# The Relevance of Long-Range Dependence in Disk Traffic and Implications for Trace Synthesis

Bo Hong, Storage Systems Research Center Tara M. Madhyastha, Dept. of Computer Engineering

University of California, Santa Cruz





### I/O Workload Modeling and Synthesis

- Block-level disk I/O trace
  - Timestamp, r/w, offset, size
- Important because ...
  - Real traces are difficult to obtain
  - Performance analysis and architecture of storage systems depend upon traces and simulations
- Difficult because ...
  - Disk traffic is bursty
  - No consensus on what a "good" model should capture
    - We focus on performance-related characteristics
- Still an unsolved problem [Ganger]





### Long-Range Dependence in Disk Traffic

- Long-range dependence
  - Non-negligible event correlations across large time spans
  - Measured by the Hurst coefficient  $(0.5 \sim 1.0)$
- Observed at ...
  - Network traffic [Leland et al.]
  - Web traffic [Crovella and Bestavros]
  - File system traffic [Gribble et al.]
  - Disk I/O traffic [Gomez and Santonja]
- Is long-range behavior really important?





# Removing Long-Range Dependence





- Shuffling trace intervals removes long range dependence
- The technique was originally proposed in [Grossglauser and Bolot]





### **Experimental Methodology**

- HPL Pantheon I/O subsystem simulator [Wilkes]
- Metric: root mean squared (RMS) horizontal distance between the CDF of I/O response times [Ruemmler and Wilkes]
- Workloads [Ruemmler and Wilkes]
  - Cello news server traces
    - Random accesses
  - Snake file server traces
    - Sequential accesses





#### Results For Snake File Server



Small shuffling intervals

Large shuffling intervals

- Shuffling at very small time scales perturbs disk behavior
- Correlations longer than one second do not affect disk response times appreciably





#### **Experimental Results**



Relative error (RMS)

- Long-range dependence is removed by shuffling
- Relative error is still small
- Dependence at large time scales in I/O traffic does not significantly affect disk behaviors with respect to response times



#### Implications of the Irrelevance of LRD

- Implications to workload modeling and synthesis
  - Short trace intervals can be considered as independent
- Binomial multifractals for local burstiness in I/O access patterns
- Reconstruct quality synthetic workloads from a small set of representative trace intervals, which are selected using cluster analysis based on metrics related to disk behaviors (in another paper)





### Multifractal-Based I/O Trace Synthesis

- Binomial multifractals
  - 80/20 "laws"
  - Bias p > (> 0.5)
  - Previously used in I/O traffic modeling by [Wang and Madhyastha et al.]







## Multifractal-Based I/O Trace Synthesis

- Binomial multifractals
  - 80/20 "laws"
  - Bias p > (> 0.5)
  - Previously used in I/O traffic modeling by [Wang and Madhyastha et al.]







#### Estimating Bias p

Entropy values at different aggregation levels

$$Y_t^{(n)}(k) = \int_{k2^{-n}}^{(k+1)2^{-n}} Y_t dt$$
, where  $k = 0, 1, ..., 2^n - 1$ 

$$E_{p}^{(n)} = -\sum_{k=0}^{2^{n}-1} \frac{Y_{t}^{(n)}(k)}{\int_{0}^{1} Y_{t} dt} \log_{2} \frac{Y_{t}^{(n)}(k)}{\int_{0}^{1} Y_{t} dt}$$

$$E_p^{(1)} = -p \log_2 p - (1-p) \log_2 (1-p)$$





#### **Binomial Multifractal Generation**

Bias **p**: 0.8, time interval length **l**: 8 sec, volume of requests **m**: 15 MB







# Synthetic Trace Generation

**Input:** original trace file f, interval length s

Output: a time-stamped request sequence

$$((t_1, m_1), (t_2, m_2), \dots, (t_n, m_n))$$

**For** each non-empty interval w in f

Calculate bias *p* 

mass = aggregated request size in interval w

Binomial-Multifractal-Generation (p, s, mass)

map local time-stamps to real time-stamps

#### **End For**





# Synthesis Method Description

|                      | EXP                            | MF-P (CMU)                         | MF-PWB                             |
|----------------------|--------------------------------|------------------------------------|------------------------------------|
| Interarrival pattern | Exponential                    | Binomial<br>Multifractals          | Binomial<br>Multifractals          |
| Timescale            | N/A                            | Large<br>(1 day)                   | Small (seconds)                    |
| Synthesizes          | Interarrival<br>time           | Interarrival time and request size | Interarrival time and request size |
| Does not synthesize* | Request size, sector ID, r / w | Sector ID,<br>r/w                  | Sector ID,<br>r/w                  |

<sup>\*</sup> The information that is not synthesized is retained from real traces





### Synthetic Traces





Snake file server

Cello news server

- Binomial multifractals models the interarrival pattern well
- Exponential does not
- Generating at small timescales improves synthesis quality





#### **Experimental Results**



140% 120% 100% 80% 40% 20% 0% W (s) 1.28 2.56 5.12 EXP MF-P MF-PWB

Snake file server (Day 1)

Snake file server (Day 2)

 MF-PWB method can generate the most accurate synthetic traces





#### **Experimental Results**



- The generation interval length matters
- The majority of synthesis errors by MF-P and MF-PWB comes from synthetic arrival time (results shown in paper)





#### Conclusions and Future Work

- Long range dependence is not important for reproducing certain performance metrics
- Binomial multifractals well capture local burstiness in I/O interarrival patterns
  - Achieve a 8 –12% demerit factor for I/O response times on random and sequential workloads
- Automatically determine appropriate interval length
- Need to quantify spatial locality
- PQRS model [Wang et al.]
  - Use a two-dimensional version of binomial multifractals
  - Model both spatial and temporal localities as well as their correlations





#### Thank You!

- Acknowledgements
  - Our shepherds Julian Satran and Robert Chadduck
  - Mengzhi Wang and Christos Faloutsos from CMU PDL
  - John Wilkes and Kimberly Keeton from HPL SSP
  - Eitan Bachmat from the Ben-Gurion University, Israel
  - UCSC Storage Systems Research Center
- More information:
  - http://www.soe.ucsc.edu/~tara/stargroup
  - http://www.soe.ucsc.edu/~hongbo/publications.html
- Questions?



