
A Hybrid Access Model for
Storage Area Networks

Aameek Singh Kaladhar Voruganti
Sandeep Gopisetty David Pease

Ling Liu

College of Computing Storage Systems
Georgia Tech IBM Almaden Research Center

aameek@cc.gatech.edu kaladhar@us.ibm.com

NAS vs SAN
NAS Access Model SAN/Direct Access

Model
Clients

NAS Server

Storage

MDS Server
Extra
Hop

I/O Contention

Caching

Multiple connections

No data caching

Direct Access

HSAN – Hybrid SAN
A New Hybrid Access Model

Clients

Hybrid Server

Storage

Choice of model is a
dynamic, online
decision aimed at
reducing client
response times

Data Caching

Direct Access

Choosing appropriate Access
Model

≈ Utility-based Caching Problem at the Hybrid Server

Requested Object: O
Cache Admission Test: CAT
Cache Replacement Test: CRT

if (CAT(O)==success && CRT(O) ==success) {
access via NAS model ;
return object;

} else {
access via direct model ;
return metadata;
<client accesses storage for the object>

}

Object Utility

Value (O) = λ.c / sα

Rate of Access (λ)
Greater the frequency of access, better to cache

Cost of obtaining object, if not in cache (c)
Greater the cost, better to cache

Size of object (s)
Bigger the object, lesser its utility

Size-penalty factor (α)
Used to favor smaller objects (like metadata), if
required

Parameter Evaluation

s – Available with MDS
λ – MDS can compute

Do NOT calculate accesses while object being
held exclusively

c – Cost in terms of response times
Clients compute average access times
Communicate to MDS in subsequent requests

α – Policy decision

Cache Admission Test

Value(O) > max(π, min(Value(Oi)))

Π = threshold parameter
Maintains quality of the cache
Dynamically computed as an average of the
value of objects seen in the cache
Π = avg(N){min (Value(Oi)) }
It an be extended to incorporate Hybrid
Server load

Cache Replacement Test

Arrange all cached objects in increasing value
order {O1, O2,…, On}

Let m be the minimal prefix, s.t.
size(O1)+size(O2)+…+size(Om) ≥ size(O)

If Value(Om) < Value(O)
evict(O1, O2,…, Om)

Ensures only less valuable objects are replaced

Data Writes
Cache consistency Policies [Strong/Weak]

NDIR – No-Dirty-Immediate-Replace
Cached object is immediately invalidated whenever
accessed for a write
Writes occur directly at storage (Direct Access)

NDNR – No-Dirty-Never-Replace
Cached object is marked irreplaceable
Client sends writes to the Hybrid Server which writes
through to the disk immediately

NDCR – No-Dirty-Can-Replace
Cached object can be replaced
If the cached copy is replaced, a message is sent to the
client to complete the write at the disk

Data Writes (contd…)
DNR – Dirty-Never-Replace

Object is marked irreplaceable
Writes occur at HS, which lazily writes to disk

DCR – Dirty-Can-Replace
Object can be replaced and a notification is sent to
client (~ NDCR)

Name Consistency Benefits Potential Drawbacks

NDIR Strong Simplicity Evicting a valuable
object

NDNR Strong Simplicity Enforced keeping of a
less valuable object

NDCR Strong Unbiased Caching New connection
opened during a write

DNR Weak Better performance
(less I/O)

Implementation
complexity

DCR Weak Less I/O and unbiased
caching

Added Complexity and
a new connection

Memory Model
How to partition data and metadata
caches?

Partitioned
Separate caches with fixed sizes

Shared with strict priority to metadata
A Metadata object is never replaced for a data
object (~ value=∞)

Shared with appropriate α
Appropriate α value to favor metadata objects
Or hard-increment metadata values by Π

Conclusions and Future Work

Presented a design of an intelligent SAN with
hybrid access model
Per-request granularity of choosing the
appropriate model
Initial analysis indicates promise of the
approach

Evaluation on real benchmarks
Investigating more sophisticated caching
mechanisms

(a) multi-tier caching (b) cooperative caching

