

Adaptive Replica Management for Large-scale Object-based Storage Devices

Qingsong Wei Wujuan Lin Yong Khai Leong
Data Storage Institute, Network Storage Technology Division

Email: {WEI_Qingsong, LIN_Wujuan, YONG_Khai_Leong}@dsi.a-star.edu.sg

Abstract

 Replica management is basic and challenging issue for
distributed storage system designer. The objective of this
paper is to dynamically create, migrate and delete
replicas among nodes in response to changes in the
access patterns.
 This paper presents an Adaptive Replica Management
Model for large-scale Object-based Storage Devices
(OSDs). The model expresses availability and consistency
maintenance cost as functions of replica number and
suggests lower bound and upper bound on replica
reference number based on file availability requirement
and available network bandwidth. The model can adapt
to the changes of environment and maintains a rational
number of replica, which not only satisfies object
availability, improves access efficiency and balances
overload, but also reduces bandwidth requirement and
keeps the whole storage system stable. Our experimental
evaluation results demonstrate that our model can
perform well for system reliability and performance.

1. Introduction

 As a new generation high-performance distributed
storage system, object-based storage system is being
developed to support high-performance computing
environments, which require strong system scalability and
reliability. Rather than relying upon a few very large
storage arrays, the petabyte-scale object-based storage
system have thousands of self-contained Object-Based
Storage Devices (OSDs) [1,2], working together to
provide low cost, large capacity, high-performance storage
service with aggregate storage bandwidth exceeding
100GB/s [3,4].
 In a large-scale object-based storage system, files are
usually stripped into multiple objects across OSD clusters
to improve the system I/O throughput. However, OSDs
may be unreachable due to network or node failure in a
heterogeneous large-scale storage system. If one of the
objects is unavailable, so as the whole file. Improving
object availability in such an object-based storage system
environment thus becomes a challenging issue for the

system designers. Some high performance applications
such as scientific application strongly require data to be
available when they need it, at least with high probability.
Data replication is a well-known solution to increase data
availability (or fault tolerance), reduce access latency,
balance the workload, etc. If multiple copies of object
exist on different OSDs, then the chances of at least one
copy being accessible increases. Aggregate data access
performance will also tend to increase, and total network
load will tend to decrease, if replicas and requests are
reasonably distributed [5].

While replication has advantages as mentioned above, it
also has significant costs to maintain the data consistency.
If one replica is modified, all the replicas of an object
must be updated, consuming large amounts of storage and
network bandwidth that is relatively rare when comparing
to aggregate storage system bandwidth 100GB/s.
Although adding replicas of an object can improve
availability and balance workload, it will increase
consistency maintenance cost, which may essentially
result in communication congestion of underlying
network. Unreasonable number and distribution of
replicas may not improve the whole system performance,
but bring unnecessary spending instead.

This paper presents an Adaptive Object Replica
Management Model for OSD clusters, in which the
availability and consistency maintenance cost are
considered as functions of object replica number. Our
objective is to dynamically manage replica and maintains
a reasonable number of replica, so as to satisfy file
availability, improve access efficiency, balance the
workload, and reduce bandwidth requirement as well. Our
experimental results demonstrate the effectiveness of the
proposed adaptive replica management model with respect
to the system reliability and performance in terms of
request access latency.

The rest of this paper is organized as follows. Section 2
provides an overview of related works in the literature.
Section 3 analyzes the basic issues when designing the
object replication scheme. We present our adaptive replica
management model in Section 4. Section 5 gives
implementation details of the model, and we present our
evaluation and measurement results in Section 6. We

summarize this paper with the conclusions and possible
future work in Section 7.

2. Related works

Replication management scheme has direct relationship
with application type and underlying network
environment. Data Grid manages large numbers of read-
only scientific data and provides data sharing for globally
distributed user communities. It improves data access
efficiency through replication, but does not consider the
consistency maintenance cost. To save latency and
bandwidth, K.Ranganathan and I.Foster presented
identifying dynamic replication strategies for Data Grid in
[6], by applying different replication strategies for
different kinds of access patterns without considering
consistency issues.

The most common distributed storage systems, such as
Napster [7] and Freenet [8], dynamically manage replicas
based on file popularity degree, in which once access
frequency to a file exceeds a threshold, a new replica of
the file will be created. This replication management
scheme is based on the assumption that underlying
network bandwidth is unlimited and does not consider the
costs of replica creation. This scheme can acquire
satisfactory performance when bandwidth resource is
enough. However, in WAN and wireless network
environment, bandwidth resource is very limited and the
underlying assumption of high speed networks will no
longer hold.

Kavitha Ranganathan proposed a dynamic model-
driven replication scheme in [9]. In the scheme, each peer
in the P2P storage system runs a model to determine how
many replicas of a file are needed to maintain desired
availability. More specifically, each peer applies this
model to the information about system state and file
replication status to determine when and where new
replicas should be created. This scheme can ensure file
availability in dynamic P2P environment, but again, it
does not consider access efficiency and consistency
maintenance costs.

3. Issues of Object Replication Scheme

 In this section, we will discuss several issues to further
understand how replica influences object availability and
system performance. We take the following experiments in
our OSD prototype.

3.1. Availability

 In the object-based storage system, file may be stored in
the OSD cluster with two manners: without stripping and
with stripping, as shown in Figure 1. In the case of

without stripping, a file will be stored in an OSD as a
single object, while in the case of with stripping, one file
may be mapped to multiple objects and stored in different
OSDs for parallel data access. Now, let us assume that the
probability of each OSD availability is p (0<p<1). For the
case of without stripping, the file availability is p. While
for the case of with stripping, let say file is stripped into n
(n>0) objects distributed into n different OSDs, the file
availability is pn and obviously, p>pn. So file to object
stripping will decrease file availability and it is necessary
to place multiple object replicas to ensue file availability.

Figure 1. File Stored in the OSD cluster:
(a) without stripping and (b) with stripping

 We test the relationship of availability and replicas
number when the OSD nodes keep a certain online ratio. A
given file is stripped into 3 objects and each object has
several replicas distributed across OSDs. Figure 2 plotted
the result when node online ratio is 0.8 and 0.9.

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10
Replica Number

A
va

il
ab

il
it

y

0.8
0.9

Figure 2. Availability as function of Replica
Number

From Figure 2, we observe that file availability
increases along with the increase of replica number. When
replica number reaches a certain point, the file availability
is equal to 1, and there is no meaning to add in more

Stripping

A: Without B: With stripping

O1 O2 … On

OSD OSD OSD OSD OSD

replicas. The higher the node online ratio, the less replica
number it needs for file availability equal to 1.

Therefore, given a certain file availability requirement,
we can maintain minimum replica number to ensure the
file availability. Adding more replicas will not improve the
file availability.

3.2. Consistency Maintenance Overhead

 To study consistency maintenance overload, we use
trace-driven method to analyze network traffic along with
replica number varying when file updates with a certain
frequency, as shown in Figure 3.

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10
Replica Number

T
ra

ff
ic

 C
os

t(
K

B
)

15 mins
25 mins
35 mins

Figure 3. Traffic Cost varies with replica

number with different update frequency: 15
minutes, 25 minutes, and 35 minutes

As expected, when object update frequency is certain,
network traffic increases linearly along with replica
increasing. And when replica number is certain, network
traffic increases along with object update frequency
increasing.

In a network storage system, the network bandwidth
resource is very limited and crucial to the overall
performance. Although more replicas mean high
availability and high performance, it also consumes more
network resource to maintain data consistency, which may
lead to tremendous network resource consumption and
essentially decrease the data access performance.

From the above experiment and analysis, we can find
that there is a trade-off between data
availability/efficiency and data consistency. In order to
improve availability and performance, we need to add
more replicas, while need to pay more cost for the data
consistency. In view of these issues, we designed a
dynamic replica management mechanism to consider the
above two factors. Our mechanism not only improves
object availability and access efficiency, but also reduces
object consistency maintenance overload.

4. Adaptive Replica Management Model

 Our proposed model will answer following two key
questions: how many replicas the system should keep at
least to maintain certain object availability? How many
replicas the system can support at most to maintain object
consistency under a certain network environment?

4.1. Availability

 To determine the number of replicas that guarantees the
required availability of an object, we need to identify the
system parameters that affect data availability. The
reachable probability or failure rate of OSDs in the
network is the key factor of object availability.

Followings are some definitions that will be used
throughout the rest of this paper.

Node Available: refer to the event of node reachable,
denoted as NA, and P(NA) is the probability of node
available.

Node Unavailable: refer to the event of node

unreachable, denoted as

NA .)(

NAP is the probability of

node unavailable, and)(1)(

NAPNAP −= .
Object Available: refer to the event of object Oi

available, denoted as OAi, and P(OAi) is the probability
of the object Oi available.

Object Unavailable: refer to the event of object Oi

unavailable, denoted as

iOA .)(

iOAP is the probability

of the object Oi unavailable, and)(1)(

ii OAPOAP −= .

File Available: refer to the event of file available,
denoted as FA, and P(FA) is the probability of the file
available.

File Unavailable: refer to the event of file unavailable,

denoted as

FA .)(

FAP is the probability of the file

unavailable, and)(1)(

FAPFAP −= .
Let say file is stripped into m objects marked as F=

{O1, O2, …, Om }, and the M objects are distributed into n
OSD nodes marked as H={H1, H2, …,Hn}. Object Oi has
Ri replicas and unreachable probability of OSD Hj is pj. In
the object-based storage system, all OSDs are independent
from each other.

As for object Oi which has Ri replicas across Ri OSD
nodes, if all the Ri OSDs are not available, the object Oi
will be not available. So we have,

)...()(

2

1

iRi NANANAPOAP ×××=

 The OSD nodes are independent, we have,

∏
=

=×××=
i

i

R

j
jRi pNAPNAPNAPOAP

1

2

1

)(...)(()()(

To get the whole file F, we must get all the m objects.
Any object unavailable will cause file unavailable. So,

)1()...()1(...

)()(

)...()(

2

1
1

1

1

2

1

m
m

mji
ji

m

i
i

m

OAOAOAP

OAOAPOAP

OAOAOAPFAP

���

�

���

�

−

≤≤=

−+

+−=

=

��

 Therefore, the file availability is:

)(1)(

FAPFAP −=
 Generally, there are two types of distribution policies:
objects independent and objects dependent. Here we only
consider the first distribution policy in our object-based
storage system.
 In this case, objects are independent and object Oi
unavailable can not result in object Oj unavailable. It
satisfies following condition:

jiOAPOAPOAOAP jiji ≠×=)()()(

�

 To simplify model, let say file F is divided into m
objects marked as F={O1,O2,…., Om}, and distributed
across n OSD nodes. Each object has k replicas. The
probability of a node down is p.
 Now for object Oi, which has k replicas across k OSDs,
if all of the k OSDs are not available, the object Oi will be
unavailable. So the probability of object Oi unavailable is:

k
i pOAP =)(

k
m pOAPOAPOAP ===)(...)()(

21

 According to the formula (1), the probability of file
unavailable is:

mk

mkm
m

mk
m

k
m

m

p

pCpCpC

OAOAOAPFAP

)1(1

)()1(...)(

)...()(
1221

2

1

−−=

−++−=

=
+

���

 And hence, the probability of file available is:
mkpFAPFAP)1()(1)(

−=−=
 Assuming the expected availability for file F is Aexpect, to
ensure the availability needed for a given file, we need:

)2()1(expect
mk Ap ≥−

 The minimum value of k can be calculated from the
above formula for any given desired availability. For
example, for p=0.1, Aexpect=0.8 and m=3, the model
suggest a minimum of replicas for this availability is 2. If
p=0.1, Aexpect=0.99 and m=3, the model suggests a
minimum of replicas for this availability is 3.
 Once OSD knows the minimum number of object
replica kmin for an object, it can dynamically manage
replica according to existent replica of this object. Let us
assume current replica number of an object is r and r is
less than kmin, then the OSD knows that it has to create

(kmin – r) more replicas of the object and distribute them to
OSD clusters.

4.2. Consistency maintain overload

 In the Object-based Storage System, some OSD-SCSI
commands ([10]) such as writing object, setting/modifying
object attributes will result in object consistency
maintenance. Once an object or object replica in an OSD
is modified, the OSD will notify other OSDs storing this
object to modify object data and update object meta-data.
 In the Object-based Storage System, intelligent OSD
can track object access, and record access frequency. If
access to an object exceeds access frequency threshold, a
new replica object will be created in another OSD.
 The total overload of adding a replica includes
momentary replica transfer overload and upper replica
consistency maintenance overload. The influence of
replica consistency maintenance overload is long-term.
This paper studies the relationship of consistency
maintenance overload and replica number. If current
replica number is k-1, we consider the overload of
maintaining k replica consistency. Followings are some
definitions:
 k be the replica number of each object,
 Fu be object update frequency,
 Sobj be object size in bytes,
 Lmsg be length of metadata update message,
 Btraffic be the network traffic overload of an object’s
consistency maintain,
 Bsys be average network bandwidth that system can
provide.
 � is a adjustable factor to calculate available network
bandwidth.
 Then, updating the k object replica will cost:

 kSobj ×
 Overload of refreshing metadata is:

 kLmsg ×
 Then, one update operation will cost:

 kLkS msgobj ×+×
 The overload of file update in a unit time is:

 umsgobj FkLSB ××+=)(traffic
 To ensure the system performance with a given network
environment, we need:

 sysBB α≤traffic
 Then:

 sysumsgobj BkFLS α≤××+)(

 Combining the analysis in section 4.1, we can get the
following formula, describing our adaptive replica
management model:

except
mk Ap ≥−]1[

 sysumsgobj BkFLS α≤××+)((3)

 Each OSD runs the model and dynamically adjust the
number of object replica. From the above model, the
minimal replica number kmin and maximum replica
number kmax can be calculated, which are the criterion for
system to add replica or delete replica dynamically.

• When to replicate: Node unreachable and
access frequency increasing will evoke
replication. As for the first case, if some OSDs
storing replica is unavailable and the current
replica number is less than the minimal replica
number kmin, adding a new replica into the OSD
clusters is needed.

On the other hands, the large volume of
requests arriving at popular objects can result in
saturating even the most powerful OSD node,
especially during peak hours. If the average
access frequency for an object exceeds the
threshold for replication, a new replica will be
added to a selected OSD for the purpose of
workload balance.

• Where to replicate: OSD weight is the criterion
to select OSD to store replica and serve object
request in term of CPU performance, disk
utilization, network interface speed, current
workload and so on. The lightest weight OSD
will be selected to accept replica. B+trees are an
attractive choice for managing index and list
structures because they maintain records in
sorted order and scale efficiently in both time and
space. OSD Weight B+Tree indexed by the OSD
weight can rebuild in case of changes of
environment and return lightest weight or
heaviest weight OSD quickly.

• When to delete: if the current replica number is
more than the maximal replica number kmax and
the average access frequency for an object does
not exceed the threshold for replication, a
selected replica will be marked as invalid.

Access to an object will not always keep
high. Once the average access frequency for the
object drops down and becomes less than the
threshold for deletion and current replica number
is more than kmin, the extra replicas will be
marked as invalid gradually.

All invalid replicas will not be involved in
consistency update. Once the access frequency
rebounds, we will validate the invalidated replica
if its version is enough new. The other invalid
replicas will be eventually overwritten according
to local storage policy.

• Where to delete: which replica will be deleted is

based on OSD Weight. The heaviest weight OSD
will be selected to delete replica.

5. Implementation

 To implement above replica management policy, we
introduce Minimal Replica Number as object attribute.
 In our implementation, file storing follows three steps.
Firstly, after creating a file entry in Metadata Server
(MDS) and setting file availability attributes, client strips
a file into multiple objects and calculates the minimal
object replica number kmin according to file availability set
by user. Secondly, original objects will be created in
Master OSD and the kmin is set as object attribute of
Minimal Replica Number. Finally, the Master OSD
replicates kmin -1 objects to Slave OSDs based on the
OSDs weight, fills in the Object Replication Table and
transfers it to MDS, as shown in Figure 4.

Figure 4. File is striped and replicated across

OSD clusters
 Figure 5 shows the proposed framework of dynamic
replica management in the OSD. This framework consists
of following components reside in the OSD:

1) Request Portal: Access to an object will firstly
go to its Master OSD and then will be served by
Master OSD or forwarded to Slave OSDs based
on OSD weight to balance the workload. Request
Portal processes the incoming client request.

2) Access counter: counts the request for an object
and calculates the average access frequency as
following equation:

replica

total
Num

AccessAccess =average
 (4)

App1

App2
…

Client

Stripping

O1 O2 … On

Replicate

Object
Attributes

Minimal
Replica
Number

OSD
Cluster

Set File Availability (0.9)

Set File Availability (0.99)
Metadata

Server

 Where, Accessaverage represents per-OSD
average access frequency, Accesstotal stands for
total access amount to an object in unit time, and
Numreplica represents active replica number.

 If the average access frequency for an object
exceeds the Threshold for Replication Treplica, it
sends a signal to Replica Manager.

3) Request scheduler: distributes client request
across Slave OSDs based on OSD Weight.

4) Status monitor: detects OSD failure, updates
OSD Weight and notifies Replica Manager.

5) Replica manager: decides if, when, and where
replicas should be created or invalidated
according to Object Replica Table and OSD
Weight Tree.

Figure 5. Framework of dynamic replica

management in OSD
 To avoid extra replicas being created in the event of
more than one OSD replicating the same object
simultaneously, Master OSD will be assigned by MDS
during file creation. If a Master OSD fails, MDS can
detect this failure in time and will assign a Slave OSD to
play the role of Master OSD.
 Before deletion, Master OSD will always re-calculate
the average access frequency as following formula:

 ()1average −=
replica

total
Num

AccessAccess (5)

 If the new average access frequency is less than the
previous average access frequency, then a replica will be
marked as invalid. Otherwise does not invalidate a replica
to avoid average access frequency increasing after
deletion.

6. Evaluation

 We have evaluated our adaptive replica management
model on our OSD prototype. Efficiency and correctness
of the model will be tested in two prospects: reliability
and performance.

6.1. Reliability

 In our experiments, file is stripped into 3 objects. Each
object has multiple replicas distributed across the OSD
nodes. Our model computes the minimum number of
replicas that are necessary to achieve an expected
availability in the presence of node failures.
 One way to check the accuracy of our model is to fix the
number of replicas existent in the system at any time and
measure data availability. Figure 6 compares the numbers
of replicas corresponding to required availability values.
For example, for the probability of 0.1 of OSDs being
down and a required availability of 0.8, the model requires
2 replicas. When the system maintains the number of
replicas per object at 2, we measure the average
availability per file to be around 0.72. Though the model
predictions are not this accurate at all points in the graph,
the simulations validate the general trend pointed to by the
model.

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5
Replica Number

A
va

il
ab

il
it

y

0.2 Actual
0.2 Prediction
0.1 Actual
0.1 Prediction

Figure 6. Model prediction versus actual
behavior for different values of node reliability

0
1
2
3
4
5

0 5 10 15 20 25 30 35 40

Time(Minutes)

R
ep

li
ca

 N
um

be
r 0.2 0.1

Figure 7. Dynamic replication for different
probabilities of OSD being down at 0.1 and 0.2

Master OSD

Request Portal

Replica Manager

Access Counter

Object Replication Table

OSD Weight Tree

Status Monitor Request Scheduler

Access Requests

Slave OSDs

Forward Request

 We then test the dynamical feature of the model. We set
the expected availability as 0.8 and started the tests with
only one replica per object. As shown in Figure 7, the
number of replicas is maintained at a constant level, thus
ensuring constant data availability over time.

6.2. Performance

 In the test, we set file access frequency threshold T=20
and initially maintain one replica per object. We can get
the average access latency and average replica number by
increasing file access frequency. The test result is shown
in the Figure 8 and Figure 9.

0

10

20

30

40

10 20 30 40 50 60 70 80 90 100
Access Frequency

L
at

en
cy

 (m
s

�

Figure 8. Access latency varies with access
frequency

0
1
2
3
4
5
6
7

10 20 30 40 50 60 70 80 90 100

Access Frequency

R
ep

lic
a

N
um

be
r

Figure 9. Replica number varies with access
frequency

 From Figure 8 and Figure 9, we can observe that as
access frequency increases, access latency drops and
replica number increases initially, but both of them
become stable over time.

7. Conclusions

 Replication is very useful and challenging for large-
scale distributed storage system such as P2P storage
system and object-based storage system. The current
target is to dynamically create, migrate and delete replicas
among nodes in response to changes in the access patterns
and system environment.

 This paper presents an adaptive replica management
mechanism for OSD clusters, which regards availability
and consistency maintenance overload as functions of
replica number. Our objective is to build up a dynamic
model to adapt to the changes of OSD clusters and satisfy
both file availability and performance of storage service.
 In the future work, we will introduce more object
attributes to T10 OSD-SCSI commands set [10] to design
OSD Qos model according to object-based storage
requirements such as availability, access delay, I/O speed
and workload.

References

[1] Thomas M. Ruwart, OSD: A Tutorial on Object
Storage Devices, Proceedings of the 19th IEEE/10th
NASA Goddard Conference on Mass Storage Systems
and Technologies (MSST2002).

[2] Alain Azagury, Vladimir Dreizin and Michael Factor,
Towards an Object Store, Proceedings of the 20th
IEEE/11th NASA Goddard Conference on Mass
Storage Systems and Technologies (MSST2003).

[3] Feng Wang, Scott A. Brandt, Ethan L. Miller, and
Darrell D. E. Long, OBFS: A File System for Object-
based Storage Device. Proceedings of the 21st IEEE /
12th NASA Goddard Conference on Mass Storage
Systems and Technologies(MSST2004).

[4] Andy Hospodor, Ethan L. Miller, Interconnection
Architectures for Petabyte-Scale high-performane
storage system, Proceedings of the 21st IEEE /12th
NASA Goddard Conference on Mass Storage Systems
and Technologies(MSST2004) .

[5] Thanasis Loukopoulos, Ishfaq Ahmad and Dimitris
Papadias, An Overview of Data Replication on the
Internet, Proceedings of the International Symposium
on Parallel Architectures, Algorithms and Networks
(ISPAN.02).

[6] K. Ranganathan and I. Foster, Identifying Dynamic
Replication Strategies for a High Performance Data
Grid, presented at International Workshop on Grid
Computing, Denver, CO, 2001.

[7] Napster project home page. http://ww.napster.com.
[8] FreeNet home page. http://freenet.sourceforge.net.
[9] K.Ranganathan, A.Iamnitchi and I.Foster, Improving

Data Availability through Dynamic Model-Driven
Replication in Large Peer-to-Peer Communities,
Proceedings of the Workshop on Global and P2P
Computing on Large Scale Distributed Systems,
Berlin, May 2002.

[10] Information technology–SCSI Object-Based Storage
Device Commands (OSD), Oct. 2004,
http://www.t10.org/ftp/t10/drafts/osd2/osd2r00.pdf.

