Manfred Stolle Zuse Institute Berlin stolle@zib.de

Optimizing reasonably secure Long Distance Data Transfer

Or

How to transfer Data while being poor

The situation

- A scientific team gains on a daily basis 250 GB of observation data.
- In order to be processed and stored the data has to be transmitted over a long distance.
- Transmission with ftp performance is not faster than 160 GB per day.
- No influence on the network no root permission – no privileges at all!

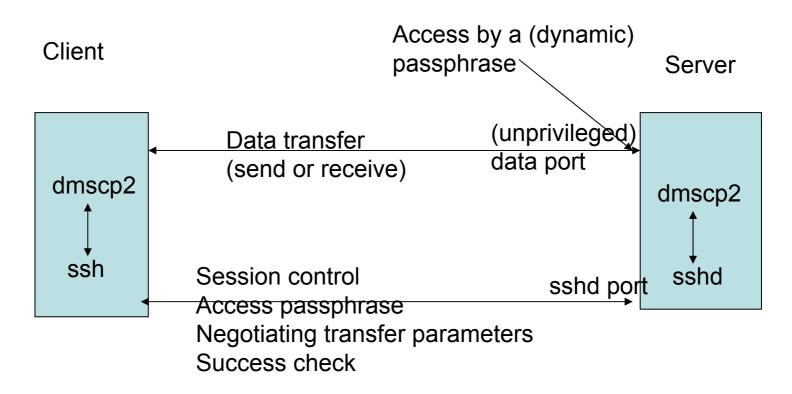
Keep it small if you are poor!

- BIG solutions (probably) exist.
- Big solutions require big ressources (manpower,hardware, \$).

 I'm proposing a small (inexpensive) solution

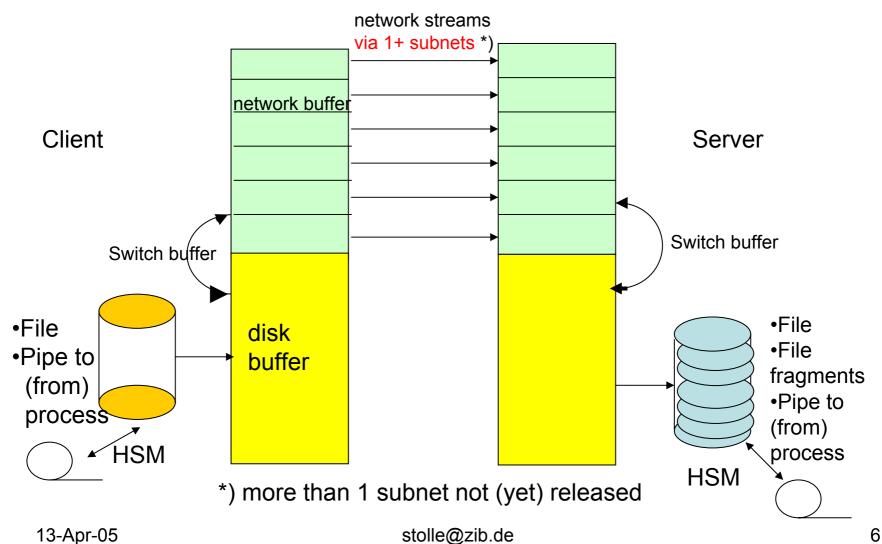
Steps

 Separate the (session and task) control flow from the data flow


Secure the control flow

Optimize the data flow

Keep it simple


dmscp(2) control and data flow

This was done in dmscp(1) – See San Diego MSS Conf. 2001

This runs with ftp performance → too slow!

Optimizing the data flow and data objects

http://mss.zib.de/mss

Tuning parameters

Number of network streams (-streams s)

Size of network buffer (-maxbuf m)

The total buffer is 2*m*s

TCP-Windowsize (-wsz w)

HSM related features of dmscp2 (user exits = perl or sh ... scripts)

at certain events e.g. *disk full error*

Examples (in perl) come with the source

More goodies

 Optional reading/writing from/to pipes at client and server instead of files,

 Recursive Copy of a file tree (Metadata via the secure line)

Network tuning option (copy from core to core)

Success check

 Amount of data on server/client is compared

Optional checksumming

Performance

Comparing

dmscp2 with dmscp(1)/ftp (1.9 MB/s) and

scp (0.6 MB/s)

Distance 200 Miles

Latency 5.7 ms

The line contains 100 Mbit components.

3.5 x faster than dmscp(1)/ftp

11.3 x faster than scp

	Г
streams	MB/sec
1	1.9
2	3.6
3	4.0
4	5.7
5	5.2
6	5.4
7	6.8
8	6.8

Performance (HPC involved)

Local network (1 Gbit/s):
Latency < 1ms
hpscp 31 MByte/sec
(hpscp is a tuned scp *))

streams	MByte/sec
1	63
6	111
12 in 2 subnets	201 **)

~340 km (200 Miles)
Bandwidth 1 Gbit/s
Latency 3 ms
hpscp: 28 MByte/sec

streams	MByte/sec
1	9.2
16	63.2
40	81.1 (101.1 **)

^{*) &}lt;a href="http://www.psc.edu/networking/projects/hpn-ssh/">http://www.psc.edu/networking/projects/hpn-ssh/

**) core to core

^{**)} feature going to be released next week

dmscp2 needs

 No root permission for the installation Install it simply in your ~/bin directory!

No daemon under root (except sshd)

dmscp2 is free and easy to install!

http://mss.zib.de/mss contains

- This presentation (long version)
- a dmscp2 users guide
- The sources

13-Apr-05 stolle@zib.de 15 http://mss.zib.de/mss