CIS™: Content Immutable Stor age for
Trustworthy Electronic Record Keeping

Lan Huang, Windsor W. Hsu
IBM Almaden Research Center
650 Harry Rd.

San Jose, CA 95120, USA
{lanhuang,windsor } @us.ibm.com

Abstract

As records are increasingly generated in large volumes
and in electronic form, which allows easy destruction and
clandestine modification, it is imperative that they be prop-
erly managed to preserve their trustworthiness, i.e., their
ability to provide irrefutable proof and accurate details of
events that have occurred. The need for proper record
keeping is further underscored by the recent corporate
misconduct and ensuing attempts to destroy incriminating
records. We critically examine the purpose and process of
record keeping to establish the storage system requirements
for ensuring that records are trustworthy. We refer to a
storage system that meets these requirements as contentim-
mutable storage (CIS). CIS offers overwrite protection that
is secure even against inside attacks, supports index mech-
anisms efficiently, allows records to be properly disposed
of after they have expired, and is low in cost yet reliable.
We also discuss design issues in satisfying the requirements
and describe a prototype implementation of CIS. Perfor-
mance results obtained on the prototype suggest that CIS
performs similarly to regular storage for the record keep-
ing workload.

1. Introduction

Records such as electronic mail, financial statements,
medical images, drug development logs, quality assurance
documents and purchase orders, are valuable assets, repre-
senting much of the data on which key decisions in business
operations and other critical activities are based. Records
also serve as evidence of activity. To be useful, however,
the records must be trustworthy, i.e., accurate, credible and
readily accessible. Having trustworthy records is particu-

*Theauthor performed this work when he was asummer intern at IBM
Almaden Research Center, San Jose, CA in the summer of 2004.

Fengzhou Zheng *
Department of Computer Science
Princeton University
Zheng@cs.princeton.edu

larly imperative in the litigious US. On average, a Fortune
500 company is the target of 125 non-frivolous lawsuits at
any given time, and the damages awarded are increasing
rapidly, as is the cost of electronic data discovery, which is
projected to rise at a rate of 65% per year to reach $2 billion
in 2006 [21]. Records are increasingly stored in electronic
form, which makes them relatively easy to delete and mod-
ify without leaving much of a trace. Therefore, ensuring
their accuracy and credibility is especially critical.

Furthermore, a growing proportion of the records are
subject to regulations that specify how they should be man-
aged. In the US alone, there are currently more than 10,000
such regulations [24]. The key focus of many of these regu-
lations (e.g., Sarbanes-Oxley Act [7], SEC Rule 17a-4 [20])
is to ensure that records are trustworthy. Non-compliance
with these regulations could result in stiff penalties. The
bad publicity of non-compliance and the ensuing investor
impacts could cost an organization dearly. As informa-
tion becomes more valuable to organizations coupled with
headlines of corporate misdeeds, accounting scandals and
securities fraud, the number and scope of such regulations
are likely to grow. Worldwide, the volume of regulated
records is projected to increase by 64% per year to almost
2 PB in 2006 [24].

While immutability of records is often specified as a re-
quirement for proper record keeping, what is actually re-
quired in practice is that the records be “term-immutable”,
i.e., immutable for a specified retention period. For ex-
ample, SEC Rule 17a-4 [20] specifies a retention period
of three years for email, attachments, memos, instant mes-
saging, etc. It is important for an organization to properly
dispose of records that are no longer useful to the orga-
nization and have passed any mandated retention periods.
This is not only for storage space efficiency purpose but
also for the reduction of associated costs for record keep-
ing [21]. Proper disposition of records includes deleting
the records and in some cases, “shredding” the records so

that they cannot be recovered or discovered even with the
use of data forensics.

To ensure their trustworthiness, electronic records have
traditionally been stored by making irreversible changes to
an optical storage medium, such as a Write-Once-Read-
Many (WORM) optical disc [18], CD-R and DVD+-R.
Such storage, however, does not allow expired records to be
selectively disposed of. Instead, an entire disc of records is
disposed of at a time as the medium is physically destroyed.
Such storage also tends to lack the ability to commit small
amounts of data to random locations. They rely on a driver
software that sends write streams to write a large amount
of data. This small write capability is crucial for main-
taining trustworthy index mechanisms that can quickly lo-
cate relevant records during an inquiry, especially in view
of the huge volumes of records that organizations have to-
day. Moreover, for various reasons, improvement in optical
technology has not kept pace with improvement in alterna-
tive technologies such as magnetic recording, especially,
when it comes to storage density and performance.

Thus, many new storage systems (e.g., [8, 11, 16, 22])
have recently been introduced to facilitate electronic record
keeping. These new systems address some, but not all, of
the limitations associated with traditional WORM storage.
They also introduce new issues such as the adequacy of the
overwrite protection. Object-based Storage (OSD) [4, 9]
introduces a completely new storage interface to achieve
storage security, performance scalability and autonomous
management. It can be configured to meet part of the re-
quirements for record keeping. But we aim to minimize the
changes to existing block level interface to achieve maxi-
mum application portability and cost efficiency. The sup-
porting infrastructure for OSD, including OSD controller
and devices, is not openly available as of today. We would
like to reuse the existing software/hardware stack for SCSI
based storage system as much as possible. We critically
examine the purpose and process of record keeping to es-
tablish the storage system requirements for ensuring that
records are trustworthy. The key requirements are that the
storage system must 1) offer overwrite protection that is
secure even against inside attacks; 2) efficiently support in-
dex mechanisms; 3) allow records to be properly disposed
of after they have expired; and 4) be low cost yet reliable.
We refer to a block level storage system that satisfies these
requirements as content immutable storage. In the paper,
we discuss design issues in CIS and describe a prototype
implementation of CIS. We also present performance re-
sults obtained on the prototype. The results indicate that
for the target workload, which is record keeping, the per-
formance of CIS is comparable to that of regular storage
systems.

The rest of the paper is organized as follows. Section 2
discusses related work. In Section 3, we establish the key

storage requirements for trustworthy record keeping. In
Section 4, we discuss design issues in satisfying these re-
quirements. In Section 5, we present performance opti-
mizations. Section 6 describes our prototype and presents
performance results obtained on the prototype. Section 7
provides our conclusions.

2. Related Work

To ensure their trustworthiness, electronic records have
traditionally been stored by making irreversible changes to
optical storage media [1], such as CD-ROM/DVD-ROM
and MO (magneto-optical disc). However, optical storage
has seen a declining market trend, due to its performance
and storage density disadvantages as compared to magnetic
disks. Optical disc’s read/write speed has not kept up with
the magnetic hard disk’s performance improvements. To
manage an optical library is orders of magnitude more dif-
ficult than managing a hard drive based archival store of
the same capacity. In addition, functionality-wise, existing
systems based on optical storage do not allow data to be
selectively shredded and most do not support data writes at
random locations.

Thus, many new WORM storage systems (e.g., [19, 8,
11, 16, 22]) have recently been introduced to facilitate elec-
tronic record keeping. These systems addressed some of
the limitations associated with traditional WORM storage.
Critical functionalities, such as the efficient support of in-
dex mechanisms, are, however, still lacking. Moreover,
these systems introduce new issues such as the adequacy
of the overwrite protection.

Venti [19] presents an archiving storage system that uses
a fingerprint of a data block’s contents to address the block.
The fingerprint is computed from the contents of the block
using a secure one-way hash function (SHA1 [15]) and
thereafter returned as the pointer for future reference to the
block. Finding two distinct inputs that hash to the same
value under SHA1 has not been considered to be computa-
tionally feasible [14]. Some recent cryptography research
has found that it is possible to hack SHAO, MD5 and even
SHAL1 [5, 25, 12]. That means an intruder can replace the
original content block with a junk content block, which
happens to have the same SHAL hash value. However, it
is still effectively secure to use longer length one-way hash
function such as SHA2. Since different contents will auto-
matically lead to different addresses, the system effectively
avoids overwriting or data modifications, if the block han-
dles are safely stored for subsequent retrieval of the data,
and if all the accesses go through the Venti system’s ad-
dress mapping layer. It is not difficult to imagine that an
intruder can selectively damage the content of the blocks
on the storage system through direct access.

Centera [8] describes a fingerprint addressed storage
system conceptually similar to Venti [19], but at the object
level. Similar to Venti [19], the system effectively behaves
like a write-once device, provided that the fingerprints are
safely kept for subsequent retrieval of the objects, and if
all the accesses go through the system. Such systems also
require a new interface, and the porting of applications to
this new interface. SnapLock [16] provides overwrite pro-
tection as a feature of general file system. It protects the
immutability of a file by marking the non-overwriting flag
for each file. However, all these special marks reside on
rewritable media and can be easily destroyed if SnapLock
file system is bypassed. CIS aims to achieve secure term-
based block immutability on the media, such that no by-
passing is ever possible.

Object-based Storage (OSD) [4, 9] introduces an object
level storage interface. It contains a new set of storage ac-
cess and management commands with completely differ-
ent formats from existing SCSI or ATA standards. Object-
related meta data are maintained on the storage for each
object. The new expanded interface helps to achieve im-
proved performance, scalability, security and storage man-
agement. It is technically possible to maintain one field of
the object meta data for immutability check, enforced by
OSD, to achieve object immutability. This extra check cur-
rently does not exist. OSD provides append command to
append data to an object. But the granule is in sectors. So
it is not ready to support efficient indexing for record keep-
ing purpose. More importantly, we aim to minimize the
changes to existing applications and standard block level
storage interfaces, i.e., SCSI and ATA standards. The re-
sulting benefit is reduced development cost and ease of cus-
tomer acceptance.

Self-Securing Storage (S4) [23] addresses the issue of
securing data on storage from a quite different angle from
CIS. S4 efficiently maintains several versions of each block
on the storage during a history window. The older versions
will be recovered if a recovery after an intrusion is neces-
sary. S4 takes a logging and recovery approach to recover
damage from intrusion, while CIS completely prevents any
modification to written blocks. In the context of S4, data
can be overwritten. Data cannot be recovered beyond the
protected history window. For trustworthy record keeping
purpose, no loss of truthful data is ever allowed on CIS.

3. Storage Requirements for Trustworthy
Record Keeping

The fundamental purpose of record keeping is to estab-
lish solid proof and accurate details of events that have oc-
curred. Trustworthy records are, therefore, those that can
be relied upon to achieve this purpose. The process of cre-
ating accurate records for all of the relevant events as they

occur is generally trusted. This is the case especially if the
records are used in the normal course of business, and are
hence required for the proper functioning of the organiza-
tion. Furthermore, record creation is an ongoing process
for which periodic audits are effective in ensuring proper
execution. An intruder to an application can create flaw
data and write them to the storage successfully. This is
beyond the control of a record keeping system. However,
once the flawed data are written, they will be kept and used
as traces together with all the other data of the same context
to find out the truth. The worst thing that could happen is
for a crime to be committed without any traces left behind.
The basic objective of record keeping is not to prevent the
writing of history, but to prevent the changing of history; in
other words, changing the records after the fact. The key
requirement for trustworthy record keeping is, therefore, to
ensure that in an enquiry, all of the relevant records can be
quickly located and retrieved in an un-tampered form. In
this section, we examine what the requirements for stor-
age systems are for trustworthy electronic records keeping
and how they lead to our design choices for CIS in the next
section.

3.1. Secure Immutability

The pressing need is to protect against clandestine mod-
ification, including destruction, of selected records during
their storage. Typically, this means that records must be
stored in some form of WORM storage. Modification of
the records could result from software bugs and from user
errors, such as issuing the wrong commands and replac-
ing the wrong disks during service actions. Given our in-
creasing reliance on electronic records, the potential gain
from intentionally manipulating and altering the records is
huge. Thus, more importantly, the WORM storage must
be secure against intentional attacks, even inside attacks
launched by disgruntled employees, company insiders, or
conspiring technology experts. An adversary is likely to
have the highest (e.g., executive) level of support and in-
sider access, privilege and knowledge. He can be thought
of as the super system administrator. Although the adver-
sary has physical access to the records, he cannot destroy
them in a blatant fashion because it would result in severe
penalties and even the presumption of guilt. His mission is
to clandestinely hide or modify specific records.

3.2. Efficient Index Support

Furthermore, with the growing volume of records and
the ever more stringent response time to enquiries, direct
access mechanisms such as indexes increasingly must be
maintained to ensure that all of the records relevant to an
enquiry can be discovered and retrieved in a timely fashion,

typically within days and sometimes even within hours [6].
However, if records are accessed through an index, even if
they are stored in WORM storage, they will still be vulner-
able to logical modification if the index can be suitably ma-
nipulated [26]. In particular, an adversarial system admin-
istrator could update the index to logically hide or modify
selected records unless the index is also properly commit-
ted to WORM storage. Note that creating an index at en-
quiry time is not an option because of the time required to
build the index and the fact that the index could be created
in such a way as to hide or modify records that are relevant
to the enquiry. The WORM storage must, therefore, effi-
ciently support index structures, which typically requires
many small updates. Moreover, there is often a need to log
small amounts of data on WORM storage, for instance, to
maintain a non-alterable audit trail of the activity in the sys-
tem. We mainly focus on how to support small updates in
block level storage instead of how to build an index in this
paper.

Universal Disk Format (UDF) [17, 2] is a widely used
format for optical disks. It can be viewed as a form of in-
dex for files on optical storage. Writer software for opti-
cal media follows the UDF format to write meta data and
file data to optical media. Meta data are tables of point-
ers where one looks up the location of the files. Meta data
are not committed upon the writing of file data. Instead,
they are written after a session is closed. This is to mini-
mize the wastes of optical disk space for meta data write.
UDF can also be readily used on CIS storage. With efficient
small write support from CIS, we can effectively close the
time gap between meta data commit and file data write and
achieve better file integrity, without losing space efficiency.

3.3. Term-Retention and Disposition

Note that while immutability is often specified as a re-
quirement for records, what is required in practice is that
the records be “term-immutable”, i.e., immutable for a
specified retention period. For example, SEC Rule 17a-
4 [20] specifies a retention period of three years for email,
attachments, memos, instant messaging, etc. Some regu-
lations further require the capability to hold and preserve
a record indefinitely or for some specified duration after a
triggering event. Even after records have passed any man-
dated retention periods, if they are available, they are sub-
ject to discovery, and typically at great expense to the own-
ing organization [21]. Thus, it is important for an orga-
nization to properly dispose of records that are no longer
useful to the organization and have passed any mandated
retention periods. Proper disposition of records include
deleting the records. In some cases, the records have to be
shredded such that they cannot be recovered or discovered
even with the use of data forensics. In other words, the

storage should support “term-WORM” and the ability to
shred records that have expired, for example, by overwrit-
ing magnetically recorded data multiple times with specific
patterns in order to completely erase remnant magnetic ef-
fects which could otherwise enable the data to be recov-
ered [10].

3.4. Low Cost and Reliable

At a minimum, this requirement means that the records
have to be reliably stored and protected from loss due
to disasters, system failures, equipment obsolescence, etc.
This is no different from what is expected of current storage
systems except that the records have to be reliably stored
over an extended period of time. The extended retention
period, together with the large volume of records that is
typical today, requires that the storage be very low cost,
especially because there is a tendency in the short term to
view the records largely as an overhead needed just for sat-
isfying the current intense regulatory scrutiny.

4. Content Immutable Storage

To achieve secure immutability, CIS enforces im-
mutability beneath the block level interface and securely
authenticates that each command is legitimate. Thus, no
one could possibly bypass the immutability firewall to tam-
per the written data. CIS provides variable length ap-
pend command to support efficient small write for index-
ing. CIS’s intelligence is embedded in a thin virtualization
layer and a standard block level interface is exposed. Thus
application porting effort is minimized. We use standard
rewritable hard drives as the underlying storage media for
CIS. Magnetic hard drive has better performance specifi-
cations and capacity density than optical disks. It enables
us to achieve a low total cost of ownership, which is a ba-
sic requirement for record keeping. The future technology
trend for hard drive, tape and optical disk also indicates
that magnetic hard drive is more suitable for those record
keeping tasks which require fast access and cost efficiency.

4.1. Overwrite Protection

To enforce immutability, CIS maintains state informa-
tion for each block in the system. The state indicates
whether a block is writable. Upon initialization, the state
for each block is set to be writable. After receiving a block
of data to be stored, the system checks the state of the tar-
get block to determine if that block is writable. If yes, the
system writes the received data into the target block. It then
updates the state of the target block to non-writable before
acknowledging that the write has been successfully exe-
cuted. If the state of the target block indicates that the block

is not writable, the system returns a failure to the write re-
quest. Since the immutability of the system depends on
the integrity of the state information, direct access to it is
restricted by storing the state information at locations on
the disks which are not addressable to users. Thus, once a
block has been written, it is protected from further writes.

The operations described above sound straightforward
and it can be technically feasible to be realized in any
level in the system stack: application software, network
router, virtualization software, storage controller, or hard
disk. However, implementing CIS at any level gives trade-
offs on security and cost efficiency. For security purposes,
we choose to implement CIS logic in hardware or low-level
firmware, both of which are deemed to be much harder to
tamper with than software. For example, software can be
relatively easier to replace than hardware microcode. One
option is to modify commodity hard drive internals to in-
corporate the CIS logic. Enforcing WORM property at
the disk drive level makes it more difficult to provide data
protection since RAID schemes such as RAID level 5 re-
quires rewriting the parity blocks as data is stored in the
system. New storage interface OSD makes it possible to
provide data protection through RAID technique beneath
the OSD interface. However, as of today, OSD devices and
OSD controllers are not available on the market. It is more
acceptable for CIS to be built on existing SCSI interface,
and take advantage of data protection feature from existing
RAID controller.

A more favorable approach is to implement the CIS
logic on top of a storage controller. Today’s storage con-
trollers are typically equipped with sufficient resources,
providing a platform on which we could build additional
functionality. It also relieves CIS of storage virtualiza-
tion and RAID implementations. In addition, implement-
ing CIS logic on controllers separates the manufacturing
of low cost commodity disks from high-performance and
high-functionality controllers, which are relatively price-
insensitive. CIS is realized only through another thin layer
of virtualization.

In general, a large and complicated system usually leads
to more software bugs and opens the door to security com-
promises. Following the security principle of minimizing
the trusted computing base, CIS was designed to be as sim-
ple as possible and to provide just the necessary functions.
Therefore, CIS only aims to provide standard block level
functionality, rather than file or object level services. This
approach has the additional advantage that it allows more
flexibility in the software components which are upstream
in the system stack. For example, we can allow users to
upgrade the file system without having to worry about the
integrity of data stored in CIS. Having the CIS logic close
to the media also gives it a better position to have complete
mediation of all requests.

4.1.1. Threat Model Since CIS uses rewritable disks
and the media itself does not protect its data from being
overwritten, the system could be compromised if an adver-
sary manages to access the rewritable disks directly, by-
passing the CIS logic. We describe several threat cases that
we cover with our binding solutions. Suppose we have CIS
controller C, CIS disk D and an intruder E (Eve). E can
overwrite the blocks on D and effectively defeat the over-
write protection of CIS controller through the following ap-
proaches.

In the first intrusion, E fakes itself to be the trusted CIS
controller C and sends write commands to written blocks
on D. E could achieve this by launching an interceptor be-
tween C and D. In the second case, E fakes itself to be a
CIS disk D. E intercepts results returned from D and modi-
fies the content. For example, C queries on the available un-
written bytes of some blocks. E changes the returned states
on the blocks. C issues commands based on the wrong in-
formation and effectively overwrites data on D. The above
two threat cases suggest that traffic both ways need to be
authenticated and verified. In the third case, E cannot fake
the identities of C or D, but it replays previous requests to
overwrite existing blocks. This suggests that the timing of
the operation is also an important piece of information to
be protected. In the forth case, E replays a request to one
CIS disk to another CIS disk. This way E can effectively
overwrite the blocks on the other CIS disk. This means that
the write target information needs to be encapsulated in the
operations and protected.

Below we describe two solutions to cover the threat
cases described above. The challenge is to achieve a se-
cure binding of the CIS logic and the storage media, with
minimal storage management overhead.

4.1.2. Physical Binding One solution is to physically
bind the controller and its disks so that there is no way to
directly access the disks except through the controller. In
other words, the CIS logic and the disks are encapsulated
in a secure physical enclosure. To cope with disk failures,
the enclosure allows disks to be taken out and replaced,
but only in a controlled fashion so that one cannot alter
the data stored in the system by replacing disks. For ex-
ample, each disk is guarded by an electronically controlled
physical lock and can only be removed when the lock is
released. The position of the lock is maintained through
system shutdowns and power-failures so that it is not pos-
sible to remove a disk, modify the contents of the disk, and
then insert the disk back into the system without the sys-
tem detecting the action and rebuilding the contents of the
disk. In addition, a lock is released only when the removal
of the corresponding disk would not compromise the data
stored in the system. For example, in a RAID level 5 array,
the system could permit up to one disk to be removed from

the system at any one time. Before the lock is released, the
system could attempt to remove the contents of the disk to
reduce the chances for sensitive data to be leaked out of the
system during routine maintenance actions.

4.1.3. Virtual Binding One limitation of physical
binding is that it requires the controller and the disks to
be physically bound together with a secure communica-
tion channel between the two. Virtual binding relaxes this
restriction by virtually binding the two entities (WORM
logic and disks), which could be physically apart, together
through cryptographic means. It enables storage media mo-
bility and flexible system capacity scaling.

The idea behind virtual binding is provided as follows.
Using cryptographic methods, the disks authenticate that
data requests are from a legitimate WORM controller and
have not been tampered. Data access to the media from
a controller is blocked until the authentication process is
successful. Similarly, the controller verifies the integrity of
data read from the disks.

Virtual binding logic is implemented on both the con-
troller side and the disk side. On the disk side, it is possible
to implement the virtual binding logic in individual disks or
in an enclosure drawer that encapsulates the disks. We pre-
fer to implement the virtual binding logic in disk drawers,
rather than the disks themselves to avoid hardware modi-
fications to existing hard drives. Note that when the vir-
tual binding logic is implemented in disk drawers, the mo-
bile granularity is a disk drawer. A disk drawer can either
be loaded with disks and permanently sealed before it is
shipped (i.e., fail in place), or the physical binding mecha-
nism introduced above can be used to allow dynamic disk
addition and replacement.

During initialization and before a WORM controller is
shipped from a trusted manufacturer, a pair of private and
public keys is generated for the virtual binding logic in the
controller. To prove the trustworthiness of the controller
and to prevent someone from building a “fake” WORM
controller, its public key is also stored in a certificate signed
by the manufacturer using the manufacturer’s private key.
The manufacturer’s public key is well-known. Alterna-
tively, a trusted third party, such as Verisign instead of the
manufacturer, can act as the certificate generator. The vir-
tual binding module consists of a small amount of non-
volatile internal memory to store its public/private keys, the
certificate, and the public key of the manufacturer. Sim-
ilarly, a pair of private and public keys is generated for
each disk drawer. In addition, the virtual binding logic in a
disk drawer maintains a user table, which contains a list of
public keys of the controllers that have data access to this
drawer. The virtual binding logic and its authentication in-
formation are replicated in the disk drawer to avoid having
any single point of failure.

Since the certificate for the controller’s public key can-
not be altered without knowing the manufacturer’s secret
key, a disk drawer can check that a controller is a benev-
olent one from the trusted manufacturer by verifying the
certificate using the public key of the manufacturer. Only
public keys from legitimate controllers will be admitted and
added to the disk drawer’s user table. As an option, we can
allow controllers to be admitted to the disk drawer’s user
table only during an initial registration phase.

With virtual binding, it is no longer required that the
communication channel between a WORM controller and
a disk drawer is secure. To prevent data traffic from being
tampered, we use an encrypted content signature to certify
the validity of write requests received by the disk drawer.
After every fixed amount of traffic (or a fixed amount of
time), the controller generates a content hash for all the
bytes it sends to the disk drawer during the interval. The
content is buffered and not written to the disk until it is ver-
ified through the content hash. The content hash is a secure
one-way hash of the bytes it verifies and is encrypted using
the private key of the controller. By decrypting the content
hash and comparing it with one calculated from the bytes
received, the disk drawer is able to verify whether the data
requests are valid. Similarly, content hashes are generated
by a disk drawer for data sent to controllers upon read re-
quests. This is necessary because a WORM controller still
relies on the state information to decide whether a block
is writable, and the state information is also stored on the
disk drawer. To prevent replay attacks, the encrypted con-
tent hash also includes a time-stamp (or a sequence num-
ber). To prevent another type of replay attack where an ad-
versary records data requests from a controller to one disk
drawer and then applies them to another disk drawer (as-
suming the controller is admitted by both disk drawers),
we further include the public key of the target disk drawer
in the encrypted content hash.

Our design decouples the relatively complicated authen-
tication logic from the individual commodity hard drives.
The authentication intelligence is embedded in storage con-
troller and the disk drawer enclosure (not the disks). The
disks are permanently sealed in the secure drawer. The ben-
efit of this design is that CIS can use off-the-shelf hard
drives and standard interfaces. The downside is that in
case of disk failure, disk repairing becomes more compli-
cated. In case of disk failure, RAID recovery procedure is
invoked. We allow spare disks on new drawers to join an
existing RAID array, whose drawer runs out of spare disks.
This means a RAID array can cross disk drawers. It re-
quires advanced disk management functions in the storage
controller. Empirically, magnetic hard drive is more likely
to experience media failure than optical disk. A rarely used
magnetic hard drive’s life is speculated to be longer than
that of a drive used for online applications, although this

conclusion has not been systematically verified. For those
records whose retention period is longer than the average
life span of the storage media, CIS relies on a trusted migra-
tion tool to migrate the records onto newer media before the
old media fails. The migration process is performed infre-
quently and can be carried out during system idle time. The
system idle time is relatively easy to identify in an archiv-
ing system.

4.2. Block Append Capability

The ability to write small amounts of data to WORM
storage is key to efficiently supporting index mechanisms
and audit trails. Traditional WORM storage has a mini-
mum write unit called sector that is typically 512 Bytes.
Updating any part of an index or adding to an audit trail
on such storage would involve creating a new copy of any
sector that is updated, wasting both time and storage space.
Furthermore, many traditional WORM storage devices lack
the ability to write an arbitrary sector on the media. Instead,
sectors have to be written in sequential order or a large col-
lection of sequential sectors have to be written all at once.
In such cases, the indexing has to be performed at one time
on a large collection of data and once the indexing is done,
new data cannot be added to the index. This means that the
index is not available until after the entire collection of data
is stored. As data is added over a period of time, the system
would create many indices, which may need to be searched
to find a particular piece of data.

By using rewritable media as the underlying storage,
CIS can read a block that has already been written, add data
to it, and then write it again. This means that the system can
effectively append data to a block. Instead of using a bit to
indicate whether a block has already been written, the sys-
tem maintains state information for each block to indicate
the amount of data already stored in that block. We refer to
this value as the length field of the block. The length field
indicates the offset into the block at which new data can be
written. For a 512 Bytes block, the length field takes up a
mere 10 bits.

During the initialization, the length field for all the
blocks are set to zero, indicating that the corresponding
blocks are empty. On a write, the system first reads the
length field corresponding to the target block to check if
there is enough space left in the block for the new data. If
there is insufficient space, the system returns a write failure
to the application. Since the failure is due to an illegitimate
write from the application, the application should handle
this error accordingly. Otherwise, the system reads the cur-
rent contents of the target block, inserts the new data at
an offset equal to the value of the length field, writes the
resulting contents back to the target block, and increases
the length field by the amount of new data inserted. If the

length field is zero, the system skips the read of the current
contents. Note that the system has to ensure that the block
writes are effectively atomic. On a read of the block, the
system gives an indication of the amount of data stored in
the block.

As an optimization, the system permits data to be rewrit-
ten with the same data. This is useful in situations where an
application keeps the last block of an object (e.g., a log) in
memory. Whenever the application appends data to the ob-
ject, it can simply issue a write of the last block with a new
byte count. For example, suppose that the system receives
the following write command, write(target block A, data D,
byte count b). The system first reads the length field, I,
corresponding to the target block A to check if there is suf-
ficient space left in A to store b bytes of additional data. If
not, it returns a write failure. Otherwise, it reads the cur-
rent contents of block A. If the first | bytes of the current
contents are different from the first | bytes of D, the system
returns a write failure. Otherwise, it writes D into the con-
tents at an offset of | and writes the resulting contents back
to block A. It also updates the length associated with block
A to increase it by b. On receiving a read command such
as read(target block A), the system first reads, I, the length
field associated with the target block A. Next it reads the
target block A and returns both | and the first | bytes of the
contents.

4.3. Retention and Disposition Functions

As discussed earlier, it is imperative for organizations
to properly dispose of records that are no longer of value
and have passed any mandated retention periods. In other
words, CIS should be "term-WORM?” rather than WORM,
i.e., CIS enforces WORM during the specified retention
term. To support this, CIS maintains a secure clock and
an expiration time in the state information for each block
which indicates when the retention period of a block will
expire. CIS may optionally maintain a time stamp for each
block, which would help identify spurious data and also
counterfeit copies of the data. The retention period for a
block can only be extended into the future but not short-
ened.

After a data block has passed its expiration time, CIS
allows the data block to be disposed of. Following the
common practice in the industry, CIS disposes of a block
by overwriting the block multiple times with specific pat-
terns so as to completely erase remnant magnetic effects
which could otherwise enable the data to be recovered [10].
The overwrites can be driven by external software through
the write interface, or it can be handled by CIS on receiv-
ing a shred command. The latter approach is preferred as
it significantly reduces the 10 overhead on host systems
and the amount of data traffic over the 10 interconnect.

More importantly, CIS can ensure that each of the multi-
ple writes are recorded to the storage media and are not
buffered somewhere in the system. Selectively shredding
blocks on a disk is time-consuming, which involves rounds
of disk 1/O. If the disk space will never be reused and shred-
ding efficiency is of higher priority, a de-gauss equipment
can be used to securely wipe out the data on a disk. How-
ever, the disk is not usable anymore after being de-gaussed.

In addition to the shred command, CIS provides a
set_retention command to set the expiration time for a block
to a specified value. Depending on the requirements, CIS
may also provide advanced retention functions such as al-
lowing records to be held and preserved indefinitely or for
some specified duration after a triggering event. For exam-
ple, when a court case is filed, the disposition of relevant
records need to be put on hold until the case is over. Some
of the commands to support such functions include the
event_trigger command, which sets an event on the spec-
ified blocks to enable even-driven retention management,
and the deletion_hold command, which sets a deletion hold
on the specified blocks. The query command returns all
state information kept by CIS for the specified blocks.

4.4, Interface

CIS provides a standard block-level SCSI interface. It
supports all the functions that a standard rewritable storage
provides. Attempts to overwrite existing data using write
commands will be failed by CIS. A vendor specific error
message will be returned to the caller.

CIS can be accessed through existing standard network
storage protocols, including iSCSI and Fiber Channel pro-
tocols. Meanwhile, the block-append capability and reten-
tion support require additional parameters such as the re-
tention period and bit length information to be passed to
CIS devices along with block-level data requests. These
new commands can be implemented using extended Com-
mand Description Block (CDB) in standard SCSI inter-
face [3]. High level applications can invoke these new com-
mands through ioctl calls. For example, a UDF file system
can send through ioctl an append command to a CIS device,
to commit the latest update of the index onto the media.

The use of a standard block interface, albeit extended
for increased functionality, facilitates the porting of ex-
isting applications to CIS. Examples of such applications
include WORM file systems (UDF), WORM object sys-
tems, backup software, or simply a data pool of blobs
(binary large objects). Keeping existing standards in-
tact, also opens the opportunity to reuse the existing soft-
ware/hardware for data protection and device management,
including virtualization software and RAID storage con-
troller.

D ClS Metadata block

D Data block

| [

one extent

r= -1

Figure 1. CIS disk layout. The disk is divided
into fixed size extents. Each extent has one
metadata block which tracks the status of the
data blocks in this extent.

5. Performance Optimization

To achieve data immutability on rewritable media, CIS
pays extra overhead to check the state information and up-
date them for each command. For example, a write com-
mand could incur up to three disk 1/0Os in CIS. To im-
prove CIS system throughput, we have carefully designed
CIS disk layout to minimize disk head movements by co-
locating state blocks and data blocks and uniformly dis-
tributing the state blocks across the disk. We also have
minimized the critical section for synchronizing state in-
formation updates to reduce lock contention. Lastly, CIS
aggressively merges the disk 1/0s involved for each CIS
command to reduce the number of 1/0s sent to the devices.
Our evaluation shows that, for read-intensive workloads,
CIS can achieve system throughput that is comparable to
a rewritable storage system. In addition, CIS performs
comparably to rewritable storage systems in most common
cases, and particularly for record keeping workloads where
the dominant workload activities are the addition of records
to many directories.

5.1. Disk Layout

CIS maintains the state information in its metadata
blocks to track the status of each data block. Figure 1 il-
lustrates the CIS disk layout on a rewritable disk. The disk
can be a virtual disk or a physical disk. The disk is divided
into fixed size extents. The size of an extent can be set by
users according to the average write size. It is also con-
strained by the amount of state information that one meta
block can hold. One or more contiguous physical blocks
(sectors) are dedicated to metadata in each extent of CIS.
In our current implementation, we use one physical block
per extent for metadata.

The metadata block tracks the status of the data blocks
in its associated extent. The state information that the meta

block keeps for each data block in the extent includes:
length of written data, retention period, events, and deletion
holds. Optionally, it can also keep some other tracing in-
formation for auditing purpose, such as last write time etc.
The metadata blocks are not addressable by users. They
are rewritable by CIS logic only and invisible to CIS stor-
age users. Only data blocks are exposed to the users, and
they appear as write-once blocks. If CIS maintains only
retention and length states for each data block, then one
metadata block of 512 bytes can hold state information for
85 data blocks. The space overhead for maintaining state
information is less than 2%.

Without any optimizations, each operation that may add
data to CIS involves at least three disk 1/Os: read meta-
data, write data, and write metadata. We will illustrate
this by describing how CIS handles a write command and
an append command. Upon receiving a write command,
CIS reads the metadata block(s) for the target blocks into
memory. The state information is examined to determine
if the write is allowed. If the target data blocks have never
been written before, the write is allowed to proceed, other-
wise the write operation fails. For the writes that passed the
state check, CIS writes the data blocks to the target address
and then writes the updated metadata blocks.

The append command is similarly carried out in CIS.
The append operation allows a partial block to be written,
and additional bytes to be subsequently appended to the un-
used portion of the data block. The meta block tracks the
length of written bytes in each block. CIS reads into mem-
ory the state information and checks if enough unwritten
space is available in the target data block. If there is enough
space in the target block, CIS reads the data block into a
temporary buffer. The bytes to be appended are spliced into
the data block at the position where the last append com-
pleted. The new buffer is written to disk and the metadata
block is updated and written back. In this case, four disk
1/Os are needed.

One way to increase the performance of CIS is to uni-
formly distribute the metadata blocks over the media and
among the data blocks. The benefit of such a disk layout
is to minimize the disk head movements required to han-
dle one CIS command. Since most CIS commands involve
a disk read 1/0 for the metadata blocks, the meta blocks
should be co-located with their associated data blocks. The
extent size is a tunable parameter. The size of an extent
should match the average 1/O size of the applications. An
extent size too small will cause a write command to span
multiple extents, potentially incurring several 1/Os to read
the metadata for each of the extents. On the other hand,
when the extent size is too big, the disk head movement
between the read metadata step and the write data step is
large.

5.2. Lock Contention

Another optimization in CIS is to minimize the perfor-
mance overhead due to the synchronization of the meta
block updates. Each meta block keeps state information
for all the data blocks in an extent. Updates to a meta block
need to be synchronized to ensure its data integrity and cor-
rectness. If updates to these data blocks in one extent ar-
rive in different commands at the same time, the metadata
updates essentially will be serialized and the CIS through-
put may degrade. This scenario happens when small writes
to different blocks of one extent occur at the same time.
Discrete small size writes or appends to one extent could
encounter such serialization penalty. Sequential small size
writes or appends to one extent should have been coalesced
by upper layers in the system. For example, a block device
driver does a good job in sequential 1/0 coalescing. We
give an example case on how a critical section is protected
for a write command, which writes to a single block. A
critical section covers the set of operations that need to se-
quentially executed without interruption. It is the code seg-
ment protected by a pair of lock/unlock operations. Upon
the arrival of a write command, in the most safe or straight-
forward case, CIS will do the following:

1. Lock the meta block;

2. Read the meta block into memory if it is not already
cached;

Write the data block to the disks;
Update the meta block in memory;
Write the meta block to the disks;
Unlock the meta block;

7. Acknowledge write success;

o ok~ w

The above case assumes no Non-volatile memory
(NVRAM) and guarantees strong data consistency.
NVRAM can easily mask the contention overhead for meta
block updates. However, for low cost archiving storage, we
may not have NVRAM in the storage controller. Hence,
here we examine how to achieve best performance through
proper locking scheme rather than using extra hardware.
The state in the metadata block accurately reflects what
has reached media successfully. However, The critical sec-
tion protected by this locking scheme involves disk 1/0s
which are orders of magnitude more time-consuming than
in-memory operations. It potentially degrades the system
throughput significantly for the scenarios with lock con-
tention. Our goal is to minimize the duration of the critical
section as much as we can.

The idea is to decouple the time-consuming disk 1/O
from the critical session [13]. Locks will be held at min-
imum duration of time to relieve lock contention. Here is
the sequence of operations executed by CIS during a write.

1. Read the meta block into memory if it is not cached;

2. Acquire lock; Update the data block(s) in memory;

3. Update the meta block in memory; Release lock;

4. Acknowledge write success to CIS user, if the write
cache memory is non-volatile;

5. Write the data block to the disks;

6. Write the meta block to the disks;

7. Acknowledge write success to CIS user, if the write
cache memory is volatile;

The lock protected operations are step 2 and 3 only. All
disk 1/O related operations are out of the critical section.
The CIS user does not receive an acknowledgment of a
successful write immediately after the lock release, if the
memory available is volatile. Instead, the user will re-
ceive the write success acknowledgment, only after the
blocks have been committed to the disks. In the case when
NVRAM is not available, this procedure still benefits from
the reduced lock contention, because more disk 1/0s can be
coalesced in step 5 and 6 than in the non-optimized case. In
this optimized procedure, the critical section is very short,
which involves only a few in-memory operations. Further-
more, the data integrity is not compromised, since the suc-
cess acknowledgment is not returned until the data reach
non-volatile media, either NVRAM or hard disks.

5.3. 1/O Coalescing

CIS merges multiple disk 1/0s with one CIS command
to improve system throughput, even when the 1/Os are not
exactly contiguous. To reduce the number of disk 1/O’s,
CIS tries to merge the writes (reads) of meta and data
blocks into a single I/O. If the meta block and the starting
target data block are not physically contiguous on disk, CIS
will also write (read) the intervening blocks to form a con-
tiguous sequence of blocks, provided that the intervening
blocks are available in the cache. This contiguous sequence
of blocks can be read or written in one disk movement,
hence minimizing disk 1/Os. In this case, CIS reduces the
original three or four disk 1/Os for each CIS command to
two 1/0s only, a read and a write.

A potential problem with including the intervening
blocks in a write, as described, is that, if the operation
fails at writing the intervening blocks, the content of the
intervening blocks could be corrupted. This issue could be
handled by marking intervening blocks as dirty and plac-
ing them into the NVRAM. The contents of these inter-
vening blocks cannot be replaced in the NVRAM until the
related disk operations have been completed successfully.
This way, there is always a correct non-volatile copy of the
data that can be used to retry the write in case a failure is
encountered.

l Data Block
0 Metadata Block

CISVirtual LUN /dev/cis

Per data block metadata: data length,
D retention information, etc.

Figure 2. CIS logic is built on top of the ex-
isting virtualization layer provided by a RAID
controller etc. It presents a virtual volume
with term-WORM guarantees.

In some advanced disk drives, internal disk optimization
can complete multiple commands in one disk head move-
ment, even if the commands are targeted at non-contiguous
block addresses. These optimizations achieve essentially
the same effect as the merging of two discrete commands
by CIS. In this case, CIS only needs to read or write tar-
get blocks and meta blocks, without including intervening
blocks.

6. Implementation and Evaluation

Our design goal is to realize a CIS prototype that re-
quires minimum changes to existing protocols, standards
and hardware. We also aim to maximize the utilization of
existing software/hardware functionalities for data protec-
tion and device management. CIS achieves these goals by
paying the cost of extra meta data maintenance. However,
we design CIS in a way that the overhead is close to negligi-
ble. We demonstrate the system performance of a working
CIS prototype is comparable to a regular storage system
under common workloads.

6.1. CIS Prototype Architecture

CIS is a very thin layer of virtualization for enforcing
data immutability between applications and the disks. The
underlying disk can be a virtual disk or a physical disk.
Figure 2 illustrates how CIS remaps the address space of
a logical volume, exposing only the data blocks to the CIS
applications. The logical volume can be provided by any
virtualization hardware or RAID controllers.

/devl/cis Block 10 Requests
o

SCSI Middle Layer
_
y 4

Pl 4 SCSI Cmd

H i
: ~ b .
E SN BN D) | Lodcvolume
H
"""‘-ﬂw«m"”

Figure 3. Software architecture of CIS proto-
type in Linux kernel.

Our current CIS prototype is built as a block device
driverin Linux 2.4.20 kernel, and is designed for portability
to the embedded OS platform in a disk controller. Figure 3
shows how a CIS device driver interacts with the rest of the
1/0 stack of the Linux 1/0O subsystem. CIS presents a block
device, e.g. /dev/cis. CIS interface layer implements some
ioctl calls that support the CIS specific commands such as
query, append etc. A block 1/0O request sent to this device
will flow through the CIS interface, the SCSI middle layer
and then be processed by the CIS core logic layer. CIS
core logic layer checks the state information and updates
state information on the disks accordingly. CIS core logic
layer sends disk 1/0 commands to the low level devices. A
small non-volatile buffer cache for caching metadata blocks
is maintained by CIS core logic.

CIS provides special commands to support efficient in-
dexing. Any file system that is aware of WORM media can
be readily mounted on a CIS device, for example, a Linux
UDF file system [17, 2]. In this case, Linux UDF file sys-
tem utilizes only the overwrite protection feature of CIS,
but not the efficient indexing support from append com-
mand. More advanced append-only file system or indexing
software can be built on CIS.

6.2. Performance Evaluation

Our CIS prototype is composed of an Intel server with
2.4 GHZ CPU and 512 MB memory, a SATA disk ar-
ray with four 7200 RPM SATA disks, and a SATA RAID
controller. The default extent size for CIS is twenty 512
Bytes sectors, i.e., 10 KB. The CIS device is built on top
of a RAID-5 volume with three SATA disks. The CIS
queue depth is ten unless otherwise noted. The purpose
of the evaluation is to examine the system throughput im-

O/dev/cis B/dev/sda

200"

h 180

0 160

g 140

p 120

t 100

(ocow—-mwx)
8 3 8
T T

s
hd

100 75 50 25 0
Sequential Percentage

Figure 4. System throughput on CIS and
rewritable media with varying percentage of
sequential operations in the workload.

pact due to state maintenance in CIS, compared to a stan-
dard rewritable storage system. The standard rewritable
storage does not provide WORM guarantees. We evalu-
ated the prototype with two set of traces, 1/O traces for file
creations and synthetic block level 1/O traces. Traces are
driven to raw device interfaces directly to avoid a file sys-
tem caching effect. CIS read performance is the same as a
rewritable storage system without WORM guarantee, since
no state check overhead is added. We will focus on write-
dominant traces and skip the discussion on read-only traces
in the rest of the section.

File Size /dev/cis /dev/sda
16 KB 790 KB/sec | 830 KB/sec
1MB 4.66 MB/sec | 4.86 MB/sec

Table 1. System throughput for CIS and
rewritable storage. CIS only adds a 5% or
less throughput degradation.

The first set of traces models the disk access pattern of
a file creation on an archival system on CIS. The work-
load contains disk 1/Os for file creation operations. We log
the disk 1/O traces of creating files spread over 4,000 di-
rectories on a WORM storage system. Each file creation
involves a file data write and a directory update. The files
are assigned to directories randomly. But the file blocks are
allocated sequentially. So the randomness resides in direc-
tory block accesses only. The number of added bytes per
file creation to the directory block is fixed and relatively
small (tens of bytes). The larger the file/directory size ra-
tio, the larger the file size. This file creation trace con-
tains 100% writes. Table 1 shows the system throughput

of the random case for both a CIS device (/dev/cis) and a
rewritable block device (/dev/sda). CIS shows 5% through-
put degradation, compared to a rewritable block device,
even after all the overheads to enforce data immutability
are included. The amount of CIS cache is big enough to
hold most frequently accessed directory blocks.

The second set of traces is synthetic block level 1/O
traces. We vary the percentage of I/O that is sequential
and examine the system throughput differences. Figure 4
shows the system throughput in KB/sec. The trace is block
level 1/0s. 25% of the workload are reads and the rest are
writes. 1/O size is 1 KB. For sequential trace, CIS achieves
the same throughput as a rewritable device. The reason is
that the extra I/O overhead, due to the metadata block read,
is absorbed by the CIS metadata cache and the controller
read ahead cache. The extra metadata write 1/0 overhead
is not noticeable due to 1/0 coalescing.With the increas-
ing randomness of the trace, CIS’s extra 1/0 overhead re-
sults in downgraded system throughput. CIS’s throughput
is only 61% of a rewritable device when the trace is ran-
dom. An interesting observation on the trend of rewritable
device itself, is that its throughput reaches peak when the
percentage of sequential 1/0 is 75%, not 100%. The reason
is that a sequential write following a read may invalidate
the prefetched read buffers for the same blocks and make
the prefetching useless. Some controller cache implemen-
tation actually invalidates all the prefetched blocks in the
cache segment, besides the target block of the write opera-
tion.

Figure 5 shows the queuing effect for a mixed trace
and a random trace. The workloads have 100% 1 KB
writes. We vary the queuing effect by controlling the num-
ber of outstanding requests for CIS at any time. For both
workloads, CIS achieves better throughput with increas-
ing queue depth. An increasing queue depth allows more
commands to be sent to the physical devices and the disk
internal scheduling is more effective. Rewritable device,
/dev/sda, sees the same trend. However, with locality in the
workload (Figure 5(a)), CIS achieves 120% improvement
in system throughput with a queue depth of ten, compared
to a queue depth of one. And when the queue depth is ten,
CIS’s system throughput is 78% of that of /dev/sda. For the
random trace, CIS can only achieve 58% of /dev/sda’s sys-
tem throughput. CIS improves 100% of its system through-
put from the queue depth of one to the queue depth of ten.
These two figures prove that a larger queue depth helps CIS
to achieve better system throughput. Command queuing
can effectively reduce the performance gap between CIS
and a rewritable storage. For example, for a workload with
50% sequential 1/0s, CIS’s system throughput is only 22%
lower than with a rewritable storage device.

Figure 6 shows the performance effect of each opti-
mization we discussed in Section 5. Figure 6(a) examines

the impact of the extent size on the system performance.
We present three sets of results, associated with sequen-
tial, mixed and random workloads. Figure 6(b) illustrates
the system throughput before and after various optimiza-
tions on sequential, mixed and random workloads. All
workloads here are with 1 KB writes. As shown in Fig-
ure 6(a), for all three workloads, an increasing extent size
corresponds to an increasing system throughput. Sequen-
tial workload has the biggest improvement of throughput
when the extent size is increased. This can be explained
by noting that with a larger extent size, more metadata will
be retrieved from cache. This in turn will exceed the per-
formance degradation due to the disk head seeking over-
head. The sequential workload experiences the most meta-
data sharing, hence achieving the most significant perfor-
mance improvement among all three workloads. However,
this does not indicate that the extent size should be infi-
nite to achieve the best system throughput. The extreme
case of an infinite extent size, is similar to the case where
metadata blocks are co-located on the first 100 MB of the
disks. All data blocks are allocated after the first 100 MB.
The performance of this extreme case is referred as No Disk
Layout Optimization series in Figure 6(b). We can see that
spreading the metadata blocks uniformly across the disk
outperforms the condition when all the metadata blocks are
co-located. The reason is that eventually the benefit of in-
creasing the cache hit ratio by enlarging the extent size, will
eventually be offset by the overhead of the disk head seek
between the metadata area and the data area. Figure 6(b)
shows that the sequential workloads experienced the most
largest improvement in system throughput (776%) with all
three optimizations: 1/O coalescing, reduction of lock con-
tention and uniform metadata layout. For the sequential
trace, these three optimizations allow small writes to adja-
cent blocks to be simultaneously transferred to the device,
and compensate the small write effect of RAID-5. In the
case of a random trace, the disk layout optimization and the
locking reduction effect are not significant. There is little
lock contention with the random workload even before the
optimization. Due to the write caching effect, the disk head
is mainly constrained within the metadata zone. The disk
operations here are mainly to serve metadata reads since
data for writes are already cached. The disk head seek-
ing overhead between the metadata area and data area is
not significant. 1/0O coalescing achieves the most signifi-
cant performance improvement in all cases among all three
optimizations.

In summary, for read workload, CIS and a rewritable
disk achieve the same throughput. CIS is able to achieve
as good a system throughput as rewritable disks, when the
metadata read 1/O can be effectively reduced by a CIS
metadata buffer cache. This is the case in our tests with
file creation 1/O traces. In those cases where metadata read

O/dev/cis W/dev/sda

5
g

5
hd

5
T

~CT JQC O~ T+
5
8
I

(oo ~wx)

4 6
Queue Depth

@)

~C T JTQC O~ I+

(ocoov~wx)

O/dev/cis B/dev/sda

140"

5
T

100-f

1 2 4 6 8
Queue Depth

(b)

10

Figure 5. Queuing effect on CIS storage and rewritable storage. All operations are 1 KB writes. (a)
50% of the workload is sequential. (b) random workload.

O Sequential @50% Sequential O Random

T)

h 1600~

r

O 12004

u

9

h 12004

P

Y 10004

t

. 800

K

B 600

!

S

e 400

c

7 Eﬂ M

T T

5 10

20
Extent Size

@

OWwith All Three Of

[@Delay Unlocking mWithout 1/0 Coalescing TINo Disk Layout O

450" P

T

>
&
;

8
8
I

~C T JTQ C O =
@
3

N
3
i

&
;

@
8
I

g
;

a
i

(oow~mx)

Mixed
Wor kI oad

(b)

Sequential Random

Figure 6. Performance optimization effect. 100% of the workload are 1 KB size writes. (a) System
throughput on CIS storage with varying extent size. (b) System throughput on CIS storage with or
without optimizations on sequential, mixed and random workload.

1/0 cannot be avoided due to cache misses, CIS achieves at
least half of the throughput of a rewritable disk. Command
queuing can effectively amortize the performance gap be-
tween CIS and a rewritable storage. Our optimizations to
further close this gap, 1/0O coalescing, lock contention re-
duction and uniform metadata layout, improve the system
performance by up to 776%.

7. Conclusion

Proper record keeping is essential for the effective func-
tioning of an organization. With our growing reliance on
electronic data processing, records are increasingly gener-
ated in large volumes and in electronic form, which make

them vulnerable to undetected deletion and modification.
Ensuring that records are trustworthy, i.e., capable of pro-
viding irrefutable proof and accurate details of events that
have occurred, is therefore imperative. It is also in the best
interests of the organization to properly dispose of records
that have outlived their usefulness to the organization and
have passed any mandated retention period.

We clearly establish the storage requirements for proper
record keeping and contend that the current Write-Once-
Read-Many (WORM) storage systems do not fully meet
these requirements. We demonstrate a design and working
prototype for CIS, which effectively meets the key storage
requirements for record keeping as evidenced by the ability
to 1) offer overwrite protection that is secure even against

inside attacks; 2) efficiently support index mechanisms; 3)
allow records to be properly disposed of after they have ex-
pired; and 4) be low cost and yet reliable. CIS exports a
standard block level SCSI interface to maximize the reuse
of existing software/hardware stack. CIS securely enforces
immutability check so that it can never be bypassed by in-
truders. It addresses the need of term-retention and record
disposition. Our performance evaluation on the working
prototype suggests that, for a record keeping workload, the
performance of CIS is comparable to that of a regular stor-
age system.

Acknowledgments

The authors would like to thank the shepherd, Jean Be-
det, and the anonymous reviewers for their comments. The
authors thank Wayne Hineman, Xiaonan Ma, and Shauchi
Ong for their feedbacks on the early draft of the paper.

References

[1] Ablative Optical Disk.
http://www.pegasus-ofs.com/optical.htm.

[2] Linux UDF File System.
http://linux-udf.sourceforge.net.

[3] SCSI Block Command Interface Standard.
http://Aww.t10.0rg.

[4] SNIA OSD Workgroup.
http://www.snia.org/tech_activities/workgroups/osd/.

[5] E. Biham and R. Chen. Near-Collisions of SHA-0. In 24th
Annual International Cryptology Conference, pages 290—
305, Santa Barbara, California, USA, 2004.

[6] Cohasset Associates, Inc. The role of optical storage tech-
nology. White Paper, Apr. 2003.

[7] Congress of the United States of America. Sarbanes-Oxley
Act of 2002, 2002. Available at http://thomas.loc.gov.

[8] EMC Corp. EMC Centera Content Addressed Storage Sys-
tem, 2003.
http://www.emc.com/products/systems/centera_ce.jsp.

[9] Erik Riedel. SNIA OSD Tutorial, April 2005.
http://www.snia.org/education/tutorials/spr2005/
storage/Object-basedStorageDevice(OSD)Basics.pdf.

[10] P. Gutmann. Secure Deletion of Data from Magnetic and
Solid-State Memory. In 6th USENIX Security Symposium,
July 1996.

[11] I1BM Corp. IBM TotalStorage DR550, 2004.
http://www-1.ibm.com/servers/storage/disk/dr.

[12] A. Joux. Multicollisions in iterated hash functions. appli-
cation to cascaded constructions. In 24th Annual Interna-
tional Cryptology Conference, pages 306-316, Santa Bar-
bara, California, USA, 2004.

[13] L. Huang and T. Chiueh. Charm: An I/O-driven high-
performance transaction processing system. In Proceedings
of the 2001 USENIX Annual Technical Conference, Boston,
MA, June 2001.

[14] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone.
Handbook of Applied Cryptography. CRC Press, 1996.

[15] Natinal Institue of Standards and Technology. FIPS 180-
1, Secure Hash Standard, April 1995. US Department of
Commerce.

[16] Network Appliance, Inc. SnapLock™ Compliance and
SnapLock Enterprise Software, 2003.
http://www.netapp.com/products/filer/snaplock.html.

[17] Optical Storage Technology Association. Universal disk
format specifications.
http://www.otsa.org/specs/index.html.

[18] R. Pike, D. Presotto, S. Dorward, B. Flandrena, K. Thomp-
son, H. Trickey, and P. Winterbottom. Plan 9 from Bell
Labs. Computing Systems, 8(3):221-254, 1995.

[19] S. Quinlan and S. Dorward. Venti: a new approach to
archival storage. In Proceedings of First USENIX confer-
ence on File and Sorage Technologies, 2002.

[20] Securities and Exchange Commission. SEC Interpretation:
Commission Guidance to Broker-Dealers on the Use of
Electronic Storage Media under the Electronic Signatures in
Global and National Commerce Act of 2000 with Respect
to Rule 17a-4(f), 2001. Awvailable at http://www.sec.gov/
rules/interp/34-44238.htm.

[21] Socha Consulting LLC. The 2004 Socha-Gelbmann Elec-
tronic Discovery Survey, 2004.

[22] SONY Corp. AIT-2/AIT-3 WORM Drives & Libraries,
2003.
http://www.storagebysony.com/products/prod_hilite4.asp.

[23] J. D. Strunk, G. R. Goodson, M. L. Scheinholtz, C. A. N.
Soules, and G. R. Ganger. Self-securing storage: Protecting
data in compromised systems. In 4th Symposium on Op-
erating System Design and Implementation (OSDI), pages
165-180, October 2000.

[24] The Enterprise Storage Group, Inc. Compliance: The effect
on information management and the storage industry, May
2003.

[25] X.Wang, Y. L. Yin, and H. Yu. Collision Search Attacks on
SHAL.
http://theory.csail.mit.edu/ yiqun/shanote.pdf.

[26] Q. Zhu and W. W. Hsu. Fossilized index: The linchpin of
trustworthy non-alterable electronic records. In ACM S G-
MOD Conference, pages 395-406, Baltimore, Maryland,
USA, 2005.

