
MSST ’05

Violin:
A Framework for Extensible

Block-level Storage

Michail Flouris
Dept. of Computer Science,

University of Toronto,
Canada

flouris@cs.toronto.edu

Angelos Bilas
ICS-FORTH &

University of Crete,
Greece

bilas@ics.forth.gr

13/4/2005 flouris@cs.toronto.edu 2

MSST ’05Violin

Large-scale Storage

• Large-scale storage systems in a data center
• Driven by

– Need for massive amounts of scalable storage
– Consolidation potential for lower costs

• Challenges in scalable storage
– Scalability and performance with commodity components
– Reduction of management cost
– Wide-area storage sharing

13/4/2005 flouris@cs.toronto.edu 3

MSST ’05Violin

Reducing Costs With…

• Emerging scalable, low-cost hardware
– Commodity clusters / grids (x86 with Linux / BSD)
– Commodity interconnects and standard protocols

• (PCI-X/Express/AS, SATA, SCSI, iSCSI, GigE)

• Storage virtualization software that
– Offers diverse storage views for different applications
– Automates storage management functions
– Supports monitoring
– Exhibits scalability and low overhead

• We want to improve virtualization at the block-level

13/4/2005 flouris@cs.toronto.edu 4

MSST ’05Violin

Block-level Virtualization
• “Virtualization” has two meanings
• Notion 1: Indirection

– Mapping between physical and logical resources
– Facilitates resource management

• Notion 2: Sharing
– Hides system behind abstractions for sharing

• Our goal
– Provide block-level virtualization mechanisms to

improve indirection and resource management
• Why block-level ?

– Transparency, Performance, Flexibility

13/4/2005 flouris@cs.toronto.edu 5

MSST ’05Violin

Issue with existing virtualization

• Current software has “configuration flexibility”
– Use of a small set of predefined modules

(RAID levels, volume management)
– Module combination in arbitrary manner

• But missing “Functional Flexibility”
– Ability to extend the system with new functionality
– Extensions implemented by modules loaded on-demand
– Not compromising configuration flexibility

(New extension modules are combined with old ones)
– Add management, performance, reliability-related features

(e.g. encryption, versioning, migration, compression)

13/4/2005 flouris@cs.toronto.edu 6

MSST ’05Violin

Why Functional Flexibility?
• Reduce implementation complexity

– Combine simple modules to build complex features
• Customizing system to user’s/application’s needs

– Adaptivity to existing or new applications
• Incremental system evolution

– Add new functionality before or after deployment
– Optimize or upgrade components

• Prototyping and evaluation of new ideas
• Not compromising configuration flexibility
• Creating extensions should be easy

– Developed by vendors, users, or storage administrators

13/4/2005 flouris@cs.toronto.edu 7

MSST ’05Violin

Our Goals
• Designing a system with automated storage

management without extensions, does not work
• We intend to add desirable management,

performance, reliability-related features,
in an incremental evolution fashion

• Violin provides the mechanisms to achieve this
• Management automation

– Will evolve over time
– Will include an initial configuration phase and continuous

monitoring and dynamic reconfiguration afterwards
• System will be able adapt to new applications

13/4/2005 flouris@cs.toronto.edu 8

MSST ’05Violin

Related Work

• Extensible Filesystems
– Ficus, FiST. Not at block-level, complementary approach.

• Extensible Network Protocols
– Click Router, X-kernel, Horus
– Similar layer stacking for network protocol extensions
– But: basic differences between network and storage

• Block-level virtualization software
– OSS Volume Managers: Linux MD, LVM, EVMS, GEOM
– Numerous Commercial Solutions
– Provide only configuration flexibility

13/4/2005 flouris@cs.toronto.edu 9

MSST ’05Violin

Outline

Motivation
• Violin Design
• Implementation
• Evaluation
• Conclusions

13/4/2005 flouris@cs.toronto.edu 10

MSST ’05Violin

Violin
• An extensible block-level hierarchy over physical

devices

Disk Device Drivers

Disks

Block I/OFilesystem
Buffer Cache Raw I/O

User Space

Kernel Space

kernel m
odule

V
iolin

Filesystem
Apps

Block I/O
Apps

Raw I/O Apps

Violin context

User extensions

Kernel components Modules
Violin

LXT

Persistent
Metadata

High−level
I/O API

13/4/2005 flouris@cs.toronto.edu 11

MSST ’05Violin

Violin Design

• Goals
– Easy to develop new extensions
– Easy to combine them in I/O hierarchy
– Low overhead

• Violin achieves this by providing
1. Convenient semantics and mappings
2. Simple control of the I/O request path
3. Persistent metadata support

13/4/2005 flouris@cs.toronto.edu 12

MSST ’05Violin

Virtualization Hierarchies
• Device graph maps I/O sources to I/O sinks

– I/O requests pass through devices (layers) in graph
• Nodes are virtual devices
• Edges are mappings
• Hierarchies: connected

device sub-graphs, or
independent I/O stacks

• Graph is DAG
– Directed acyclic graph

Source Source Source

Input Capacities: Output Capacities:

Sink SinkSinkSink Sink

In
te

rn
al

 D
ev

ic
es

 (
A

−M
)

Hierarchy A Hierarchy B

A B C D

E

F

G

H

I J

M

K

L

13/4/2005 flouris@cs.toronto.edu 13

MSST ’05Violin

Virtual Devices
• A virtual device is driven by an extension module

– Device/Layer is runtime instance of module
– Sees input, output address spaces

and one or more output devices
– Maps arbitrarily blocks between devices
– Transforms data between input and output, vice versa

• Some modules need logical translation table (LXT)
– A type of logical device metadata

0 1 2 3 4 5 6 7 8 ...
LXT0 1 43 6 87 ...0 1 2 3 4 5 6 7 8 Input Address Space

Output Address Space

13/4/2005 flouris@cs.toronto.edu 14

MSST ’05Violin

Control of I/O Requests

• Violin API allows layers simple control on requests
passing though them

• Layer can initiate, forward, complete or terminate
I/O requests using simple tags or calls

• Initiating I/O: Useful for multiplying I/O flows
– Layers initiate asynchronous I/O requests using

callback handlers, executed on completion
• Forward I/O: Send I/O request to a lower layer
• Complete I/O: Useful for caching layers
• Terminate I/O: Error-handling

13/4/2005 flouris@cs.toronto.edu 15

MSST ’05Violin

Tagged Request Control
• Left Example:

Request is forwarded
through the hierarchy from
source to sink
(Layer order: F, E, D, B)
and then back up

• Right Example:
Request is forwarded until
layer C, where it is
tagged complete and
returns upwards without
reaching the sink

SourceSource

<

<

<

<

Fwd Path
Return Path

A B

SinkSink

A B

SinkSink

C

D

E

F

Fwd to B

Fwd to D

Fwd to E

C

F

E

D

Fwd Path

Return Path

Fwd to D

Fwd to B

Fwd to E

Fwd
To Sink

>

<

<

<Tag Request
Complete

13/4/2005 flouris@cs.toronto.edu 16

MSST ’05Violin

Persistent Metadata

• Storage layers need persistent state
– For superblocks, partition tables, block maps, etc.

• Violin offers persistent objects for layer metadata
– Persistent Objects are memory-mapped storage blocks,

accessed as generic memory objects
– Automatically synchronized to stable storage periodically
– Automatically loaded / unloaded during startup / shutdown
– Layers need only allocate objects once

• Violin internal metadata are also persistent objects
– Device graph and hierarchy info stored at superblocks

13/4/2005 flouris@cs.toronto.edu 17

MSST ’05Violin

Metadata Consistency
• Three levels of metadata consistency (weaker to stronger)
1. Lazy-updates

– Synchronized overwriting older metadata periodically
– Similar to non-journaling filesystems

2. Shadow-updates
– Using two copies of all metadata (normal & shadow)
– Synchronization overwrites first normal metadata, then shadow
– Guarantees module metadata consistency

3. Atomic versioned-metadata consistency
– Module metadata and application data are versioned
– On failure the system rolls back to a consistent snapshot

• Violin currently supports levels 1 and 2

13/4/2005 flouris@cs.toronto.edu 18

MSST ’05Violin

Block Size and Memory Overhead
• Small block sizes can increase memory footprint of

module metadata
– When metadata proportional to total number of blocks

• Many OSes have small block sizes
– Linux 2.4.x: 4KB block device size

• Modules need own independent block size to
manage metadata in larger chunks

• Violin supports larger “internal” block size
– Size set by modules
– Independent from OS block size
– Reduces memory overhead effectively

13/4/2005 flouris@cs.toronto.edu 19

MSST ’05Violin

Outline

Motivation
Violin Design

• Implementation
• Evaluation
• Conclusions

13/4/2005 flouris@cs.toronto.edu 20

MSST ’05Violin

Implementation
• Violin Core

– Linux 2.4 loadable block device driver
– Registers extension modules
– Provides API & services to extension modules

• Violin Extension Modules
– Loadable Linux kernel modules that bind to Core
– Not device drivers themselves (much simpler)

13/4/2005 flouris@cs.toronto.edu 21

MSST ’05Violin

Example Modules
• RAID

– RAID Levels 0, 1 and 5 with recovery.
• Aggregation (plain or striped volumes)

– Volume Remapping (add, remove, move Volumes)
• Partitioning

– Managing Partitions (create, delete, resize partitions)
• Versioning (Online Snapshots)
• Online Migration
• Data Fingerprinting (MD5)
• Encryption

– Currently DES, 3DES and Blowfish algorithms

13/4/2005 flouris@cs.toronto.edu 22

MSST ’05Violin

Evaluation

• Ease of module development
• Configuration Flexibility
• Performance

13/4/2005 flouris@cs.toronto.edu 23

MSST ’05Violin

Evaluation: Ease Of Development
• Loose comparison of number of code lines
• Code lines reduced 2-6 times for similar functionality
• Little to reasonable effort for module development

13/4/2005 flouris@cs.toronto.edu 24

MSST ’05Violin

Evaluation: Configuration Flexibility

• Easily creating a hierarchy with complex functionality
from implemented modules

• Violin allows arbitrary combinations of extension
modules

PARTITION

PARTITION

RAID−0

DiskBLOWFISH

DiskBLOWFISH

VERSIONING

13/4/2005 flouris@cs.toronto.edu 25

MSST ’05Violin

Evaluation: Performance
• Platform:

– Dual Athlon-MP 2200+ PCs, 512MB RAM, GigE NIC,
Western Digital 80GB IDE Disks

– RedHat Linux 9.0 (Kernel 2.4.20-smp)
• Benchmarks

– IOmeter (2004.07.30) for raw block I/O
– Postmark for filesystem measurements

• Experiment Cases
1. Pass-through: System Disk vs. Violin Pass-through Layer
2. Vol. Manager: LVM vs. Violin Aggregate+Partition Layers
3. RAID-0: Linux MD vs. Violin RAID
4. RAID-1: Linux MD vs. Violin RAID

13/4/2005 flouris@cs.toronto.edu 26

MSST ’05Violin

Violin Pass-through vs. System Disk

512B

 1K
B

 2K
B

 4K
B

 8K
B

16K
B

32K
B

64K
B

Block size

0

10

20

30

40

50

60

70

80

M
B

yt
es

 /
se

c

IOmeter throughput for Violin Raw Disk vs. System Raw Disk for One Disk

Violin Raw Disk - 100% Read
Violin Raw Disk - 100% Write
Violin Raw Disk - 70% Read, 30% Write

512B

 1K
B

 2K
B

 4K
B

 8K
B

16K
B

32K
B

64K
B

Block size

0

1

2

3

4

5

6

7

8

M
B

yt
es

 /
se

c

Raw System Disk - 100% Read
Raw System Disk - 100% Write
Raw System Disk - 70% Read, 30% Write

Sequential I/O Random I/O

13/4/2005 flouris@cs.toronto.edu 27

MSST ’05Violin

Violin vs. LVM (2 Striped Disks)

512B

 1K
B

 2K
B

 4K
B

 8K
B

16K
B

32K
B

64K
B

Block size

0

10

20

30

40

50

60

70

80

M
B

yt
es

 /
se

c

IOmeter throughput for Violin Aggregation+Partition vs. LVM for 2 Striped Disks (32K stripe)

Violin Aggr+Part - 100% Read
Violin Aggr+Part - 100% Write
Violin Aggr+Part - 70% Read, 30% Write

512B

 1K
B

 2K
B

 4K
B

 8K
B

16K
B

32K
B

64K
B

Block size

0

1

2

3

4

5

6

7

8

M
B

yt
es

 /
se

c

LVM - 100% Read
LVM - 100% Write
LVM - 70% Read, 30% Write

Sequential I/O

Random I/O

13/4/2005 flouris@cs.toronto.edu 28

MSST ’05Violin

Violin vs. MD (RAID-1 Mirroring, 2 Disks)

512B

 1K
B

 2K
B

 4K
B

 8K
B

16K
B

32K
B

64K
B

Block size

0

10

20

30

40

50

60

70

80

M
B

yt
es

 /
se

c

IOmeter throughput for RAID-1: Violin vs. Linux MD for 2 Disks

Violin RAID-1 - 100% Read
Violin RAID-1 - 100% Write
Violin RAID-1 - 70% Read, 30% Write

512B

 1K
B

 2K
B

 4K
B

 8K
B

16K
B

32K
B

64K
B

Block size

0

1

2

3

4

5

6

7

8

M
B

yt
es

 /
se

c

Linux MD RAID-1 - 100% Read
Linux MD RAID-1 - 100% Write
Linux MD RAID-1 - 70% Read, 30% Write

Sequential I/O Random I/O

13/4/2005 flouris@cs.toronto.edu 29

MSST ’05Violin

Postmark Results over Ext2 Filesystem

Violin Disk
System Disk
Vl. Aggr+Part

LVM

Violin RAID-0

M
D RAID-0

Violin RAID-1

M
D RAID-1

0

2

4

6

8

10

T
r
a

n
sa

c
ti

o
n

s
p

e
r
 s

e
c
o
n

d

Violin Disk
System Disk
Vl. Aggr+Part

LVM

Violin RAID-0

M
D RAID-0

Violin RAID-1

M
D RAID-1

0

500

1000

T
o
ta

l
r
u

n
 t

im
e
 (

se
c
o
n

d
s)

Total Run Time (sec)Transactions / sec

13/4/2005 flouris@cs.toronto.edu 30

MSST ’05Violin

Multiple Layer Performance

512B

 1K
B

 2K
B

 4K
B

 8K
B

16K
B

32K
B

64K
B

Block size

0

10

20

30

40

50

60

70

80

M
B

yt
es

 /
se

c

Workload: 100% Sequential Read

512B

 1K
B

 2K
B

 4K
B

 8K
B

16K
B

32K
B

64K
B

Block size

0

10

20

30

40

50

60

70

80

M
B

yt
es

 /
se

c

Workload: 100% Sequential Write

Partition
Partition + RAID-0
Partition + RAID-0 + Version.
Partition + RAID-0 + Version. + Blowfish

Seq. Read

Seq. Write

13/4/2005 flouris@cs.toronto.edu 31

MSST ’05Violin

Limitations and Future Work

iSCSI

Violin
FS

iSCSI

iS
C

SI Violin

St
or

ag
e

N
od

e
N

Violin

iS
C

SI

St
or

ag
e

N
od

e
A

Application

Application Server

...

...

…
…

Distributed
Hierarchy

• Violin does not fully support distributed hierarchies
– No consistency for dynamically updated metadata

• Future work:
– Supporting distributed hierarchies in a cluster
– Automated hierarchy configuration and management,

according to specified requirements and policies

13/4/2005 flouris@cs.toronto.edu 32

MSST ’05Violin

Conclusions
• Goal is to improve virtualization in storage cluster
• Propose Violin, an extensible I/O layer stack
• Violin’s contributions are mechanisms for

– Convenient virtualization semantics and mappings
– Simple control of I/O requests from layers
– Persistent metadata

• These mechanisms
– Make it easy to write extensions
– Make it easy to combine them
– Exhibit low overhead (< 10% in our implementation)

• We believe that Violin’s mechanisms are a step towards
automated storage management

13/4/2005 flouris@cs.toronto.edu 33

MSST ’05Violin

Thank You.

Questions ?

“Violin: A Framework for Extensible Block-level Storage”,
Michail Flouris and Angelos Bilas

flouris@cs.toronto.edu, bilas@ics.forth.gr

http://www.ics.forth.gr/carv/scalable

	Violin: A Framework for Extensible
	Large-scale Storage
	Reducing Costs With…
	Block-level Virtualization
	Issue with existing virtualization
	Why Functional Flexibility?
	Our Goals
	Related Work
	Outline
	Violin
	Violin Design
	Virtualization Hierarchies
	Virtual Devices
	Control of I/O Requests
	Tagged Request Control
	Persistent Metadata
	Metadata Consistency
	Block Size and Memory Overhead
	Outline
	Implementation
	Example Modules
	Evaluation
	Evaluation: Ease Of Development
	Evaluation: Configuration Flexibility
	Evaluation: Performance
	Violin Pass-through vs. System Disk
	Violin vs. LVM (2 Striped Disks)
	Violin vs. MD (RAID-1 Mirroring, 2 Disks)
	Postmark Results over Ext2 Filesystem
	Multiple Layer Performance
	Limitations and Future Work
	Conclusions
	Thank You. Questions ?

