
 101

Implementation and Performance Evaluation of Two Snapshot Methods on

iSCSI Target Storages

Weijun Xiao, Yinan Liu, and Qing (Ken) Yang
Dept. of Electrical and Computer Engineering

University of Rhode Island, Kingston RI 02881

Tel: (401) 874-5880, Fax: (401) 782-6422

Email: {wjxiao,yinan,qyang}@ele.uri.edu

Jin Ren and Changsheng Xie
National Laboratory for Data Storage Systems

Huazhong University of Science and Technology

Wuhan, Hubei, P. R. China

Abstract

While snapshots have been commonly used in data

storages for backup and data protections, little is known

in the open literature how such snapshots impact

application performance. This paper presents an

implementation and performance evaluation of two

snapshot techniques: copy-on-write snapshot and

redirect-on-write snapshot. Our implementation is

carried out at block level on a standard iSCSI target. We

carry out quantitative performance evaluations and

comparisons of the two snapshot implementations using

TPC-C, TPC-W, IoMeter, and PostMark benchmarks.

Our measurements reveal many interesting observations

regarding the performance characteristics of the two

snapshot techniques. Depending on the applications and

different I/O workloads, the two snapshot techniques

perform quite differently. In general, copy-on-write

performs well on read-intensive applications while

redirect-on-write performs well on write-intensive

applications.

1. Introduction

As organizations and businesses depend more and

more on digital information, data protection and disaster

recovery have become the top challenge for data storage

designers and administrators. In most storage systems,

data protection relies on periodic backup [1] and remote

replication [2,3]. Both backup and replication often make

use of snapshot technologies to enhance and simplify

recovery process by reducing recovery time and

providing more recovery points. A snapshot creates a

point-in-time image of a data storage volume by making

a full copy (clone) or a differential copy of the volume.

The differential copy snapshot improves space efficiency

upon full copy snapshot because only changes to the

volume are stored after the snapshot. There are basically

two types of differential snapshots:

copy-on-write [4] and redirect-on-write [5].

Copy-on-write snapshot: At the time when the

snapshot is created, a small volume is allocated as a

snapshot volume with respect to the source volume.

Upon the first write to a data block after the snapshot, the

original data of the block is copied from the source

volume to the snapshot volume. After copying, the write

operation is performed on the block in the source volume.

As a result, the data image at the time of the snapshot is

preserved. The combination of the source volume and the

snapshot volume presents the point-in-time image of the

data. After the snapshot is created, all subsequent read

I/Os are performed on the source volume. Write I/Os

after the first change to a block is also performed on the

source volume, i.e. only the first write to a block copies

the original data to the snapshot volume.

Redirect-on-write snapshot: Copy-on-write

requires 3 I/O operations upon the first write to a block

[4]: (1) read the original block from the source volume,

(2) write the original block to the snapshot volume, and

(3) write the new data in the source volume. These I/O

operations are done at production time, which may

negatively impact application performance. To overcome

this, one can do redirect-on-write that leaves the original

block in the source volume intact and the new write

operation is performed on the snapshot volume. This

eliminates the extra I/O operations of the copy-on-write

method. After the snapshot, all subsequent write I/Os are

performed on the snapshot volume while read I/Os may

 102

be from source volume or snapshot volume depending on

whether the block has been changed since the snapshot.

The point-in-time image of the data at the time of a

snapshot is the source volume itself since the source

volume has been read-only since the snapshot time. The

source volume will be updated at a later time, hopefully

not in production time, by copying data from the

snapshot volume.

Clearly, the two different snapshot methods

described above have different performance

characteristics. While they have been used in various

storage products, little is known in the open literature

about their impact on application performance except for

some scattered product information from vendors. For

example, Microsoft suggests that users should not create

shadow copies more frequently than once per hour with

the default configuration being two shadow copies per

day (Microsoft’s snapshot is done in Virtual Shadow

Copy Service). Otherwise, performance impact would be

significant [6]. We believe that it is desirable and

important to have a clear understanding of the

performance characteristics of various snapshot

technologies independent of specific vendor products.

Such clear understanding will benefit storage designers

in making design decisions and in playing tradeoffs

between performance and cost. It will also benefit

storage users in their storage configuration and planning

for data protection and recovery. We therefore present in

this paper an implementation and quantitative

performance evaluation of the two snapshot methods.

While there are existing snapshot implementations

on various storage products, direct measurements on

these products may not provide exact performance

characteristics of the different snapshot methods because

of variety of storage optimizations built in each storage

product. In order to accurately characterize performance

of different snapshot methods independent of other

storage optimization techniques, we have developed and

implemented an iSCSI target software. Our iSCSI target

implementation is a user level program running on

Windows platform. The target program communicates

directly with the standard iSCSI initiator available on

Linux and Windows. We have tested our target program

for many applications such as MySQL database, Postgres

database, NTFS, Tomcat 4.1, MS Office, VC++6.0, gcc,

VMWare, RedHat installation, Windows XP installation,

and more to show that it is fairly robust.

Based on this iSCSI target program, we

implemented the two snapshot methods: copy-on-write

and redirect-on-write. Databases, file systems and

benchmarks are set up on the machines with a standard

iSCSI initiator. We then carry out our performance

evaluations on the implementations of the two snapshot

methods with all other storage configurations being the

same. We use the industry standard benchmarks

including TPC-C, TPC-W, IoMeter, and PostMark to

drive our tests. Our measurements allow us to make

several interesting observations on the two snapshot

techniques. For example, for applications with large

proportion of write I/Os, redirect-on-write performs

better than copy-on-write snapshot for small block sizes.

As the block size increases, such difference diminishes.

For read-intensive applications, the results are quite

different. There are many factors affecting the snapshot

performance including basic hashing unit for doing the

snapshot, write frequency, I/O request sizes, and

overwrite rate etc. We use our measurement results to

analyze in detail how these factors affect storage

performance.

The paper is organized as follows. In the next

section, we present in detail our design and

implementation of the iSCSI target program and the two

snapshot methods. Section 3 describes our experimental

settings for our performance evaluation. Numerical

results and discussions are given in Section 4. Section 5

discusses related research work followed by our

conclusions in Section 6.

2. System Design and Implementation

To enable quantitative performance evaluation, we

have designed and implemented a complete block level

storage target using iSCSI protocol. Our implementation

of the iSCSI target is on top of the TCP/IP stack, as

shown in Figure 1. In the iSCSI protocol, there are two

communication parties, namely iSCSI initiator and

iSCSI target [7]. An iSCSI initiator runs under the file

system or database system as a device driver. When I/O

operations come from the host, the initiator generates I/O

requests using SCSI commands encapsulated inside the

TCP/IP packets that are sent to the designated iSCSI

target. The iSCSI target unwraps the TCP/IP packets to

obtain the SCSI commands and data. It then finishes the

requested I/O operations on the target side.

TCP/IP

Network

Snapshot Module

iSCSI Target

TCP/IP Stack

Storage Server

Source Volume

Snapshot Volume

Figure 1. Software Stack of the iSCSI Implementation

FS/DBMS

iSCSI Initiator

TCP/IP

S

Application Server

Benchmarks

Our iSCSI target conforms to the IPS draft (20) [7]

and runs on the Windows machine as a user mode

program. It can export any disk file, disk volume or the

whole disk as a device to provide block level services to

 103

the iSCSI initiator. User authentication is based on the IP

address of the machine running the iSCSI initiator.

The iSCSI target includes four modules: User

Interface (UI), basic I/O module, disk and volume

manager, and iSCSI protocol module. The UI module

deals with user interactions and setting up configuration

parameters. Configuration parameters include target

device designation, user access authorization, and status

monitoring. We can easily designate any disk file, disk

volume and the whole disk as a serving device in the

iSCSI target for an initiator. The basic I/O module

provides transparent functions for the designated device

to deal with basic I/O operations. The basic I/O

operations include device open, close, read and write.

The disk and volume manager is responsible for disk and

volume start, close, deletion, designation and status

message collection. The iSCSI protocol module includes

front-end target layer and STML (SCSI Target Mid-level)

layer similar to the UNH iSCSI implementation [8]. The

entire target is implemented using MS Visual C++ 6.0

and has been tested extensively to show that it is fairly

robust and performs well. We are currently trying to

integrate iCache mechanism [9] to improve the

performance further.

Based on our iSCSI target implementation, we have

designed and implemented the two snapshot methods,

copy-on-write and redirect-on-write. The snapshots are

implemented as an independent module, called snapshot

module, embedded in the iSCSI target. Upon receiving a

snapshot request from the host, the snapshot module

allocates a small volume as the snapshot volume. The

size of snapshot volume is determined by the size of the

source volume and the change rate of the source volume.

This size can be configurable and dynamically

changeable. Currently we allocate 10% of the space of

the source volume as the size of the snapshot volume. To

simplify our implementation, the snapshot volume is

managed using a fixed block size similar to the paging

mechanism. That is, all accesses to the data in the

snapshot volume are done using the fixed data units

referred as snap_block. This snap_block size is a user

configurable parameter ranging from 512B to 64KB.

Using fixed data unit simplifies the indexing structure

and recovery process. However, it may suffer from

performance penalty when actual I/O request sizes differ

greatly from the snap_block size in the snapshot volume.

The penalty comes from frequent fragmentation of the

I/O request data to fit the snap_block size. Alternatively,

one can manage the snapshot volume using variable

block sizes to optimize performance with the extra cost

of complicated indexing structure and recovery process.

Because of the time limit, in this paper we only report the

fixed snap_block size implementation.

With fixed snap_block size, we designed a hash

table to store the metadata about the snapshot volume.

The hash table uses an LBA as the key. The hash

structure is as follows:

typedef struct _HASH_ITEM{

unsigned long lba; //lba address

__int64 data_offset; //offset for snapshot volume

unsigned int read_count, write_count;// counters

}HASH_ITEM;

typedef struct _HASH_T{

HASH_ITEM *bucket; //basic hash table

int collisions;

int insertions;

int n; //length of basic table

__int64 data_len;

HASH_ITEM *ext; //extend hash table

}HASH_T, *PHASH_T;

2.1. Copy-on-write Snapshot Implementation

For the copy-on-write implementation, a write I/O

request goes through the process of determining whether

or not it is the first write to the block after the snapshot.

This process involves the hash table lookup using the

LBA of the write I/O. Depending on the snap_block size

and the write I/O size, LBA alignment and data

fragmentation may need to be done. The details of

alignment and fragmentation will be discussed shortly. If

the write I/O goes across snap_block boundaries either

because the data size is larger than the snap_block size or

the LBA of the I/O is not aligned with the snap_block,

the write I/O is decomposed into several small writes of

the snap_block size. For every small write, we use its

LBA as the key to look up the hash table. If the LBA

cannot be found in the hash table, this indicates that this

write is the first time to this block. The original data

block is copied from the source volume to the snapshot

volume. In addition, a new hash entry with this LBA is

inserted into the hash table. On the other hand, if the LBA

is found in the hash table, this shows that this write is not

the first time to this block, nothing needs to be done on

the snapshot volume for this snap_block. After copying

all data blocks pertaining to this I/O write from the

source volume to the snapshot volume, the write I/O is

performed on the source volume.

For read I/Os, there is no need to access the hash

table. Our snapshot module will forward read I/Os

directly to the source volume. The read operations are

performed as usual disk operations in the source volume.

2.2. Redirect-on-write Snapshot Implementation

For the redirect-on-write implementation, a write

I/O request goes through the similar process of the hash

 104

table lookup, LBA alignment and fragmentation. The

difference is that if the LBA is found in the hash table, an

overwrite operation is performed on the snapshot volume.

No write operation is performed on the source volume. If

the LBA of the write is not found in the hash table, a new

entry with the LBA is inserted into the hash table and a

new write is performed on the snapshot volume.

Redirect-on-write leaves the source volume intact. As a

result, original data is preserved in the source volume

and all changes happen in the snapshot volume. The

point-in-time snapshot image is completely contained in

the source volume. The source volume will be updated

afterward when backup is done or another snapshot is

created. Therefore, redirect-on-write snapshot does not

eliminate copying but defer it to a later time and

hopefully not in the production time [5].

Because the latest changed data are in the snapshot

volume and unchanged data in the source volume, read

I/Os need to merge data from the two volumes. When a

read I/O request comes, the read request is fragmented to

one or several requests based on the snap_block size and

the LBA. For every fragmented read request, we use its

LBA as the key to look up the hash table. If the LBA is

found, it indicates the fresh data to this block is in the

snapshot volume. We read the data block from the

snapshot volume. Otherwise the data is from the source

volume. When all the fragmented reads are done, we

merge all required data blocks to the read buffer and send

the read response to the requestor. Several optimizations

are possible for read I/Os. One straightforward

optimization is using Bloomfilter technique to quickly

determine which volume we will read data from [10].

Because the data size of the snapshot volume in our

implementation is limited, the simple hash table

performs fairly well. We are currently trying to

incorporate various optimizations in our implementation

but not yet reported in this paper because of time

constraint.

2.3. Fragmentation and Alignment

For both copy-on-write and redirect-on-write,

fragmentation and alignment are necessary.

Fragmentation divides a request into several small

requests. The LBA of an I/O request needs to be aligned

with an LBA of a snap_block since an I/O request can

start from any address that might be in the middle of a

snap_block. Suppose the starting LBA of a I/O is A, the

snap_block size is B, and the data size of the I/O request

is L. Assume that an LBA is the logical sector address

and a sector has 512 bytes. The fragmentation and

alignment are done as follows:

Fragmentation

Remain = A & (B/512-1);

If (Remain>0)

{

The starting LBA of the first fragmented request is

A-Remain;

}

if (L<=(B-Remain)*512)

{

This Fragmentation only generates one fragmented

request;

 Exit Fragmentation;

}

Count = (L-(B-Remain)*512)/B;

Leftsize = (L-(B-Remain)*512) MOD B;

Generate Count fragmented requests;

If (Leftsize>0)

{

Generate the last fragmented requests with starting

LBA as A-Remain+B/512+Count*B/512;

}

From the above algorithm, one can see that the first

fragmented request and the last fragmented request may

deal with partial data of a block. In our current

implementation, we simplify this process by aligning the

LBA address to A-Remain and fill up the rest of data from

the source volume for the first and the last block

fragments. The fact that a snap_block is filled with

partial data is known as internal fragmentation. Such

internal fragmentation causes performance loss because

an internal fragmentation not only takes additional space

in the snapshot volume but also involves additional I/O

operations. Several optimizations are possible to avoid

this additional cost such as using variable block sizes.

But these optimizations generally require additional data

structure in the hash table. This will make the hash table

complicated and the effectiveness remains to be seen.

Our current implementation uses the fixed snap_block

size that is user configurable.

3. Experimental Methodology

This section presents experimental methodology

and the test-bed that we use to study quantitatively the

performance of the two different snapshot technologies.

3.1. Experimental Setup

Using our implementation described in the last

section, we installed our prototype software on a PC

serving as a storage server, as shown in Figure 1. Two

PCs are interconnected using the Intel’s NetStructure

10/100/1000Mbps 470T switch. One of the PCs acts as

an application server running benchmarks with iSCSI

initiator installed and the other acts as the storage server

with our iSCSI target installed. The hardware

characteristics of the PCs are shown in Table 1.

 105

In order to test our iSCSI target and snapshot

module under different applications and different

software environments, we set up both Linux and

Windows operating systems in our experiments. The

software environments on these PCs are listed in Table 1.

We install Fedora 2 (Linux Kernel 2.4.20) and Microsoft

Windows XP Professional on the PCs. On the Linux

machine, the UNH iSCSI initiator [8] is installed. On the

Windows machines the Microsoft iSCSI initiator [11] is

installed.

On top of the iSCSI target and the snapshot module,

we set up two different types of databases and two types

of file systems. Postgres Database 7.1.3 is installed on

Fedora 2. MySQL 5.0 database is set up on Windows. To

be able to run industry standard web applications, we

install Tomcat 4.1 application server for processing web

application requests issued by benchmarks. For File

system benchmarks, IoMeter runs on Windows and

PostMark runs on Fedora 2.

3.2. Workload Characteristics

The first benchmark, TPC-C, is a well-known

benchmark used to model the operational end of

businesses where real-time transactions are processed

[12]. TPC-C simulates the execution of a set of

distributed and on-line transactions (OLTP) for a period

of two to eight hours. It is set in the context of a

wholesale supplier operating on a number of warehouses

and their associated sales districts. TPC-C incorporates

five types of transactions with different complexity for

online and deferred execution on a database system.

These transactions perform the basic operations on

databases such as inserts, deletes, updates and so on.

From data storage point of view, these transactions will

generate reads and writes that will change data blocks on

disks. For Postgres Database, we use the implementation

from TPCC-UVA [13]. 5 warehouses with 50 users are

built on Postgres database taking 2GB storage space.

Details regarding TPC-C workloads specification can be

found in [12].

Our second benchmark, TPC-W, is a transactional

web benchmark developed by Transaction Processing

Performance Council that models an on-line bookstore.

The benchmark comprises a set of operations on a web

server and a backend database system. It simulates a

typical on-line/E-commerce application environment.

Typical operations include web browsing, shopping, and

order processing. We use the Java TPC-W

implementation of University of Wisconsin-Madison [14]

and build an experimental environment. This

implementation uses Tomcat 4.1 as an application server

and MySQL 5.0 as a backend database. The configured

workload includes 30 emulated browsers and 10,000

items in the ITEM TABLE.

PC 1
P4 2.8GHz/256M RAM/80G+10G

Hard Disks

PC 2
P4 2.4GHz/2GB RAM/200G+10G

Hard Disks

Windows XP Professional SP2 OS

 Fedora 2 (Linux Kernel 2.4.20)

Postgres 7.1.3 for Linux Database

MySQL 5.0 for Microsoft Windows

UNH iSCSI Initiator 1.6 iSCSI

 Microsoft iSCSI Initiator 2.0

TPC-C for Postgres(TPCC-UVA)

TPC-W Java Implementation

IoMeter

Benchmark

PostMark

Intel NetStructure 470T Switch Network

 Intel PRO/1000 XT Server Adapter (NIC)

Table 1. Hardware and Software Environments

Besides benchmarks running on databases, we have

also run two file system benchmarks PostMark and

IoMeter. PostMark is a widely used file system

benchmark tool written by Network Appliance, Inc [15].

It measures performance in terms of transaction rates in

an ephemeral small-file environment by creating a large

pool of continually changing files. Once the pool has

been created, a specified number of transactions occur.

Each transaction consists of a pair of smaller transactions,

i.e. Create file/Delete file and Read file/Append file.

Each transaction’s type and files it affected are chosen

randomly. The read and write block size can be tuned. In

our experiments, we set PostMark workload to include

50,000 files and to perform 100,000 transactions. Read

and Write buffer sizes are set to 4KB. IoMeter is another

flexible and configurable benchmark tool that is also

widely used in industries and the research community

[16]. It can be used to measure the performance of a

mounted file system or a block device. We run the

IoMeter on NTFS with 4K-block size for two types of

workloads: 100% random writes, and 50% writes and

50% reads.

4. Numerical Results and Discussions

Using our implementations and the experimental

settings described in the previous sections, we carried out

extensive experiments to measure snapshot

performances. In order to isolate the effects of various

 106

file systems, we use two raw partitions for the source

volume and the snapshot volume in our experiments. All

results reported here are measured using the two raw

partitions. We consider 5 different snap_block sizes for

TPC-C and TPC-W: 512B, 4KB, 8KB, 16KB, and 64KB.

For IoMeter and PostMark, we run our experiments for

snap_block sizes of 512B, 4KB, 8KB, and 64KB.

Our first experiment is to measure the throughputs

of TPC-C benchmark running on Postgres database using

our iSCSI target as the block level storage with each of

the two different snapshots enabled. Figure 2 shows the

measured results in terms of tpmC that is the number of

transactions finished per minute. For the snap_block size

of 512B, we observed noticeable difference between

copy-on-write and redirect-on-write. As the snap_block

size increases, the performance difference reduces. It is

interesting to note that the performance of both snapshot

methods increases as we increase the snap_block size

from 512B to 8KB. As discussed before, large

snap_block sizes increase the chance of internal

fragmentations and LBA alignments, giving rise to

performance penalties. However, our experiments show

that this penalty is compensated by large and integrated

I/O operations on the snapshot volume. But if we

increase the snap_block size further beyond 8KB,

performance drops because of excessive internal

fragmentations.

Throughput results for TPC-W are shown in Figure

3. We run the TPC-W benchmark on MySQL database to

measure the throughputs in terms of WIPS that is the web

interactions finished per second. The TPC-W results are

quite different from the TPC-C results. For the

snap_block size of 512B, copy-on-write method

performs much better than redirect-on-write for TPC-W

benchmark as shown in Figure 3. This is in a quite

contrast to TPC-C. There are two major reasons for this

phenomenon. First, the ratio between read I/Os and write

I/Os in TPC-C is about 1:9 whereas the ratio in TPC-W is

3:2. With large proportion of read I/Os in the TPC-W

benchmark, copy-on-write snapshot shows better

performance because read I/Os are not affected by the

snapshot, while redirect-on-write suffers from

performance penalty because of read merging. Secondly

and more importantly, we noticed in TPC-W that the

average write size is about 11KB whereas the average

read size is about 16KB. For the small snap_block size of

512B, consecutive data blocks may be scattered in the

snapshot volume. As a result, merging small blocks

scattered on a disk volume takes a lot of slow I/O

operations, giving rise to large I/O response time. Our

analysis is further proved by the fact the

redirect-on-write performs very well and better than

copy-on-write for the snap_block size of 16KB as shown

in the figure. In this case, both reads and writes are

performed sequentially with the size matching the

average I/O size.

Figure 4 shows the measured results in terms of

average I/O response time for IOMeter benchmark with

100% random write I/Os. For such write-intensive

benchmarks, we observed the similar performance

characteristics to that of TPC-C benchmark.

Redirect-on-write performs better than copy-on-write for

all snap_block sizes except for 64KB when internal

fragmentations and LAB alignments become excessive.

For the snap_block size of 512B, the redirect-on-write

snapshot implementation performs 4 times better than

the copy-on-write implementation. For snap_block size

of 4KB, the performance difference is about 40%. The

performance difference can mainly be attributed to the

reduced I/O operations of the redirect-on-write compared

to the copy-on-write. Recall that 3 I/Os are needed for the

first write to each data block after the snapshot. Note that

 107

the redirect-on-write snapshot does not eliminate the

copy operations but defer them to a later time. If the copy

operations can be done off line and not during production

time, one can benefit from such deferring of data copies.

In order to observe how the two snapshots impact

application performances with mixed read and write I/Os

for the IOMeter benchmark, we measured again the

IOMeter performance with 50% random reads and 50%

random writes. The average I/O response times are

shown in Figure 5. Similar performance results to that of

Figure 4 are observed except for smaller differences

between the two snapshot methods. The performance

difference is small because read operations of the

copy-on-write perform better than redirect-on-write.

This observation suggests that there is a room for

performance optimization of the redirect-on-write

implementation. We are currently working on various

optimization techniques as discussed in Section 2. Notice

that in both Figures 4 and 5 the average read and write

I/O sizes are about 4KB.

PostMark results are shown in Figure 6 in terms of

total running time for 100,000 transactions on 50,000

files. For this benchmark, it seems that the two snapshot

methods show similar performance across all block sizes

considered with the difference less than a few percents.

One observation that is consistent with all other

benchmarks is that the performance of 512B snap_block

size is not as good as other block sizes. This observation

suggests that using sector size to do snapshot is not an

optimal solution even though it does not incur any

internal fragmentation. To further clarify this observation,

we carried out a small experiment of reading and writing

a 64KB data in a buffer to a disk using different block

sizes at block device level. We measured the read and

write I/O times in the experiment. The results are listed in

Table 2. As shown in Table 2, larger block sizes take

shorter time to write than smaller block sizes. However,

the time differences for the block sizes of 8KB, 16KB,

and 64KB are not significant. Noticeable longer time is

observed when the block size changes from 8KB to 4KB.

There is a dramatic increase in time for the block size of

512B. This result explains again why 512B snap_block

performs poorly in all the benchmarks studied.

snap_block size WriteTime(ms) ReadTime(ms)

64K 8.328 1.906

16K 8.359 2.344

8K 8.484 2.593

4K 12.516 3.594

0.5K 39.562 10.219

Table 2 I/O Time Measurements with different

snap_block sizes

Small block sizes not only slow down I/O

operations but also require large index data structure for

hashing. Figures 7 and 8 show the space used for the

snapshot volume and the sizes of the index data structure

for different block sizes. For 512B block size, the index

structure takes about 10% of the snapshot volume size

whereas for 8KB block size the index structure takes

about half of a percent of the snapshot volume. For 64KB

block size, the index structure is less than 0.08% of the

snapshot volume. These two figures clearly show that the

larger the snap_block size is, the smaller the index

structure will be. Therefore, to limit the overhead in the

index data structure, one would like to use large block

sizes.

On the other hand, large block sizes incur internal

fragmentations as discussed previously. The internal

fragmentation not only wastes storage space but also add

more unnecessary I/O operations in the snapshot volume.

To quantitatively observe internal fragmentations, we

measured the space efficiency defined as the average

ratio between the size of the write I/O coming from the

host and the actual data size written in the snapshot

volume because of the write I/O. The space efficiency is

an indicator of the degree of internal fragmentation. The

efficiency of 100% means that the data size written in the

snapshot volume is exactly the same as the write I/O data

size from the host with no storage waste. A smaller

efficiency implies a large internal fragmentation. To see

 108

how the internal fragmentation occurs, consider the

following example. Suppose two consecutive 16KB

snap_blocks with the LBAs of A and A + 32, respectively.

If the host issues a write I/O of size 2KB with starting

LBA of A + 30, the write I/O will result in changes in

both of the two snap_blocks. 1KB is written at the end of

the first snap_block with the LBA of A and the other 1KB

at the beginning the second snap_block with the LBA of

A+32. The total internal fragmentation is 30KB.

Figure 9 shows the space efficiency of the two

snapshot methods for different benchmark runs. Note

that the two snapshot methods use the same amount of

storage space in our implementation. As can be seen in

the figure, the efficiency for the block size of 512B is

100% with no storage waste. The space efficiency drops

rapidly as block size increases implying large internal

fragmentation. For 64KB block size, the efficiency drops

below 20%. Therefore, to minimize internal

fragmentations, one would like to use small block sizes.

It is very interesting to observe the two

contradicting objectives: increasing block size for better

performance (Figures 1 through 8) and decreasing block

size for better space efficiency (Figure 9). Therefore,

there is a tradeoff between performance and space

efficiency in selecting the snap_block size in designing a

snapshot implementation. Clearly, our experiments

suggest against sector size and favor 8KB or 16KB block

sizes depending on applications.

5. Related Work

Snapshot has been widely used in the storage

industry for data protection and data recovery. A good

summary of various snapshot methods can be found in

[4]. In general, a snapshot can be used in a file system for

versioning or it can be used in a block level device for

backup and recovery of a data volume.

For file versioning, a snapshot can be implemented

efficiently with the availability of file system intelligence

and access of indexes. For example, Peterson and Burns

[17] recently designed a versioning file system named

Ext3cow that uses snapshot functionality. Although the

snapshot is called copy-on-write, the actual

implementation allocates a new block for a new write

and preserves a copy of the old block in the old version.

The pointer in the I-node will be updated to reflect

different versions of the file. Similarly, NetApp’s WAFL

(Write Anywhere File Layout) writes a new data block to

another place on the disk, and changes the I-node to point

to the new block. The point-in-time snapshot image still

references to the original block that is unmodified on the

disk [18]. From performance point of view, these file

system based snapshots should be similar to the

redirect-on-write described in this paper. There are many

versioning file systems such as Tops-20[19], VMS[20],

Elephant[21], and CVFS[22] that make use of

copy-on-write snapshot.

For data backup and recovery, Plan 9 [23], Petal

[24], Microsoft Volume Shadow Copy Service (VSS)

[25], and Spiralog [26] backup systems use

copy-on-write to create snapshots. Plan 9 backups data

daily by creating snapshots of the file system. When

creating a snapshot, it freezes the state of the file system

and makes subsequent modifications to a copy of the

frozen data [1,23]. Petal creates a virtual disk backup

using tar command through snapshots [24]. VSS

provides a backup infrastructure for Microsoft Windows

XP and Microsoft Windows Server 2003 operating

systems, as well as a mechanism for creating consistent

point-in-time copies [25]. Spiralog provides on-line

backup of a log-structured file system (LFS) [27].

At block device level, there are many storage

products using snapshot technologies. Typical products

include EMC’s TimeFinder/Snap [28], HDS’s

copy-on-write Snapshot [29], Microsoft’s VSS, and

 109

NetApp’s Snapshot [30]. Most of these products use

copy-on-write method [4] with the exception of NetApp

that uses a method similar to the redirect-on-write

described in this paper.

Although snapshots have been implemented in

many file systems and storage products, there has been

no quantitative performance evaluation of different

snapshot methods at block device level. To the best of

our knowledge, we are the first one to implement two

different snapshot methods on the same storage target

and to accurately compare the performances of the two

snapshot methods.

Extensive research has been reported in the

literature on iSCSI protocol including storage

implementations [8, 31 , 32 33], and performance

evaluations using simulations [9,34] and measurements

[35,36,37]. It has been shown in these studies that iSCSI

performs very well as a block level data storage. Radkov

et al [35] have shown that iSCSI outperforms NFS by a

factor of 2 or more for meta-data intensive workloads.

Most of the iSCSI target implementations reported in the

literature are on Linux system. Few Windows-based

target implementations are reported in the open literature

except for one or two commercial products [38].

Furthermore, our primary purpose here is the quantitative

evaluation of the two snapshot techniques that we have

implemented in our iSCSI target.

6. Conclusions

In this paper, we have presented an implementation

and performance evaluation of two differential snapshot

methods: copy-on-write and redirect-on-write. Our

implementation is based on the standard iSCSI protocol.

A robust iSCSI target program for Windows has been

developed and tested that works smoothly with two

publicly available initiators: Windows’ initiator and

Linux initiator. The two snapshot methods are

implemented as an independent program module

embedded in the iSCSI target. Extensive experiments

have been carried out to measure the performance

impacts of the two snapshot methods. We use industry

standard benchmarks such as TPC-C, TPC-W, IOMeter,

and Postmark to measure the performances. Our

numerical results uncover many important performance

characteristics that were unknown before. Our analysis

can provide a useful guide to storage designers in making

their design decisions and to storage users in planning

their data protection and recovery. Our implementation

program including additional functionalities such as

CDP [39,40] is available to the research community

online at www.ele.uri.edu/hpcl.

As a future research work, we plan to optimize our

iSCSI target program as well as the snapshot

implementations. Possible optimizations include proper

caching at the iSCSI target, different hashing functions,

efficient merging of read I/Os on redirect-on-write

snapshot, variable snap_block sizes, and so forth.

Acknowledgments

This research is sponsored in part by National

Science Foundation under grants CCR-0073377,

CCR-0312613, and CCF-0610538. Any opinions,

findings, and conclusions or recommendations expressed

in this material are those of the author(s) and do not

necessarily reflect the views of the National Science

Foundation. The authors are grateful to Professor Randal

Burns for his detailed comments and suggestions that

greatly improve the quality of the paper. Part of the work

presented in this paper was performed in Gemini Storage

Corporation.

References

[1] A.L. Chervenak, V. Vellanki, and Z. Kurmas,

“Protecting file systems: A survey of backup

techniques,” In Proc. of Joint NASA and IEEE Mass

Storage Conference, College Park, MD, March 1998.

[2] Minwen Ji, Alistair Veitch, and John Wilkes, “Seneca:

remote mirroring done write,” In Proceedings of the

2003 USENIX Annual Technical Conference, San

Antonio, TX, pp. 253-268

[3] Ming Zhang, Yinan Liu, and Qing Yang, "Cost-

Effective Remote Mirroring Using the iSCSI

Protocol," In 21st IEEE Conference on Mass Storage

Systems and Technologies, April, 2004, pp.385-398.

[4] G. Duzy, “Match snaps to apps,” Storage, Special Issue

on Managing the information that drives the enterprise,

pp. 46-52, Sept. 2005.

[5] H. Simitci, “Backups using snapshots,” In Storage

Network Performance Analysis, Wiley Publishing,

Inc., 2003, pp. 280-282

[6] Novastor Corporation, “Microsoft Shadow-Copy

Service and its Role in an Organization’s Total Backup

Strategy,” http://www.novastor.com/

graphics/VSS_White_Paper.pdf.

[7] J. Satran, K. Meth, C. Sapuntzakis, M. Chadalapaka,

and E. Zeidner, “iSCSI draft standard,”

http://www.ietf.org/internet-drafts/draftietf-ips-iscsi-2

0.txt, Jan. 2003.

[8] UNH, “iSCSI reference implementation,” 2005, http://

unh-iscsi.sourceforge.net.

[9] Xubin He, Qing Yang, and Ming Zhang, "A Caching

Strategy to Improve iSCSI Performance," in

Proceedings of IEEE Annual Conference on Local

Computer Networks, Nov. 6-8,2002.

 110

[10] B. Bloom, “Space/time trade-offs in hashing coding

with allowable errors, ” Communication of the ACM,

Vol.13 (7), pp. 422-426, July 1970.

[11] Microsoft Corp. , “Microsoft iSCSI Software

Initiator Version 2.0,” 2005, http://www.microsoft.

com/windowsserversystem/storage/default.mspx.

[12] Transaction Processing Performance Council,

“TPC Benchmark
TM

 C Standard Specification,” 2005,

http://www.tpc.org/tpcc.

[13] J. Piernas, T. Cortes and J. M. García, “TPCC- UVA: A

free, open-source implementation of the TPC-C

Benchmark,” 2005, http://www.infor.uva.es

/~diego/tpcc-uva.html.

[14] H.W. Cain, R. Rajwar, M. Marden and M.H. Lipasti,

“An Architectural Evaluation of Java TPC-W,” HPCA

2001, Nuevo Leone, Mexico, Jan. 2001.

[15] J. Katcher, “PostMark: A new file system bench

-mark,” Network Appliance, Tech. Rep. 3022, 1997.

[16] Intel Corp., “IoMeter: Performance Analysis Tool,”

http://www.iometer.org/.

[17] Z. Peterson and R. C. Burns, “Ext3cow: A

Time-Shifting File System for Regulatory

Compliance”, ACM Transactions on Storage, Vol.1,

No.2, pp. 190-212, 2005.

[18] D. Hitz, J. Lau, and M. Malcolm, “File system design

for an NFS file server appliance,” In Proc. of the

USENIX Winter Technical Conference, San Francisco,

CA, 1994, pp. 235-245.

[19] L. Moses, “An introductory guide to TOPS-20,” Tech.

Report TM-82-22, USC/Information Sciences

Institutes, 1982.

[20] K. McCoy, “VMS File System Internals,” Digital Press,

1990.

[21] D. S. Santry, M.J. Feeley, N.C. Hutchinson, A.C.

Veitch, R.W. Carton, and J. Ofir, “Deciding when to

forget in the Elephant file system,” In Proc. of 17th

ACM Symposium on Operating System Principles,

Charleston, SC, Dec. 1999, pp. 110-123.

[22] C.A.N. Soules, G. R. Goodson, J. D. Strunk, and G.R.

Ganger, “Metadata efficieny in versioning file

systems,” In Proc. of the 2nd USENIX Conference on

File and Storage Technologies, San Francisco, CA,

March 2003, pp. 43-58.

[23] R. Pike, D. Presotto, K. Thompson, and et al, “Plan 9

for Bell Labs,” http://plan9.bell-labs.com /sys/doc/

[24] E. K. Lee and C. A. Thekkath, “Petal: Distributed

virtual disks,” In Proc. of the 7th International

Conference on Architecture Support for Programming

Languages an Operating Systems (ASPLOS-7),

Cambridge, MA, 1996.

[25] A. Sankaran, K. Guinn, and D. Nguyen, “Volume

Shadow Copy Service,” March 2004, http://www.

microsoft.com.

[26] R. Green, A. Baird, and C. Davies, “Designing a Fast,

On-line Backup System for a Log-structured File

System,” Digital Technical Journal, Oct. 1996.

[27] M. Rosenblum and J. Ousterhout, “Log-Structured

File System,” In Proceedings of the 13th ACM

Symposium on Operating Systems Principles, June

1991, pp. 1-15.

[28] EMC Corp., “EMC TimeFinder

Family, ”http://www.emc.com/products/software/tim

efinder.jsp

[29] Hitachi Ltd., “Hitachi ShadowImage implementation

service,”June，2001, http://www.hds.com/copy_on_

write_snapshot_467_02.pdf.

[30] NetAppliance Corporation, “Snapshot Technology,”

http://www.netapp.com/products/snapshot.html.

[31] Hui Xiong, Renuga Kanagavelu, Yaolong Zhu, Khai

Leong Yong, "An iSCSI Design and Implementation,"

in Proc. of the Twelfth NASA Goddard / Twenty-First

IEEE Conference on Mass Storage Systems and

Technologies NASA / IEEE MSST2004.

[32] Intel Corp., "Intel iSCSI Reference Implementation,"

http://sourceforge.net/projects/intel-iscsi.

[33] Cisco, "Linux-iSCSI Project," http://linux-

iscsi.sourceforge.net/.

[34] Yingping Lu, Farrukh Noman, and David H.C. Du,

“Simulation Study of iSCSI-based Storage System,” in

Proc. of The Twelfth NASA Goddard /Twenty-First

IEEE Conference on Mass Storage Systems and

Technologies NASA / IEEE MSST2004, pp. 399-408.

[35] P. Radkov, Li Yin, P. Goyal, P. Sarkar, and P. Shenoy,

"A performance comparison of NFS and iSCSI for

IP-Network Storage," Proceedings of FAST 2004.

[36] Stephen Aiken , Dirk Grunwald , Andrew R. Pleszkun ,

Jesse Willeke, “A Performance Analysis of the iSCSI

Protocol,” In Proceedings of the 20th IEEE/11th NASA

Goddard Conference on Mass Storage Systems and

Technologies (MSS'03), April 07-10, 2003.

[37] Ismail Dalgic, Kadir Ozdemir, Rajkumar Velpuri,

Jason Weber, Umesh Kukreja, Atrica, and Helen Chen,

and Umesh Kukreja, “Comparative Performance

Evaluation of iSCSI Protocol over Metro, Local, and

Wide Area Networks,” In Proc. of Twelfth NASA

Goddard / Twenty-First IEEE Conference on Mass

Storage Systems and Technologies NASA / IEEE

MSST2004.

[38] String Bean Software, ”WinTarget iSCSI Target

Software,”http://www.stringbeansoftware.com/

[39] Qing Yang, W. Xiao, and J. Ren, "TRAP-Array: A

Disk Array Architecture Providing Timely Recovery

to Any Point-in -time" in The 33rd International Symp.

on Computer Architecture, 2006 (ISCA'06).

[40] Qing Yang “Data replication method over a limited

bandwidth network by mirroring parities,” Patent

pending, US Patent and Trademark office, 62278-PCT,

August, 2004.

