
Exporting Storage Systems in a 
Scalable Manner with pNFS

Dean Hildebrand

Advisor: Peter Honeyman
Center For Information Technology Integration
University of Michigan



Page 2

Outline

Motivation
pNFS Overview
pNFS Prototype
Experiments



Page 3

Motivation:
ASCI Example

FS
Node

FS
Node

…

… …

Net…

Archive
HPSS

Visualization
Cluster

…

…

Capability
Platform

Studio
Displays

Infiniband™ I/O NetworkInfiniband™ or GbEnet I/O Network

Net

System Data and Control NetworksSystem Data and Control NetworksSystem Data and Control NetworksSystem Data and Control Networks

Compute
Node

Compute
Node

from ASCI Technology Prospectus, July 2001

NFS

Login
Net

NFS

Login
Net

ASCI Platform, Data Storage and File System Architecture



Page 4

Motivation:
HPC Out-Of-Band File Systems

Asymmetric
Direct storage access
Separate metadata server(s)
Object Based: 

Lustre, Panasas ActiveScale
Block Based: 

EMC High Road, IBM SAN FS
File Based: NASD NFS

Symmetric
Direct storage access
Each node is a fully capable client 
and metadata server
Ex: IBM GPFS, Redhat GFS, 
Polyserve Matrix Server



Page 5

Motivation: 
NFS and OOB File Systems

Issues:
Single Server Bottleneck
Extra level of indirection

Symmetric OOB File SystemsAsymmetric OOB File Systems



Page 6

Problem Statement
HPC OOB File System Issues

Interoperability
Cost
Proprietary
Remote access performance (NFS, CIFS)

NFSv4 Issues
Many-to-one relationship of NFSv4 clients to 
server
Cannot scale with exported storage



Page 7

pNFS
IETF NFSv4 protocol extension
Scale with underlying file system

Clients performs direct I/O to storage 
Escape NFSv4 block size restrictions
Single file access

File system independent
Support all layout maps (block, object, file, etc)
Create global namespace of disparate HPC file systems

Interoperate with standard NFSv4 clients and servers
Storage still accessible through NFSv4 server

Operate over any NFSv4 infrastructure
Support existing storage protocols and infrastructures 

Examples: SBC on Fibre Channel on iSCSI, NFSv4



Page 8

pNFS Architecture



Page 9

NFSv4 Extensions (1/2)
LAYOUTGET operation

Retrieves file layout information
Valid until returned or file close

Arguments: Results:
File handle
Offset
Extent
I/O type
State identifier
Maximum count and cookie

Offset
Extent
Cookie
Opaque layout

Other Operations: 
LAYOUTCOMMIT, LAYOUTRETURN, CB_LAYOUTRECALL, 
GETDEVICEINFO, GETDEVICELIST



Page 10

NFSv4 Extensions (2/2)
Layout Driver

Interprets layout information
File layout protocol specific
Support standard and non-standard storage 
protocols 
Multiple per client
Multiple per file system

LAYOUT_CLASSES file system attribute
I/O Driver

Performs raw I/O to storage nodes
Examples: Myrinet GM, Infiniband



Page 11

pNFS Prototype
NFSv4 on Linux 2.6.9-rc3
Exports PVFS2 1.0.1 OOB file system



Page 12

PVFS2 Overview

Developed at Argonne 
National Laboratory 
Algorithmic file 
layout

Currently supports 
round robin striping
LAYOUTCOMMIT, 
LAYOUTRETURN, 
CB_LAYOUTRECALL 
not required

No locking subsystem
No data caching



Page 13

File Layout Retrieval Mechanism
LAYOUTGET sent on either:

Application read/write request
File open

pNFS server uses ioctl to retrieve layout
Client caches layout information
PVFS2 file layout consists of:

Size of layout
File system id
Number of file handles
Set of file handles (includes storage node info)
Distribution id
Distribution parameters, e.g., stripe size



Page 14

PVFS2 Layout and I/O Driver
Registers on load
Standard Linux API

file_operations structure
Ioctl injects opaque layout
I/O Driver uses specialized protocol 
with TCP/IP

ssize_t (*read) (struct file* filp, char __user* buf,
size_t count, loff_t* pos);

ssize_t (*write) (struct file* filp, const char __user* buf, 
size_t count, loff_t* pos);

int (*ioctl) (struct inode* inode, struct file* file, 
unsigned int cmd, unsigned long arg);



Page 15

pNFS Prototype Architecture



Page 16

Experimental Setup

Forty 2GHz dual Opteron nodes with 2GB RAM
PVFS2 storage nodes utilize software RAID 0 with 
four ATA drives
PVFS2 1.0.1 with 16 storage nodes, 1 metadata server

pNFS server, PVFS2 client, and PVFS2 metadata server on 
single machine

Maximum 23 clients (46 processes)
Gigabit Ethernet
Linux 2.6.9-rc3
IOZone to measure aggregate I/O throughput
Warm read cache
Writes are immediately committed to disk



Page 17

Write Experiments – Separate Files



Page 18

Write Experiment – Single File



Page 19

Read Experiment – Separate Files



Page 20

Read Experiment – Single File



Page 21

Discussion
Layout and I/O drivers enable scalability

Avoid indirection penalty and single server bottleneck of 
NFSv4

Standard I/O protocol reduces development and 
support cost

Validated opaque layout design 
Opaque file layout information and standard layout driver 
interface enables underlying file system independence
Obviates proprietary file system client

A single pNFS client can interact with multiple 
parallel file systems on multiple platforms

Issue:
Scalability of LAYOUTGET operation



Page 22

Related Work

Scalability of NFS
Bigfoot-NFS, Expand, nfsp, NASD NFS

EMC’s HighRoad
NFS- or CIFS-based control channel and block-based data 
channel
Facilitates data sharing
Limited to block-based EMC Symmetrix storage system 

Storage Resource Broker (SRB) 
Lacks parallel data access to multiple storage endpoints 
Lacks integration with local file system

GridFTP
No consistency protocol
Lacks integration with local file system



Page 23

Future Work
pNFS Protocol :

Locking
Security

Different issues for file-, object-, and block-based systems 
Layout management and delegation
Client data cache consistency

pNFS/PVFS2 Prototype:
MPI-IO support

General:
Large file layouts
Strided file layouts
Multiple pNFS servers



Page 24

More Information
pNFS –

http://www.pdl.cmu.edu/pNFS/

NFSv4 –
http://www.nfsv4.org/

CITI Linux NFSv4 Projects –
http://www.citi.umich.edu/


