
SLASH
Scalable Lightweight Archival

Storage Hierarchy

Paul Nowoczynski
Pittsburgh Supercomputing Center

pauln@psc.edu

• Distributed Archival Caching System
– More flexible than a traditional stand-alone archiver

• Attach archiver to Lemieux via quadrics
• Incorporate off-the-shelf hardware into mix
• Minimize tape reads

• Completely user-mode, all I/O’s into the archiver
namespace are intercepted by a client-side
library.

• Allows parallel I/O into separate systems while
maintaining everything in a single namespace.

• Cooperative Cache – nodes may read data from
one another

• No database needed

• Caveats
– Works best with put/get requests

• Edits or files opened without O_TRUNC are problematic because
cache filesystems are independent

– Not a parallel filesystem
• Multiple nodes cannot write same file simultaneously

• Features
– Portability – no kernel modifications needed.
– Archiver system can be modularly expanded without large

investment
– Metadata is held within the tree - not in a separate database
– Convenient for monitoring and logging of I/O operations
– Data pre-staging with coordination of system scheduler
– Intelligent data migration to minimize thrashing of archiver disk
– MD5 sum “receipts” for uploaded files
– Good at automated file migration

Archiver Task Offloading
• Several Archival Duties may be handled by Slash

allowing for greater flexibility and increased performance
of the archival system
– File Caching

• Data cache management handled by low cost Slash Cache Nodes
– Data Applications

• Run on cache nodes instead of archiver cpus.
– Namespace Exporting

• Namespace may be owned by an external metadata controller.
– In the near Future..

• Will be able to control the millions of archived small files which
currently plague DMF

• Slash will own disk MSPs for various sized files – everything will be
treated as an object store (caches, DMF, slash MSPs)

How it works
• Intercepted Read I/Os (i.e. open()) contain RPCs

which determine cache status and location of
data.
– When possible, data is read directly from the

cooperative instead of from DMF/HPSS.
• Write I/Os are handled locally by cache node

and asynchronously migrated to the archiver at
a convenient time.

Slash Write

Tag file with
slash

attributes
3

Metadata
Server

Cache Node

Open(“foo”)
RPC

2

Open(“foo”)
O_WRONLY

1

RPC REPLY

4

Open & Write to
local file..on

close() register
with migration

service
5

Write()
… New data is written to cache then sent to archiver at
some later time (after close())
… Multi-threaded and multi-process opens of the same
file are supported

Slash Read

Get slash
attributes

3

Metadata
Server

Cache Nodes

Open(“foo”)
RPC

2
Open(“foo”)
O_RDONLY 1

RPC REPLY

4
Read()
… Requested data may reside on local
cache, remote cache or archiver
… RPC requests cache status/location
info from metadata server

Open file
referred by
the server

5

Raw Tcsio / QSW Performance (no disk I/O)

Tcsio/Slash Write Bandwidth (all I/O is written to local
cache node disk)

Tcsio/Slash Read Bandwidth

Slash Benchmark
• Read and Write Throughput

from Supercomputer to Slash
Archiver via TCSIO/Quadrics

• Type[123] are represent
different cache node hardware
architectures

• This slide provides baseline
measurements

• The test reads and writes 10
gigabyte data files from the
supercomputer
– No disk was involved on the

supercomputer

Cached vs. Non-Cached Writes

Cached vs. Non-Cached Reads

Cached vs.
Non-cached I/O
• Upload and download between

archiver namespace and
supercomputer

– Up to six cache nodes were used
• 4 SLCNS for 4 streams
• 6 SLCNS for 8 and 16 streams

• Blue line represents I/O directly
into the archiver’s disk

– Scalability of blue is poor due to
concatenation of disk volume
group.

• Uploads favored faster Cache
nodes

– Type 1 Cache nodes handled
more streams

– Explains performance drop for 16
readers since the uploaded data
was used for the read test.

• Data shows that system scales as
nodes are added

