#### Storage Resource Broker



## Mitigating Risk of Data Loss in Preservation Environments

Reagan W. Moore
San Diego Supercomputer Center
Joseph JaJa
University of Maryland
Robert Chadduck
National Archives and Records Administration

moore@sdsc.edu
http://www.sdsc.edu/srb/





### **Topics**



- Preservation environments
  - Authenticity, integrity, infrastructure independence
- Types of data loss risk
  - Media, hardware, software, operations, user
- Data grid technology
  - Mechanisms for replication, federation
- NARA research prototype persistent archive
  - Federation of three data grids





### Preservation

- Archival processes through which a digital entity is extracted from its creation environment, and then supported in a preservation environment, while maintaining authenticity and integrity information.
- Extraction process requires insertion of support infrastructure underneath the digital material
- Goal is infrastructure independence, the ability to use any commercial storage system, database, or access mechanism



## InterPARES - Diplomatics



#### Authenticity - maintain links to metadata for:

- Date record is made
- Date record is transmitted
- Date record is received
- Date record is set aside [i.e. filed]
- Name of author (person or organization issuing the record)
- Name of addressee (person or organization for whom the record is intended)
- Name of writer (entity responsible for the articulation of the record's content)
- Name of originator (electronic address from which record is sent)
- Name of recipient(s) (person or organization to whom the record is sent)
- Name of creator (entity in whose archival fonds the record exists)
- Name of action or matter (the activity for which the record is created)
- Name of documentary form (e.g. E-mail, report, memo)
- Identification of digital components
- Identification of attachments (e.g. digital signature)
- Archival bond (e.g. classification code)





## InterPARES - Diplomatics



### Integrity - maintain links to metadata for

- Name(s) of the handling office / officer
- Name of office of primary responsibility for keeping the record
- Annotations or comments
- Actions carried out on the record
- Technical modifications due to transformative migration
- Validation





### **Preservation Approach**



#### Provide mechanisms to:

- Create archival context for the content
  - Context is preservation metadata (provenance, administrative, descriptive, structural, behavioral)
  - Content is the submitted digital entity
- Assert integrity the consistency between the context and the content
  - Track operations done on material and update context
- Assert authenticity that the material represents the original document
  - Track the chain of custody
- Manage technology evolution (encoding standard, storage repository, information repository, access methods)





### Types of Risk



- Media failure
  - Replicate data onto multiple media
- Vendor specific systemic errors
  - Replicate data onto multiple vendor products
- Operational error
  - Replicate data onto a second administrative domain
- Natural disaster
  - Replicate data to a geographically remote site
- Malicious user
  - Replicate data to a deep archive





### **How Many Replicas**



#### Three sites minimize risk

- Primary site
  - Supports interactive user access to data
- Secondary site
  - Supports interactive user access when first site is down
  - Provides 2nd media copy, located at a remote site, uses different vendor product, independent administrative procedures
- Deep archive
  - Provides 3rd media copy, staging environment for data ingestion, no user access





### Replication of Name Spaces



Data Access Methods (Web Browser, DSpace, OAI-PMH)

#### **Storage Repository**

- Storage location
- User name
- File name
- File context (creation date,...)
- Access constraints

Could rely on a single storage system to provide backup mechanisms for each name space and the files





### **Data Grids**

- Manage shared collections that are distributed across administrative domains
  - Location of item, access controls, checksums
- Implement infrastructure independence
  - Standard operations for interacting with multiple types of storage repositories
- Implement presentation independence
  - Standard APIs to support porting of user interfaces





# Data Grids Provide a Level of Indirection for Each Naming Convention



Data Access Methods (C library, Unix, Web Browser)

**Data Collection** 

#### **Storage Repository**

- Storage location
- User name
- File name
- File context (creation date,...)
- Access constraints

#### Data Grid

- Logical resource name space
- Logical user name space
- Logical file name space
- Logical context (metadata)
- Control/consistency constraints

Data is organized as a shared collection





### Federating Name Spaces



- To maintain authenticity, name spaces and authenticity metadata are also replicated across administrative domains
  - Need to preserve identity of archivists, access controls on users, audit trails on operations performed, and links from authenticity metadata to the electronic records
- Use data grids to manage synchronization of name spaces across federated data grids.





## Federation



Data Access Methods (Web Browser, DSpace, OAI-PMH)

Data Collection A

Data Collection B

#### Data Grid

- Logical resource name space
- Logical user name space
- Logical file name space
- Logical context (metadata)
- Control/consistency constraints

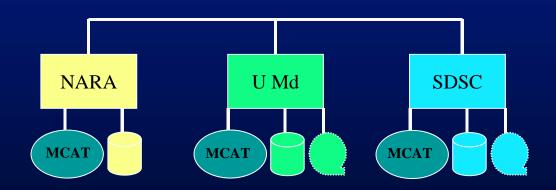
#### Data Grid

- Logical resource name space
- Logical user name space
- Logical file name space
- Logical context (metadata)
- Control/consistency constraints

Access controls and consistency constraints on cross registration of name spaces






## National Archives and Records Administration - Research Prototype Persistent Archive

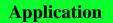


## Demonstrate preservation environment

- Authenticity
- Integrity
- Management of technology evolution
- Mitigation of risk of data loss
  - Replication of data
  - Federation of catalogs
- Management of preservation metadata
- Scalability
  - EAP collection
  - 350,000 files
  - 1.2 TBs in size

# Federation of Three Independent Data Grids




Principle copy stored at NARA with complete metadata catalog

Replicated copy at U Md for improved access, load balancing and disaster recovery Deep Archive at SDSC, no user access, but complete copy





### **Storage Resource Broker 3.3.1**



C Library, Java

Unix Shell Linux I/O C++ NT Browser, Kepler Actors DLL /
Python,
Perl,
Windows

HTTP, DSpace, OpenDAP, GridFTP

OAI, WSDL, (WSRF)

#### **Federation Management**

Consistency & Metadata Management / Authorization, Authentication, Audit

Logical Name Space Latency Management Data Transport Metadata Transport

#### **Database Abstraction**

Databases -DB2, Oracle, Sybase, Postgres, mySQL, Informix

#### **Storage Repository Abstraction**

Archives - Tape, Sam-QFS, DMF,ORB HPSS, ADSM, UniTree, ADS

File Systems Unix, NT, Mac OSX Databases -DB2, Oracle, Sybase, Postgres, mySQL, Informix





### Scalability

- Billions of records
  - Supported by commercial databases
- Billions of files
  - Not supported by file systems or archives

- Data grid mechanisms to enable scalability
  - Load leveling across multiple storage systems
  - Aggregation of small files in containers





| Storage Resource Broker Collections at SDSC (2/22/2005)                | GBs of data stored | Number<br>of files | Number<br>of<br>Users |
|------------------------------------------------------------------------|--------------------|--------------------|-----------------------|
| Data Grid                                                              | Ê                  | Ê                  | Ê                     |
| NSF/ITR - National Virtual Observatory                                 | 53,862             | 9,536,751          | 100                   |
| NSF - National Partnership for Advanced Computational Infrastructure   | 31,263             | 6,435,338          | 380                   |
| Hayden Planetarium - Evolution of the Solar System visualizations      | 7,201              | 113,600            | 178                   |
| Public collections - NSF/NPACI - Joint Center for Structural Genomics  | 5,455              | 3,405,266          | 67                    |
| NSF/NPACI - Biology and Environmental collections                      | 20,364             | 52,159             | 67                    |
| NSF - TeraGrid, ENZO Cosmology simulations                             | 155,980            | 1,157,168          | 3,176                 |
| NIH - Biomedical Informatics Research Network                          | 9,830              | 6,632,159          | 241                   |
| Miscellaneous static collections                                       | 8,013              | 161,352            | 241                   |
| Digital Library                                                        | Ê                  | Ê                  | Ê                     |
| NLM - Digital Embryo image collection                                  | 720                | 45,365             | 23                    |
| NSF/NPACI - Long Term Ecological Reserve                               | 253                | 8,892              | 36                    |
| NSF/NPACI - Grid Portal                                                | 2,620              | 53,048             | 460                   |
| NIH - Alliance for Cell Signaling microarray data                      | 559                | 71,318             | 21                    |
| NSF - National Science Digital Library SIO Explorer collection         | 2,654              | 1,052,202          | 27                    |
| NSF/NPACI -Transana education research video collection                | 92                 | 2,387              | 26                    |
| NSF/ITR - Southern California Earthquake Center                        | 99,010             | 2,074,138          | 64                    |
| Persistent Archive                                                     | Ê                  | Ê                  | Ê                     |
| NHPRC Persistent Archive Testbed (Kentucky, Ohio, Michigan, Minnesota) | 90                 | 372,947            | 28                    |
| UCSD Libraries archive                                                 | 4,147              | 408,050            | 29                    |
| NARA- Research Prototype Persistent Archive                            | 991                | 455,094            | 58                    |
| NSF - National Science Digital Library persistent archive              | 3,572              | 26,918,638         | 136                   |
| TOTAL                                                                  | 404 TB             | 59 million         | 5,167                 |

### Scalabilty



- Bulk file registration into metadata catalog
- Bulk file loading onto storage system
- Bulk metadata load
- Parallel I/O streams for data movement

### System interoperation

- From local file system to data grid
- Between storage systems within a data grid
- Between data grids





## Infrastructure Independence

- Ability to incorporate new technology within preservation environment, while maintaining authenticity and integrity
- All components of the preservation environment will evolve
  - Storage systems
  - Access mechanisms transport protocols
  - Security mechanisms
  - Metadata standards
  - Data encoding format





### **Examples of Extensibility**



#### Storage Repository Driver evolution

- Initially supported Unix file system
- Added archival access UniTree, HPSS
- Added FTP/HTTP
- Added database blob access
- Added database table interface
- Added Windows file system
- Added project archives Dcache, Castor, ADS
- Added Object Ring Buffer, Datascope
- Adding GridFTP version 3.3

#### Database management evolution

- Postgres
- DB2
- Oracle
- Informix
- Sybase
- mySQL (most difficult port no locks, no views, limited SQL)





## **Examples of Extensibility**



- The 3 fundamental APIs are C library, shell commands, Java
  - Other access mechanisms are ported on top of these interfaces
- API evolution
  - Initial access through C library, Unix shell command
  - Added inQ Windows browser (C++ library)
  - Added mySRB Web browser (C library and shell commands)
  - Added Java (Jargon)
  - Added Perl/Python load libraries (shell command)
  - Added WSDL (Java)
  - Added OAI-PMH, OpenDAP, DSpace digital library (Java)
  - Added Kepler actors for dataflow access (Java)
  - Adding GridFTP version 3.3 (C library)





# For More Information



Reagan W. Moore San Diego Supercomputer Center

moore@sdsc.edu

http://www.sdsc.edu/srb/





## **Preservation Strategies**



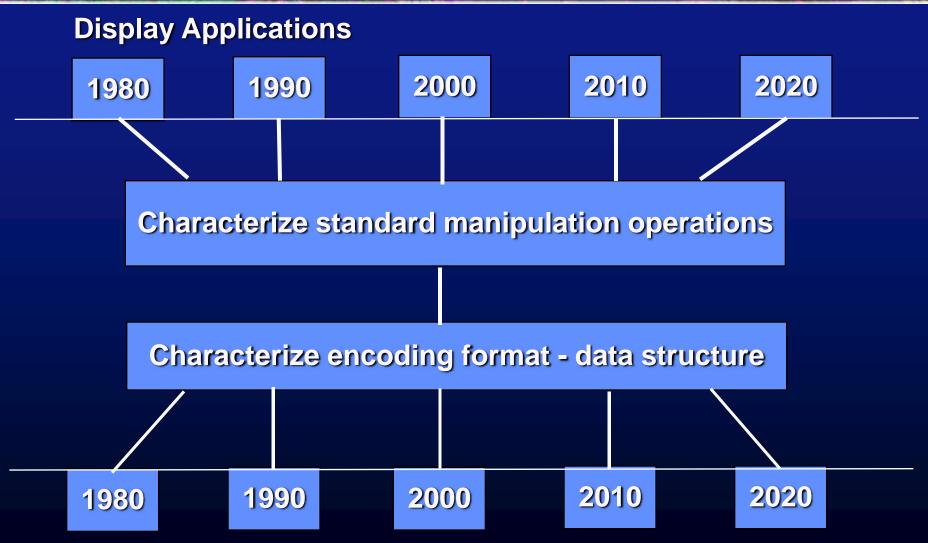
#### Emulation

- Migrate the display application onto new operating systems
- Equivalent to forcing use of candlelight to look at 16th century documents

#### Transformative migration

- Migrate the encoding format to the new standard
- Migration period is expected to be 5-10 years

#### Persistent object


- Characterize the encoding format
- Migrate the characterization forward in time





### **Persistent Objects**







