A Hybrid Access Model for
Storage Area Networks

Aameek Singh Kaladhar Voruganti
Sandeep Gopisetty David Pease

Ling Liu
College of Computing Storage Systems
Georgia Tech IBM Almaden Research Center

aameek@cc.gatech.edu kaladhar@us.ibm.com

NAS vs SAN

NAS Access Model

Clients

NAS Server

Extra {Ej)) Ei

} Caching

SAN/Direct Access
Model

Direct Access

No data caching

MDS Serve%

Multlple connections

HSAN - Hybrid SAN
A New Hybrid Access Model

\ / / Choice of model is a
]]

dynamic, online
decision aimed at
reducing client
response times

Direct Access
Storage «

Clients

Data Caching
Hybrid Server

Choosing appropriate Access
Model

O = Utility-based Caching Problem at the Hybrid Server

Requested Object: O
Cache Admission Test: CAT
Cache Replacement Test: CRT

if (CAT(O)==success && CRT(O) ==success) {
access via NAS model ;
return object;
} else {
access via direct model ;
return metadata;
<client accesses storage for the object>

Object Utility

Value (O) = A.c / s¢

B Rate of Access (A)
0 Greater the frequency of access, better to cache
B Cost of obtaining object, if not in cache (c)
[0 Greater the cost, better to cache
B Size of object (s)
0 Bigger the object, lesser its utility
B Size-penalty factor (a)

O Used to favor smaller objects (like metadata), if
required

Parameter Evaluation

s — Available with MDS

A — MDS can compute

B Do NOT calculate accesses while object being
held exclusively

c — Cost in terms of response times
B Clients compute average access times
B Communicate to MDS in subsequent requests

a — Policy decision

Cache Admission Test

Value(O) > max(n, min(Value(0O;)))

[1 = threshold parameter

B Maintains quality of the cache

B Dynamically computed as an average of the
value of objects seen in the cache

m [1=avg(N){min (Value(O,)) }

B It an be extended to incorporate Hybrid
Server load

Cache Replacement Test

[0 Arrange all cached objects in increasing value
order {O4, O,,..., O, }

[0 Let m be the minimal prefix, s.t.
size(O,)+size(0O,)+...+size(0O,,) = size(O)

O If Value(O,,) < Value(O)
evict(O4, O,,..., O,)

[0 Ensures only less valuable objects are replaced

Data Writes

[0 Cache consistency Policies [Strong/Weak]

B NDIR - No-Dirty-Immediate-Replace

[0 Cached object is immediately invalidated whenever
accessed for a write

[0 Writes occur directly at storage (Direct Access)
B NDNR - No-Dirty-Never-Replace
[0 Cached object is marked irreplaceable

[0 Client sends writes to the Hybrid Server which writes
through to the disk immediately

B NDCR - No-Dirty-Can-Replace
[0 Cached object can be replaced

O If the cached copy is replaced, a message is sent to the
client to complete the write at the disk

Data Writes (contd...)

0 DNR - Dirty-Never-Replace

B Object is marked irreplaceable
B Writes occur at HS, which lazily writes to disk

0 DCR - Dirty-Can-Replace

B Object can be replaced and a notification is sent to
client (~ NDCR)

caching

Name Consistency Benefits Potential Drawbacks
NDIR Strong Simplicity Evicting a valuable
object
NDNR Strong Simplicity Enforced keeping of a
less valuable object
NDCR Strong Unbiased Caching New connection
opened during a write
DNR Weak Better performance Implementation
(less 1/0) complexity
DCR Weak Less I/O and unbiased | Added Complexity and

a hew connection

Memory Model

How to partition data and metadata
caches?

B Partitioned
[0 Separate caches with fixed sizes
B Shared with strict priority to metadata
[0 A Metadata object is never replaced for a data
object (~ value=o0)
B Shared with appropriate a
[0 Appropriate a value to favor metadata objects
[0 Or hard-increment metadata values by Tl

Conclusions and Future Work

[0 Presented a design of an intelligent SAN with

hybrid access model

[0 Per-request granularity of choosing the

appropriate model

[0 Initial analysis indicates promise of the

0O

approach

Evaluation on real benchmarks

Investigating more sophisticated caching
mechanisms

B (a) multi-tier caching (b) cooperative caching

