge communication	recover I/O	recover compute
recover communication	□ warmup I/O	□ warmup compute	warmup communication
■ mirror to main I/O	mirror to main compute	mirror to main communication	group-by I/O
group-by compute	aggregate I/O	aggregate compute	aggregate communication
■ local sort I/O	local sort compute		

Scenario 3 (mirroring + load re-dist) has network-limited characteristic while reducing post-recovery *Group-by* I/O by ~ 75% to 80%!

April 13, 2005

MSST 2005

Scan Scenarios 0, 1 and 2 for G3 MEMS-based Systems, SF=1.0

ſ	■initial R I/O	■ initial R compute	□parity build F I/O	□parity build F compute
	parity build F communication	■ initial F I/O	■ initial F compute	□ from R to F I/O
	■ from R to F compute	from R to F communication	parity recovery F I/O	parity recovery F compute
	parity recovery F communication	■ resumed F I/O	resumed F compute	

Scenario 2 (parity scheme) shows network-limited characteristics due to diminishing I/O cost. Call for high-performance interconnect!

TPC-H Q1 Scenarios 0, 1, 2, 3, 4 for G3 SM Systems, SF=1.0

scan I/O	scan compute	scan communication	pre-sampling I/O
pre-sampling compute	pre-sampling communication	re-distribution I/O	re-distribution compute
re-distribution communication	■ internal sort I/O	internal sort compute	external merge I/O
external merge compute	external merge communication	■ recover I/O	recover compute
recover communication	□warmup I/0	□ warmup compute	warmup communication
■ mirror to main I/O	mirror to main compute	mirror to main communication	group-by I/O
group-by compute	■aggregate I/O	aggregate compute	aggregate communication
local sort I/O	local sort compute		

Scenario 3 (mirroring + load re-dist) screams for faster interconnect! Scenario 2 appears desirable since only code (no data) is migrated.

Summary

Computation in storage brings processing closer to data and reduces interconnect traffic, thus higher system performance. Disks and MEMS storage impact fault tolerance capabilities for active I/O systems significantly, as are storage interconnects.

Future Work

- Code Offloading & Partitioning:
 - An optimization problem
 - MEMS: I/O scheduling + data layout
- Impact of InfiniBand and MEMS:
 - Effect on the recovery schemes
 - Both device and system levels
- Holistic Simulation Environment:
 - Extension to *Pantheon* and *SimOS*
- Smart Ubiquitous Computing:
 - Integrated processor-memory-storage

Thank You! ③

