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Abstract 

While snapshots have been commonly used in data 

storages for backup and data protections, little is known 

in the open literature how such snapshots impact 

application performance. This paper presents an 

implementation and performance evaluation of two 

snapshot techniques: copy-on-write snapshot and 

redirect-on-write snapshot. Our implementation is 

carried out at block level on a standard iSCSI target. We 

carry out quantitative performance evaluations and 

comparisons of the two snapshot implementations using 

TPC-C, TPC-W, IoMeter, and PostMark benchmarks. 

Our measurements reveal many interesting observations 

regarding the performance characteristics of the two 

snapshot techniques. Depending on the applications and 

different I/O workloads, the two snapshot techniques 

perform quite differently. In general, copy-on-write 

performs well on read-intensive applications while 

redirect-on-write performs well on write-intensive 

applications. 

1. Introduction 

As organizations and businesses depend more and 

more on digital information, data protection and disaster 

recovery have become the top challenge for data storage 

designers and administrators. In most storage systems, 

data protection relies on periodic backup [1] and remote 

replication [2,3]. Both backup and replication often make 

use of snapshot technologies to enhance and simplify 

recovery process by reducing recovery time and 

providing more recovery points. A snapshot creates a 

point-in-time image of a data storage volume by making 

a full copy (clone) or a differential copy of the volume. 

The differential copy snapshot improves space efficiency 

upon full copy snapshot because only changes to the 

volume are stored after the snapshot. There are basically 

two types of differential  snapshots:    

copy-on-write [4] and redirect-on-write [5].  

 

Copy-on-write snapshot: At the time when the 

snapshot is created, a small volume is allocated as a 

snapshot volume with respect to the source volume. 

Upon the first write to a data block after the snapshot, the 

original data of the block is copied from the source 

volume to the snapshot volume. After copying, the write 

operation is performed on the block in the source volume. 

As a result, the data image at the time of the snapshot is 

preserved. The combination of the source volume and the 

snapshot volume presents the point-in-time image of the 

data. After the snapshot is created, all subsequent read 

I/Os are performed on the source volume. Write I/Os 

after the first change to a block is also performed on the 

source volume, i.e. only the first write to a block copies 

the original data to the snapshot volume.  

 

Redirect-on-write snapshot: Copy-on-write 

requires 3 I/O operations upon the first write to a block 

[4]: (1) read the original block from the source volume, 

(2) write the original block to the snapshot volume, and 

(3) write the new data in the source volume. These I/O 

operations are done at production time, which may 

negatively impact application performance. To overcome 

this, one can do redirect-on-write that leaves the original 

block in the source volume intact and the new write 

operation is performed on the snapshot volume. This 

eliminates the extra I/O operations of the copy-on-write 

method. After the snapshot, all subsequent write I/Os are 

performed on the snapshot volume while read I/Os may 
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be from source volume or snapshot volume depending on 

whether the block has been changed since the snapshot. 

The point-in-time image of the data at the time of a 

snapshot is the source volume itself since the source 

volume has been read-only since the snapshot time. The 

source volume will be updated at a later time, hopefully 

not in production time, by copying data from the 

snapshot volume. 

Clearly, the two different snapshot methods 

described above have different performance 

characteristics. While they have been used in various 

storage products, little is known in the open literature 

about their impact on application performance except for 

some scattered product information from vendors. For 

example, Microsoft suggests that users should not create 

shadow copies more frequently than once per hour with 

the default configuration being two shadow copies per 

day (Microsoft’s snapshot is done in Virtual Shadow 

Copy Service). Otherwise, performance impact would be 

significant [ 6 ]. We believe that it is desirable and 

important to have a clear understanding of the 

performance characteristics of various snapshot 

technologies independent of specific vendor products. 

Such clear understanding will benefit storage designers 

in making design decisions and in playing tradeoffs 

between performance and cost. It will also benefit 

storage users in their storage configuration and planning 

for data protection and recovery. We therefore present in 

this paper an implementation and quantitative 

performance evaluation of the two snapshot methods.  

While there are existing snapshot implementations 

on various storage products, direct measurements on 

these products may not provide exact performance 

characteristics of the different snapshot methods because 

of variety of storage optimizations built in each storage 

product. In order to accurately characterize performance 

of different snapshot methods independent of other 

storage optimization techniques, we have developed and 

implemented an iSCSI target software. Our iSCSI target 

implementation is a user level program running on 

Windows platform. The target program communicates 

directly with the standard iSCSI initiator available on 

Linux and Windows. We have tested our target program 

for many applications such as MySQL database, Postgres 

database, NTFS,  Tomcat 4.1, MS Office, VC++6.0, gcc, 

VMWare, RedHat installation, Windows XP installation, 

and more to show that it is fairly robust.  

Based on this iSCSI target program, we 

implemented the two snapshot methods: copy-on-write 

and redirect-on-write. Databases, file systems and 

benchmarks are set up on the machines with a standard 

iSCSI initiator. We then carry out our performance 

evaluations on the implementations of the two snapshot 

methods with all other storage configurations being the 

same. We use the industry standard benchmarks 

including TPC-C, TPC-W, IoMeter, and PostMark to 

drive our tests. Our measurements allow us to make 

several interesting observations on the two snapshot 

techniques. For example, for applications with large 

proportion of write I/Os, redirect-on-write performs 

better than copy-on-write snapshot for small block sizes. 

As the block size increases, such difference diminishes. 

For read-intensive applications, the results are quite 

different. There are many factors affecting the snapshot 

performance including basic hashing unit for doing the 

snapshot, write frequency, I/O request sizes, and 

overwrite rate etc. We use our measurement results to 

analyze in detail how these factors affect storage 

performance. 

The paper is organized as follows. In the next 

section, we present in detail our design and 

implementation of the iSCSI target program and the two 

snapshot methods. Section 3 describes our experimental 

settings for our performance evaluation.  Numerical 

results and discussions are given in Section 4. Section 5 

discusses related research work followed by our 

conclusions in Section 6. 

2. System Design and Implementation 

To enable quantitative performance evaluation, we 

have designed and implemented a complete block level 

storage target using iSCSI protocol. Our implementation 

of the iSCSI target is on top of the TCP/IP stack, as 

shown in Figure 1. In the iSCSI protocol, there are two 

communication parties, namely iSCSI initiator and 

iSCSI target [7]. An iSCSI initiator runs under the file 

system or database system as a device driver. When I/O 

operations come from the host, the initiator generates I/O 

requests using SCSI commands encapsulated inside the 

TCP/IP packets that are sent to the designated iSCSI 

target. The iSCSI target unwraps the TCP/IP packets to 

obtain the SCSI commands and data. It then finishes the 

requested I/O operations on the target side. 
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Our iSCSI target conforms to the IPS draft (20) [7] 

and runs on the Windows machine as a user mode 

program. It can export any disk file, disk volume or the 

whole disk as a device to provide block level services to 
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the iSCSI initiator. User authentication is based on the IP 

address of the machine running the iSCSI initiator.  

The iSCSI target includes four modules: User 

Interface (UI), basic I/O module, disk and volume 

manager, and iSCSI protocol module. The UI module 

deals with user interactions and setting up configuration 

parameters. Configuration parameters include target 

device designation, user access authorization, and status 

monitoring. We can easily designate any disk file, disk 

volume and the whole disk as a serving device in the 

iSCSI target for an initiator. The basic I/O module 

provides transparent functions for the designated device 

to deal with basic I/O operations. The basic I/O 

operations include device open, close, read and write. 

The disk and volume manager is responsible for disk and 

volume start, close, deletion, designation and status 

message collection. The iSCSI protocol module includes 

front-end target layer and STML (SCSI Target Mid-level) 

layer similar to the UNH iSCSI implementation [8]. The 

entire target is implemented using MS Visual C++ 6.0 

and has been tested extensively to show that it is fairly 

robust and performs well. We are currently trying to 

integrate iCache mechanism [ 9 ] to improve the 

performance further. 

Based on our iSCSI target implementation, we have 

designed and implemented the two snapshot methods, 

copy-on-write and redirect-on-write. The snapshots are 

implemented as an independent module, called snapshot 

module, embedded in the iSCSI target. Upon receiving a 

snapshot request from the host, the snapshot module 

allocates a small volume as the snapshot volume. The 

size of snapshot volume is determined by the size of the 

source volume and the change rate of the source volume. 

This size can be configurable and dynamically 

changeable. Currently we allocate 10% of the space of 

the source volume as the size of the snapshot volume. To 

simplify our implementation, the snapshot volume is 

managed using a fixed block size similar to the paging 

mechanism. That is, all accesses to the data in the 

snapshot volume are done using the fixed data units 

referred as snap_block. This snap_block size is a user 

configurable parameter ranging from 512B to 64KB. 

Using fixed data unit simplifies the indexing structure 

and recovery process. However, it may suffer from 

performance penalty when actual I/O request sizes differ 

greatly from the snap_block size in the snapshot volume. 

The penalty comes from frequent fragmentation of the 

I/O request data to fit the snap_block size. Alternatively, 

one can manage the snapshot volume using variable 

block sizes to optimize performance with the extra cost 

of complicated indexing structure and recovery process. 

Because of the time limit, in this paper we only report the 

fixed snap_block size implementation.  

With fixed snap_block size, we designed a hash 

table to store the metadata about the snapshot volume. 

The hash table uses an LBA as the key. The hash 

structure is as follows: 

 
typedef struct  _HASH_ITEM{ 

unsigned long lba; //lba address 

__int64 data_offset; //offset for snapshot volume 

unsigned int read_count, write_count;// counters 

}HASH_ITEM; 

typedef struct  _HASH_T{ 

HASH_ITEM *bucket; //basic hash table 

int collisions; 

int insertions; 

int n;            //length of basic table 

__int64 data_len; 

HASH_ITEM *ext; //extend hash table 

}HASH_T, *PHASH_T; 

 

2.1. Copy-on-write Snapshot Implementation 

For the copy-on-write implementation, a write I/O 

request goes through the process of determining whether 

or not it is the first write to the block after the snapshot. 

This process involves the hash table lookup using the 

LBA of the write I/O. Depending on the snap_block size 

and the write I/O size, LBA alignment and data 

fragmentation may need to be done. The details of 

alignment and fragmentation will be discussed shortly. If 

the write I/O goes across snap_block boundaries either 

because the data size is larger than the snap_block size or 

the LBA of the I/O is not aligned with the snap_block, 

the write I/O is decomposed into several small writes of 

the snap_block size. For every small write, we use its 

LBA as the key to look up the hash table. If the LBA 

cannot be found in the hash table, this indicates that this 

write is the first time to this block. The original data 

block is copied from the source volume to the snapshot 

volume. In addition, a new hash entry with this LBA is 

inserted into the hash table. On the other hand, if the LBA 

is found in the hash table, this shows that this write is not 

the first time to this block, nothing needs to be done on 

the snapshot volume for this snap_block. After copying 

all data blocks pertaining to this I/O write from the 

source volume to the snapshot volume, the write I/O is 

performed on the source volume.  

For read I/Os, there is no need to access the hash 

table. Our snapshot module will forward read I/Os 

directly to the source volume. The read operations are 

performed as usual disk operations in the source volume.  

2.2. Redirect-on-write Snapshot Implementation 

For the redirect-on-write implementation, a write 

I/O request goes through the similar process of the hash 
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table lookup, LBA alignment and fragmentation. The 

difference is that if the LBA is found in the hash table, an 

overwrite operation is performed on the snapshot volume. 

No write operation is performed on the source volume. If 

the LBA of the write is not found in the hash table, a new 

entry with the LBA is inserted into the hash table and a 

new write is performed on the snapshot volume. 

Redirect-on-write leaves the source volume intact. As a 

result, original data is preserved in the source volume 

and all changes happen in the snapshot volume. The 

point-in-time snapshot image is completely contained in 

the source volume. The source volume will be updated 

afterward when backup is done or another snapshot is 

created. Therefore, redirect-on-write snapshot does not 

eliminate copying but defer it to a later time and 

hopefully not in the production time [5]. 

Because the latest changed data are in the snapshot 

volume and unchanged data in the source volume, read 

I/Os need to merge data from the two volumes. When a 

read I/O request comes, the read request is fragmented to 

one or several requests based on the snap_block size and 

the LBA. For every fragmented read request, we use its 

LBA as the key to look up the hash table. If the LBA is 

found, it indicates the fresh data to this block is in the 

snapshot volume. We read the data block from the 

snapshot volume. Otherwise the data is from the source 

volume. When all the fragmented reads are done, we 

merge all required data blocks to the read buffer and send 

the read response to the requestor. Several optimizations 

are possible for read I/Os. One straightforward 

optimization is using Bloomfilter technique to quickly 

determine which volume we will read data from [10]. 

Because the data size of the snapshot volume in our 

implementation is limited, the simple hash table 

performs fairly well. We are currently trying to 

incorporate various optimizations in our implementation 

but not yet reported in this paper because of time 

constraint. 

2.3. Fragmentation and Alignment 

For both copy-on-write and redirect-on-write, 

fragmentation and alignment are necessary. 

Fragmentation divides a request into several small 

requests. The LBA of an I/O request needs to be aligned 

with an LBA of a snap_block since an I/O request can 

start from any address that might be in the middle of a 

snap_block. Suppose the starting LBA of a I/O is A, the 

snap_block size is B, and the data size of the I/O request 

is L. Assume that an LBA is the logical sector address 

and a sector has 512 bytes. The fragmentation and 

alignment are done as follows: 

 

 

Fragmentation 

Remain = A & (B/512-1); 

If (Remain>0) 

{ 

The starting LBA of the first fragmented request is 

A-Remain; 

} 

if (L<=(B-Remain)*512) 

{ 

This Fragmentation only generates one fragmented 

request; 

 Exit Fragmentation; 

} 

Count = (L-(B-Remain)*512)/B; 

Leftsize = (L-(B-Remain)*512) MOD B; 

Generate Count fragmented requests; 

If (Leftsize>0) 

{ 

Generate the last fragmented requests with starting 

LBA as A-Remain+B/512+Count*B/512; 

} 

 

From the above algorithm, one can see that the first 

fragmented request and the last fragmented request may 

deal with partial data of a block. In our current 

implementation, we simplify this process by aligning the 

LBA address to A-Remain and fill up the rest of data from 

the source volume for the first and the last block 

fragments. The fact that a snap_block is filled with 

partial data is known as internal fragmentation. Such 

internal fragmentation causes performance loss because 

an internal fragmentation not only takes additional space 

in the snapshot volume but also involves additional I/O 

operations. Several optimizations are possible to avoid 

this additional cost such as using variable block sizes. 

But these optimizations generally require additional data 

structure in the hash table. This will make the hash table 

complicated and the effectiveness remains to be seen. 

Our current implementation uses the fixed snap_block 

size that is user configurable. 

3. Experimental Methodology 

This section presents experimental methodology 

and the test-bed that we use to study quantitatively the 

performance of the two different snapshot technologies. 

3.1. Experimental Setup  

Using our implementation described in the last 

section, we installed our prototype software on a PC 

serving as a storage server, as shown in Figure 1. Two 

PCs are interconnected using the Intel’s NetStructure 

10/100/1000Mbps 470T switch. One of the PCs acts as 

an application server running benchmarks with iSCSI 

initiator installed and the other acts as the storage server 

with our iSCSI target installed. The hardware 

characteristics of the PCs are shown in Table 1. 
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In order to test our iSCSI target and snapshot 

module under different applications and different 

software environments, we set up both Linux and 

Windows operating systems in our experiments. The 

software environments on these PCs are listed in Table 1. 

We install Fedora 2 (Linux Kernel 2.4.20) and Microsoft 

Windows XP Professional on the PCs. On the Linux 

machine, the UNH iSCSI initiator [8] is installed. On the 

Windows machines the Microsoft iSCSI initiator [11] is 

installed. 

On top of the iSCSI target and the snapshot module, 

we set up two different types of databases and two types 

of file systems. Postgres Database 7.1.3 is installed on 

Fedora 2. MySQL 5.0 database is set up on Windows. To 

be able to run industry standard web applications, we 

install Tomcat 4.1 application server for processing web 

application requests issued by benchmarks. For File 

system benchmarks, IoMeter runs on Windows and 

PostMark runs on Fedora 2. 

3.2. Workload Characteristics 

The first benchmark, TPC-C, is a well-known 

benchmark used to model the operational end of 

businesses where real-time transactions are processed 

[ 12 ]. TPC-C simulates the execution of a set of 

distributed and on-line transactions (OLTP) for a period 

of two to eight hours. It is set in the context of a 

wholesale supplier operating on a number of warehouses 

and their associated sales districts. TPC-C incorporates 

five types of transactions with different complexity for 

online and deferred execution on a database system. 

These transactions perform the basic operations on 

databases such as inserts, deletes, updates and so on. 

From data storage point of view, these transactions will 

generate reads and writes that will change data blocks on 

disks. For Postgres Database, we use the implementation 

from TPCC-UVA [13]. 5 warehouses with 50 users are 

built on Postgres database taking 2GB storage space. 

Details regarding TPC-C workloads specification can be 

found in [12]. 

Our second benchmark, TPC-W, is a transactional 

web benchmark developed by Transaction Processing 

Performance Council that models an on-line bookstore. 

The benchmark comprises a set of operations on a web 

server and a backend database system. It simulates a 

typical on-line/E-commerce application environment. 

Typical operations include web browsing, shopping, and 

order processing. We use the Java TPC-W 

implementation of University of Wisconsin-Madison [14] 

and build an experimental environment. This 

implementation uses Tomcat 4.1 as an application server 

and MySQL 5.0 as a backend database. The configured 

workload includes 30 emulated browsers and 10,000 

items in the ITEM TABLE. 

 

PC 1 
P4 2.8GHz/256M RAM/80G+10G  

Hard Disks 

PC 2 
P4 2.4GHz/2GB RAM/200G+10G  

Hard Disks 

Windows XP Professional SP2 OS 

 Fedora 2 (Linux Kernel 2.4.20) 

Postgres 7.1.3 for Linux Database 

 

 
MySQL 5.0 for Microsoft Windows 

UNH iSCSI Initiator 1.6 iSCSI 

 Microsoft iSCSI Initiator 2.0 

TPC-C for Postgres(TPCC-UVA) 

TPC-W Java Implementation 

IoMeter 

Benchmark 

 

 
PostMark 

Intel NetStructure 470T Switch Network 

 Intel PRO/1000 XT Server Adapter (NIC) 

 

Table 1. Hardware and Software Environments 

 

Besides benchmarks running on databases, we have 

also run two file system benchmarks PostMark and 

IoMeter. PostMark is a widely used file system 

benchmark tool written by Network Appliance, Inc [15]. 

It measures performance in terms of transaction rates in 

an ephemeral small-file environment by creating a large 

pool of continually changing files. Once the pool has 

been created, a specified number of transactions occur. 

Each transaction consists of a pair of smaller transactions, 

i.e. Create file/Delete file and Read file/Append file. 

Each transaction’s type and files it affected are chosen 

randomly. The read and write block size can be tuned. In 

our experiments, we set PostMark workload to include 

50,000 files and to perform 100,000 transactions. Read 

and Write buffer sizes are set to 4KB. IoMeter is another 

flexible and configurable benchmark tool that is also 

widely used in industries and the research community 

[16]. It can be used to measure the performance of a 

mounted file system or a block device. We run the 

IoMeter on NTFS with 4K-block size for two types of 

workloads: 100% random writes, and 50% writes and 

50% reads. 

4. Numerical Results and Discussions  

Using our implementations and the experimental 

settings described in the previous sections, we carried out 

extensive experiments to measure snapshot 

performances. In order to isolate the effects of various 
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file systems, we use two raw partitions for the source 

volume and the snapshot volume in our experiments. All 

results reported here are measured using the two raw 

partitions. We consider 5 different snap_block sizes for 

TPC-C and TPC-W: 512B, 4KB, 8KB, 16KB, and 64KB. 

For IoMeter and PostMark, we run our experiments for 

snap_block sizes of 512B, 4KB, 8KB, and 64KB. 

 

 
 

Our first experiment is to measure the throughputs 

of TPC-C benchmark running on Postgres database using 

our iSCSI target as the block level storage with each of 

the two different snapshots enabled. Figure 2 shows the 

measured results in terms of tpmC that is the number of 

transactions finished per minute. For the snap_block size 

of 512B, we observed noticeable difference between 

copy-on-write and redirect-on-write. As the snap_block 

size increases, the performance difference reduces. It is 

interesting to note that the performance of both snapshot 

methods increases as we increase the snap_block size 

from 512B to 8KB. As discussed before, large 

snap_block sizes increase the chance of internal 

fragmentations and LBA alignments, giving rise to 

performance penalties. However, our experiments show 

that this penalty is compensated by large and integrated 

I/O operations on the snapshot volume. But if we 

increase the snap_block size further beyond 8KB, 

performance drops because of excessive internal 

fragmentations. 

Throughput results for TPC-W are shown in Figure 

3. We run the TPC-W benchmark on MySQL database to 

measure the throughputs in terms of WIPS that is the web 

interactions finished per second. The TPC-W results are 

quite different from the TPC-C results. For the 

snap_block size of 512B, copy-on-write method 

performs much better than redirect-on-write for TPC-W 

benchmark as shown in Figure 3. This is in a quite 

contrast to TPC-C. There are two major reasons for this 

phenomenon. First, the ratio between read I/Os and write 

I/Os in TPC-C is about 1:9 whereas the ratio in TPC-W is 

3:2. With large proportion of read I/Os in the TPC-W 

benchmark, copy-on-write snapshot shows better 

performance because read I/Os are not affected by the 

snapshot, while redirect-on-write suffers from 

performance penalty because of read merging. Secondly 

and more importantly, we noticed in TPC-W that the 

average write size is about 11KB whereas the average 

read size is about 16KB. For the small snap_block size of 

512B, consecutive data blocks may be scattered in the 

snapshot volume. As a result, merging small blocks 

scattered on a disk volume takes a lot of slow I/O 

operations, giving rise to large I/O response time. Our 

analysis is further proved by the fact the 

redirect-on-write performs very well and better than 

copy-on-write for the snap_block size of 16KB as shown 

in the figure. In this case, both reads and writes are 

performed sequentially with the size matching the 

average I/O size. 

 

 

 
 

Figure 4 shows the measured results in terms of 

average I/O response time for IOMeter benchmark with 

100% random write I/Os. For such write-intensive 

benchmarks, we observed the similar performance 

characteristics to that of TPC-C benchmark. 

Redirect-on-write performs better than copy-on-write for 

all snap_block sizes except for 64KB when internal 

fragmentations and LAB alignments become excessive. 

For the snap_block size of 512B, the redirect-on-write 

snapshot implementation performs 4 times better than 

the copy-on-write implementation. For snap_block size 

of 4KB, the performance difference is about 40%. The 

performance difference can mainly be attributed to the 

reduced I/O operations of the redirect-on-write compared 

to the copy-on-write. Recall that 3 I/Os are needed for the 

first write to each data block after the snapshot. Note that 
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the redirect-on-write snapshot does not eliminate the 

copy operations but defer them to a later time. If the copy 

operations can be done off line and not during production 

time, one can benefit from such deferring of data copies. 

 

 
 

In order to observe how the two snapshots impact 

application performances with mixed read and write I/Os 

for the IOMeter benchmark, we measured again the 

IOMeter performance with 50% random reads and 50% 

random writes. The average I/O response times are 

shown in Figure 5. Similar performance results to that of 

Figure 4 are observed except for smaller differences 

between the two snapshot methods. The performance 

difference is small because read operations of the 

copy-on-write perform better than redirect-on-write. 

This observation suggests that there is a room for 

performance optimization of the redirect-on-write 

implementation. We are currently working on various 

optimization techniques as discussed in Section 2. Notice 

that in both Figures 4 and 5 the average read and write 

I/O sizes are about 4KB. 

 

 
 

PostMark results are shown in Figure 6 in terms of 

total running time for 100,000 transactions on 50,000 

files. For this benchmark, it seems that the two snapshot 

methods show similar performance across all block sizes 

considered with the difference less than a few percents. 

One observation that is consistent with all other 

benchmarks is that the performance of 512B snap_block 

size is not as good as other block sizes. This observation 

suggests that using sector size to do snapshot is not an 

optimal solution even though it does not incur any 

internal fragmentation. To further clarify this observation, 

we carried out a small experiment of reading and writing 

a 64KB data in a buffer to a disk using different block 

sizes at block device level. We measured the read and 

write I/O times in the experiment. The results are listed in 

Table 2. As shown in Table 2, larger block sizes take 

shorter time to write than smaller block sizes. However, 

the time differences for the block sizes of 8KB, 16KB, 

and 64KB are not significant. Noticeable longer time is 

observed when the block size changes from 8KB to 4KB. 

There is a dramatic increase in time for the block size of 

512B. This result explains again why 512B snap_block 

performs poorly in all the benchmarks studied. 

 

snap_block size WriteTime(ms) ReadTime(ms) 

64K 8.328 1.906 

16K 8.359 2.344 

8K 8.484 2.593 

4K 12.516 3.594 

0.5K 39.562 10.219 

 

Table 2 I/O Time Measurements with different 

snap_block sizes 

 

Small block sizes not only slow down I/O 

operations but also require large index data structure for 

hashing. Figures 7 and 8 show the space used for the 

snapshot volume and the sizes of the index data structure 

for different block sizes. For 512B block size, the index 

structure takes about 10% of the snapshot volume size 

whereas for 8KB block size the index structure takes 

about half of a percent of the snapshot volume. For 64KB 

block size, the index structure is less than 0.08% of the 

snapshot volume. These two figures clearly show that the 

larger the snap_block size is, the smaller the index 

structure will be. Therefore, to limit the overhead in the 

index data structure, one would like to use large block 

sizes. 

On the other hand, large block sizes incur internal 

fragmentations as discussed previously. The internal 

fragmentation not only wastes storage space but also add 

more unnecessary I/O operations in the snapshot volume. 

To quantitatively observe internal fragmentations, we 

measured the space efficiency defined as the average 

ratio between the size of the write I/O coming from the 

host and the actual data size written in the snapshot 

volume because of the write I/O. The space efficiency is 

an indicator of the degree of internal fragmentation. The 

efficiency of 100% means that the data size written in the 

snapshot volume is exactly the same as the write I/O data 

size from the host with no storage waste. A smaller 

efficiency implies a large internal fragmentation. To see 
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how the internal fragmentation occurs, consider the 

following example. Suppose two consecutive 16KB 

snap_blocks with the LBAs of A and A + 32, respectively. 

If the host issues a write I/O of size 2KB with starting 

LBA of A + 30, the write I/O will result in changes in 

both of the two snap_blocks. 1KB is written at the end of 

the first snap_block with the LBA of A and the other 1KB 

at the beginning the second snap_block with the LBA of 

A+32. The total internal fragmentation is 30KB.  

 

 

 

 
 

Figure 9 shows the space efficiency of the two 

snapshot methods for different benchmark runs. Note 

that the two snapshot methods use the same amount of 

storage space in our implementation. As can be seen in 

the figure, the efficiency for the block size of 512B is 

100% with no storage waste. The space efficiency drops 

rapidly as block size increases implying large internal 

fragmentation. For 64KB block size, the efficiency drops 

below 20%. Therefore, to minimize internal 

fragmentations, one would like to use small block sizes. 

It is very interesting to observe the two 

contradicting objectives: increasing block size for better 

performance (Figures 1 through 8) and decreasing block 

size for better space efficiency (Figure 9). Therefore, 

there is a tradeoff between performance and space 

efficiency in selecting the snap_block size in designing a 

snapshot implementation. Clearly, our experiments 

suggest against sector size and favor 8KB or 16KB block 

sizes depending on applications.  

5. Related Work 

Snapshot has been widely used in the storage 

industry for data protection and data recovery. A good 

summary of various snapshot methods can be found in 

[4]. In general, a snapshot can be used in a file system for 

versioning or it can be used in a block level device for 

backup and recovery of a data volume. 

For file versioning, a snapshot can be implemented 

efficiently with the availability of file system intelligence 

and access of indexes. For example, Peterson and Burns  

[17] recently designed a versioning file system named 

Ext3cow that uses snapshot functionality. Although the 

snapshot is called copy-on-write, the actual 

implementation allocates a new block for a new write 

and preserves a copy of the old block in the old version. 

The pointer in the I-node will be updated to reflect 

different versions of the file. Similarly, NetApp’s WAFL 

(Write Anywhere File Layout) writes a new data block to 

another place on the disk, and changes the I-node to point 

to the new block. The point-in-time snapshot image still 

references to the original block that is unmodified on the 

disk [18]. From performance point of view, these file 

system based snapshots should be similar to the 

redirect-on-write described in this paper. There are many 

versioning file systems such as Tops-20[19], VMS[20], 

Elephant[ 21 ], and CVFS[ 22 ] that make use of 

copy-on-write snapshot.  

For data backup and recovery, Plan 9 [23], Petal 

[24], Microsoft Volume Shadow Copy Service (VSS) 

[ 25 ], and Spiralog [ 26 ] backup systems use 

copy-on-write to create snapshots. Plan 9 backups data 

daily by creating snapshots of the file system. When 

creating a snapshot, it freezes the state of the file system 

and makes subsequent modifications to a copy of the 

frozen data [1,23]. Petal creates a virtual disk backup 

using tar command through snapshots [24]. VSS 

provides a backup infrastructure for Microsoft Windows 

XP and Microsoft Windows Server 2003 operating 

systems, as well as a mechanism for creating consistent 

point-in-time copies [25]. Spiralog provides on-line 

backup of a log-structured file system (LFS) [27]. 

At block device level, there are many storage 

products using snapshot technologies. Typical products 

include EMC’s TimeFinder/Snap [ 28 ], HDS’s 

copy-on-write Snapshot [ 29 ], Microsoft’s VSS, and 
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NetApp’s Snapshot [30]. Most of these products use 

copy-on-write method [4] with the exception of NetApp 

that uses a method similar to the redirect-on-write 

described in this paper. 

Although snapshots have been implemented in 

many file systems and storage products, there has been 

no quantitative performance evaluation of different 

snapshot methods at block device level. To the best of 

our knowledge, we are the first one to implement two 

different snapshot methods on the same storage target 

and to accurately compare the performances of the two 

snapshot methods.  

Extensive research has been reported in the 

literature on iSCSI protocol including storage 

implementations [8, 31 , 32 33 ], and performance 

evaluations using simulations [9,34] and measurements 

[35,36,37]. It has been shown in these studies that iSCSI 

performs very well as a block level data storage. Radkov 

et al [35] have shown that iSCSI outperforms NFS by a 

factor of 2 or more for meta-data intensive workloads. 

Most of the iSCSI target implementations reported in the 

literature are on Linux system. Few Windows-based 

target implementations are reported in the open literature 

except for one or two commercial products [ 38 ]. 

Furthermore, our primary purpose here is the quantitative 

evaluation of the two snapshot techniques that we have 

implemented in our iSCSI target. 

6. Conclusions 

In this paper, we have presented an implementation 

and performance evaluation of two differential snapshot 

methods: copy-on-write and redirect-on-write. Our 

implementation is based on the standard iSCSI protocol. 

A robust iSCSI target program for Windows has been 

developed and tested that works smoothly with two 

publicly available initiators: Windows’ initiator and 

Linux initiator. The two snapshot methods are 

implemented as an independent program module 

embedded in the iSCSI target. Extensive experiments 

have been carried out to measure the performance 

impacts of the two snapshot methods. We use industry 

standard benchmarks such as TPC-C, TPC-W, IOMeter, 

and Postmark to measure the performances. Our 

numerical results uncover many important performance 

characteristics that were unknown before. Our analysis 

can provide a useful guide to storage designers in making 

their design decisions and to storage users in planning 

their data protection and recovery. Our implementation 

program including additional functionalities such as 

CDP [39,40] is available to the research community 

online at www.ele.uri.edu/hpcl. 

As a future research work, we plan to optimize our 

iSCSI target program as well as the snapshot 

implementations. Possible optimizations include proper 

caching at the iSCSI target, different hashing functions, 

efficient merging of read I/Os on redirect-on-write 

snapshot, variable snap_block sizes, and so forth. 
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