Performance Evaluation of Commodity iSCSI-based Storage Systems

<u>Dimitrios Xinidis</u>, Michail D. Flouris, and Angelos Bilas

{ dxinid, flouris, bilas}@ics.forth.gr

Institute of Computer Science (ICS)
Foundation for Research and Technology – Hellas (FORTH)
Heraklion, Greece

Motivation

- Storage systems need to scale to large sizes
- Need for providing scalability at the block level
- Connect many disks in the system through scalable network
- Technologies commonly used
 - SCSI
 - Fiber Channel
- Rely on custom network components (Fiber Channels interconnects, controllers)
- Replace custom interconnects with commodity networks even inside the data center
- Main problem is the protocol used on the top of this interconnect

MSST '05

Motivation (cont'd)

- SCSI over IP (iSCSI)
- Network standard that provides a transport layer for SCSI commands over TCP/IP
- Use existing infrastructures for access storage
- IP-based infrastructure has been improving dramatically
 - 10Gbit Ethernet will become commodity over the next 2 years
- It is not clear what is its impact on system performance
- Previous work has revealed the adverse effect of TCP processing
- How to map iSCSI related overhead to different layers in I/O protocol stack of the kernel?

Goals

 Examine the contribution of each component of the I/O protocol stack in overhead in iSCSI based systems

- Impact of iSCSI to application server performance
- Use both application and micro benchmarks

Platform

- 16 dual-processors, Athlon at 1.8 GHz, 512 MB RAM
- Each node has 1 Gbps network interface
- Nodes are connected with 24-port switch, 48Gbit/s backplane
- Nodes are divided in application and storage nodes
- Storage nodes have 6 disks, 80GB 2MB cache
- 32 bit/33 MHz PCI bus, peak throughput 133MBytes/s
- Disks are configured in RAID-0 mode with Linux MD driver
- Intel iSCSI implementation
- Linux Redhat9.0, kernel 2.4.x

Setups

Methodology

- What is the cost of each of these layers?
- Instrument kernel layers
- Develop time framework presented at CAECW 05 workshop
- Instrumentation is a highly time consuming procedure

Benchmarks

- Use both real applications and micro benchmarks
- Micro benchmarks
 - lometer with workloads variations, where we vary access patterns and read-write mixes
 - Postmark, simulates the behavior of an Internet Mail Server
- Real applications
 - MySQI, subset of TPCH workload
 - SpecSFS: Measures the throughput and response time of an NFS server

Base Performance

Configuration	Read	Write
	(Mbytes/s)	(Mbytes/s)
Single disk	50	20
Direct Attached	120	50
iSCSI	25	40
iSCSIx3	50	40

- Iometer with sequential reads and writes
- Request size is 4, 8 Kbytes
- Maximum throughput in direct configuration is the maximum of PCI bus

Results (Postmark)

- Sensitive to I/O latency
- iSCSI reduces performance up to 30%
- iSCSIx3 improves performance up to 45%
- This benefit comes from the additional cache and not from having more disks

Results (Tpch)

- TPCH mostly depends on I/O throughput
- iSCSI reduces performance up to 86% and 26% on average
- iSCSIx3 performance improves significantly
- Tpch benefits mostly from the increased number of disks under iSCSIx3 (Not from increased buffer cache)

System Time Breakdown

 Besides TCP an important component of the time is spent in buffer cache and system call interface

Conclusions

- Examine the impact of using commodity interconnects and protocols to scale storage systems
- iSCSI has a significant impact in all applications we have examined
- iSCSIx3 is able to scale system resources and recover most of the performance loss
 - Postmark benefits from the increased buffer cache, TPCH benefits from the increased number of disks
- Examine detailed breakdown of I/O overheads to layers of the I/O protocol stack
 - Besides TCP and NIQ, buffer cache management and system call interface is a significant component