The Relevance of Long-Range
Dependence in Disk Traffic and
Implications for Trace Synthesis

Bo Hong, Storage Systems Research Center
Tara M. Madhyastha, Dept. of Computer Engineering

University of California, Santa Cruz




/O Workload Modeling and Synthesis

+ Block-level disk 1/0O trace
Timestamp, r/w, offset, size

+ Important because ...
Real traces are difficult to obtain

Performance analysis and architecture of storage systems
depend upon traces and simulations

« Difficult because ...

Disk traffic Is bursty
No consensus on what a “good” model should capture
= We focus on performance-related characteristics

o Still an unsolved problem [Ganger]




Long-Range Dependence in Disk Traffic

+ Long-range dependence
Non-negligible event correlations across large time spans
Measured by the Hurst coefficient (0.5 ~ 1.0)

¢ Observed at ...
Network traffic [Leland et al.]
Web traffic [Crovella and Bestavros]
File system traffic [Gribble et al.]
Disk 1/0 traffic [Gomez and Santonja]

¢ Is long-range behavior really important?




Removing Long-Range Dependence
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+ Shuffling trace intervals removes long range dependence

+ The technique was originally proposed in [Grossglauser and
Bolot]




Experimental Methodology

+ HPL Pantheon I/O subsystem simulator [Wilkes]

o Metric: root mean squared (RMS) horizontal
distance between the CDF of 1/O response times
[Ruemmler and Wilkes]

+ Workloads [Ruemmler and Wilkes]

» Cello news server traces
« Random accesses

 Snake file server traces
= Sequential accesses




Results For Snake File Server
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+ Shuffling at very small time scales perturbs disk behavior

+ Correlations longer than one second do not affect disk
response times appreciably




Hurst Coefficient
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+ Long-range dependence is removed by shuffling
+ Relative error is still small

+ Dependence at large time scales in 1/O traffic does not
significantly affect disk behaviors with respect to response
times




Implications of the Irrelevance of LRD

+ Implications to workload modeling and synthesis
Short trace intervals can be considered as independent

+ Binomial multifractals for local burstiness in I/O
access patterns

+ Reconstruct quality synthetic workloads from a
small set of representative trace intervals, which
are selected using cluster analysis based on
metrics related to disk behaviors (in another

paper)




Multifractal-Based I/O Trace Synthesis

+ Binomial multifractals
» 80/20 “laws”
* Bilasp (> 0.5)
* Previously used in 1/O traffic modeling by [Wang and
Madhyastha et al.]
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Multifractal-Based I/O Trace Synthesis

+ Binomial multifractals
» 80/20 “laws”
* Bilasp (> 0.5)
» Previously used in I/O traffic modeling by [Wang and
Madhyastha et al.]

density o

25

20

15

10




Estimating Bias p
+ Entropy values at different aggregation levels
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Binomial Multifractal Generation

Bias p: 0.8, time interval length I: 8 sec, volume of requests m: 15 MB
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Synthetic Trace Generation

Input: original trace file f, interval length S

Output: a time-stamped request sequence
((t, my), (t;, my), ..., (L, m))

For each non-empty interval W in f
Calculate bias p
Mass = aggregated request size in interval W

Binomial-Multifractal-Generation (P, S, mass)
map local time-stamps to real time-stamps

End For




Synthesis Method Description

EXP MF-P (CMU) MF-PWB
Interarrival Exponential Binomial Binomial
pattern P Multifractals Multifractals
Large Small
Timescale N/A J
(1 day) (seconds)
. Interarrival Interarrival
. Interarrival . .
Synthesizes time time and time and
request size request size
Does not Request size, Sector ID, Sector ID,
synthesize® sector ID, r/ w r/w r/w

* The information that is not synthesized is retained from real traces




Fraction of Requests

Synthetic Traces
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+ Binomial multifractals models the interarrival pattern well
+ Exponential does not
+ Generating at small timescales improves synthesis quality
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+ MF-PWB method can generate the most accurate synthetic

traces




Experimental Results
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+ The generation interval length matters

+ The majority of synthesis errors by MF-P and MF-PWB
comes from synthetic arrival time (results shown In paper)




Conclusions and Future Work

+ Long range dependence is not important for reproducing
certain performance metrics
+ Binomial multifractals well capture local burstiness in 1/O

Interarrival patterns

Achieve a 8 —12% demerit factor for 1/O response times on random
and sequential workloads

+ Automatically determine appropriate interval length
+ Need to quantify spatial locality

+ PORS model [Wang et al.]

Use a two-dimensional version of binomial multifractals
Model both spatial and temporal localities as well as their correlations
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+ More information:
* http://lwww.soe.ucsc.edu/~tara/stargroup
* http://lwww.soe.ucsc.edu/~hongbo/publications.html

¢ Questions?




