

A Bit-Window based Algorithm for Balanced and Efficient Object Placement and
Lookup in Large-scale Object Based Storage Cluster

Renuga Kanagavelu
A*STAR Data Storage Institute, Singapore

Email:renuga_KANAGAVELU@dsi.a-star.edu.sg

Yong Khai Leong
A*STAR Data Storage Institute, Singapore

Email:YONG_khai_leong@dsi.a-star.edu.sg

Abstract*

Business requirements for data availability,
survivability, and performance have driven the need for
building the network storage that interconnects various
kinds of storage devices to allow remote access by
multiple hosts. A new revolutionary storage technology
called “Object based Storage Devices (OSD)” is now
emerging as a promising technology to meet the high
performance needs and to address various local storage
issues. At the same time, it poses several challenges
including efficient object placement and lookup in the
dynamically changing storage resource environment. We
develop a novel and efficient method based on Bit-
Windows for object placement and lookup services. We
demonstrate the effectiveness of our method through
theoretical analysis and simulations results.

1. Introduction

Large-scale Object-based storage systems provide a
cost effective and scalable platform for data-intensive
applications such as multimedia databases, e-commerce
and web crawling. Cluster-based object storage systems
provide high performance for storage services. It is highly
desirable that a cluster is scalable supporting incremental
expansion and high availability. Recently, there has been
significant interest in using object-based storage as a
mechanism for increasing the scalability of storage
systems.

Some key issues that need to be addressed in the design
of object-based storage cluster [1, 2] are efficient object
placement and lookup and balanced distribution of objects
in the dynamically changing storage resource
environment. In a large scale object -based storage cluster,
object-based storage nodes may be added or temporarily
out of reach in a cluster due to node failures. When more
nodes are added, objects may need to be relocated from
one node to another node to maintain the overall balance

of the storage load. It is desirable that such relocations are
carried out with low number of object migrations.

Chord [3] uses a variant of consistent hashing to assign
keys to Chord nodes. It has the following weaknesses: The
locations of objects are not controllable to balance storage
usages on different nodes. Apart from this, each node in
Chord maintains information about O(log N) other nodes
where N is the total number of nodes, and resolves
lookups via O (log N) messages to other nodes. Bloom
filters [4] have been used in OceanStore [5] and tapestry.
The weakness of Bloom filters is that the memory and
bandwidth required maintaining these filters could still
turn out to be too high for a large-scale object based
storage cluster. The differentiated object placement and
location protocol proposed in [6] combines consistent
hashing and bloom filters to take advantage of both of
these methods. It uses consistent hashing to locate small
objects and Bloom filters to locate large objects.

We develop a new algorithm based on the concept of
Bit-Window for providing object placement and look up
services. Our method has several attractive features: (1)
Objects are evenly distributed over the storage nodes; (2)
Placement and lookup operations do not hop through
multiple nodes thus reducing the message overhead and
access delay; (3) It supports node addition and deletion
with low number object migrations; (4) It is scalable; and
(5) There is no need to maintain information about
neighbor nodes thus reducing message overhead. Our
approach focuses on good storage load balance and
guarantees storage utilization while ensuring scalability,
availability and flexibility.

2. Bit-Window based Algorithm

In this section, we describe the working of the
algorithm and explain how it supports various operations:
placement, lookup, node addition, and node deletion. We
also provide the theoretical analysis of the algorithm.

2.1. Bit –Window

The Bit-Window algorithm maps objects to storage

nodes. Let N be the number of nodes with index from 0 to
N-1. The node indices and the corresponding node IP
addresses are maintained in a table at Meta data sever
(MDS). The objects are translated into m-bit identifier
using a base hash function SHA-1[7]. We call the
identifier as object key.

The Bit-Window method maps object key to a node

index. The hashed m-bit object identifier is a fixed size bit
string .The m-bit identifier is divided into a number of bit
windows of size k = � log2 (N) � . The bit windows are
labeled starting from 0 from the right end, denoted as
BW0, BW1…BWv-1, where v is the maximum number of
windows used. In our algorithm v is a control parameter.

We note that the size of the bit window depends on the
number of the nodes. However, as explained later, due to
addition or deletion of nodes, bit window size may vary
and our algorithm deals such situations with low number
of object migrations.

2.2. Object Placement

Let the object key be represented as

 bm-1bm-2 …………bk...b2b1b0

The bit-windows of an object key are examined one by
one starting from BW0. If the value of BW0 is valid then
the object key is placed in the node whose index is equal
to that value. We note that out of 2k possible values of a
bit window only N are valid and the remaining values are
invalid. If the value of BW0 is not valid, then we continue
to examine BW1, BW2……… BWv-1 until a valid node is
found. If no valid node index is found among the v
windows, the object key is placed at the node whose index
is obtained by inverting the most significant bit (MSB) of
BW0. Thus each node stores two sets of objects. Node i is
the owner of one set of objects who’s BW0 value is i. The
other sets of objects kept in node i are owned by the
invalid nodes and node i act as the proxy for them.

Figure 1(a) illustrates the Bit-Window algorithm with
N=5. The object key is 011…011111110. The size of the
Bit-Window is given by k=3. The value of bit window
BW0 is 6 which is not a valid node index. So the search
continues with BW1 as shown in Fig. 1 (b). The value of
the BW1 is 7 which is also not a valid index. So, the search
continues with BW2 as shown in Fig. 1 (c). The value of
BW2 is 3 which is a valid index and hence the object is
assigned to node 3. In this case, the object key is stored in
the proxy set at node 3.

1111110110 0

BW0

b0b1b2
...bm-1

1

1111110110 0

BW1

b0b1b2
...bm-1

1

1111110110 0

BW2

b0b1b2
...bm-1

1

2.2.1. Theoretical Analysis

We now show that the objects are evenly distributed by

the bit-window algorithm. Let X be the total number of
objects. Let N be the number of (valid) nodes and k is the
size of a bit-window. Let kP 2= . Let NPR −= be the
number of invalid nodes. We note that NR < . We assume
that object identifiers are mapped to object keys uniformly
randomly. For instance, when SHA-1 hashing is used
object keys are randomly mapped to a space of 160-bit
binary numbers.

When a bit window is examined, its value is a valid

node index with probability P
N

and is an invalid node

index with probability P
R

P
N =−1 . We say that a bit-

window is mapped to an invalid node with probability P
R

.

The probability that none of v windows maps to a valid

node index is given by ()v
P
R

. Thus, the number of objects

which have not yet been mapped to a valid node index is

given by ()v
P
RX and the number of objects mapped to

(a)

(b)

(c)

Figure 1. Illustration of Bit–Window
algorithm. (a) BW0 is searched. (b) BW1 is
searched. (c) BW2 is searched.

valid nodes is given by () �
�

�
�
�

�−
v

P
RXX . Since during each

iteration of the algorithm a bit-window is mapped to each
of a valid node with the same probability, same number of
object keys are mapped to each of the valid nodes and is

given by
()

N

XX
v

P
R−

. Similarly, ()v
P
RX objects are

uniformly distributed to R invalid nodes with R
P
R

X
v

�
�

	

�

�

objects mapped to each of the invalid nodes. At this stage,
the bit-window algorithm maps each invalid node-index i
to valid node index 12 −− ki . As a result, among N

nodes, each of R nodes will have
() ()

R

X

N

XX
v

P
Rv

P
R

+−

objects and the remaining RN − nodes will

have
()

N

XX
v

P
R−

 objects. We note that NR < and

PRN =+ and hence 5.0<
P
R

 . As the value of v tends

to be large, the term ()v
P
R becomes negligibly small, and

each node will have approximately N
X

 objects implying a

balanced object distribution. Theorem-1 follows from the
above analysis.

Theorem-1: The bit-window algorithm evenly distributes
the objects to nodes with a node having at most

R
P
R

X
v

�
�

	

�

�

additional number of objects than any other node

and this number becomes negligibly small when the value
of v tends to be large.

Example: Let X = 100 million and N = 1100. This
implies that k = 11, P = 2048, and R = 948. Let v=10.
Therefore, the number of additional objects a node will
have is approximately equal to 50. Among 1100 nodes,
each of 948 nodes will have approximately 90916 objects
and each of the remaining 152 nodes will have
approximately 90866 objects where the difference is only
0.00005%.

2.3. Object Lookup

The object lookup operation of the bit-window
algorithm is similar to the object placement. Given the
object key, we determine node index using the bit-window
algorithm. The corresponding node’s IP address is
obtained from the table which is maintained at MDS.

2.4. Node Addition

When the new node joins the cluster, it is assigned the
next highest index N. We first discuss the case where node
addition does not change the bit-window size, i.e., N < 2k .
Now, those objects which are meant for the new node will
need to be migrated from other nodes. Each of N nodes
examines the set of proxy objects and migrates those
objects which are meant for the new node. We identify
two cases. Each node i examines the objects in its proxy
set performs the followings:

1. Those nodes whose BW0 is N will be migrated.
2. Those objects in which N appears in a bit-

window to the right of the bit window with the
value i.

Assume that, v is large and each of the existing nodes has

N
X

 objects. When object keys are random and large

numbers of objects are dealt with, the migration will lead
to even distribution of objects among the N +1 nodes with

each node having approximately 1+N
X objects. We note

that objects are migrated from the existing valid nodes to
the new node and no object is migrated between the
existing valid nodes. Therefore, the number of objects

migrated is approximately 1+N
X which is the minimum

required for even distribution.
We now discuss a special case when an addition of a

node needs the bit window to expand. This occurs when
N=2 k and each node has only the owner set. In this case,
the node index is represented as a k+1 bit binary number
where k is the original size of the bit window. A node
retains the object keys in its owner set such that bit k in
BW0 is 0 and it will consider other objects in its owner set
for possible migration.

In the worst case, each node (among N nodes) has

approximately 50% of the objects whose bit k in BW0 is 1.
Therefore, in the worst case each node will migrate

N
X

2 objects. Therefore, the total number of objects to be

migrated is 2
X

, in the worst case. We note that a change in

bit window size occurs infrequently, because, 2k new
nodes should be added in order to increase the bit-window
size from k to k+1.

2.5. Node Deletion

We identify two cases in node deletion where the size
of bit window size does not change as a result of deletion.
We note that the case when the size of the bit window
needs to be reduced can be dealt with as done in the case
of node addition.

Case 1: When a node with the highest index is deleted,
i.e. the node with index N-1 is deleted, we do the
following.

The object keys originally stored in node N-1 will be
migrated to other nodes. Each of the object keys is
examined using the bit-window algorithm to determine the
valid node to which the object key has to be migrated. As

a result, approximately N
X

objects are migrated from node

N-1 to other nodes. Since object keys are randomly
distributed, the number of objects is large, for a large
value of v, the migrated objects will be uniformly
distributed when the bit-window algorithm is used.

Case 2:

When the node other than the highest index node is

deleted, we do the following.

Let node d be the node to be deleted. The highest index

node N-1 is relabeled as node d. All the object keys which
were originally in node d should be migrated to this newly
labeled node. The object keys which are kept in original
node N-1 are migrated to other nodes the bit-window

algorithm. As a result, approximately N
X2 objects are

migrated. Since object keys are randomly distributed, the
number of objects is large, for a large value of v, the
migrated objects will be uniformly distributed when the
bit-window algorithm is used.

3. Performance Study

We generate the object keys using SHA-1 algorithm. The
object keys are 160 bits long. In our experiments v = 10.
We carry out experiments on two kinds of clusters. The
first kind is a small cluster with 9 to 16 nodes and the
other one is a large cluster with 100 to 2500 nodes. We
consider 5 million objects for placement. We repeat the
experiment 10 times to get accurate values with small
confidence interval.

We use three important performance metrics in our
study. They are (i) number of objects stored at a node,
(ii) load imbalance index, and (iii) fairness index. The first
metric is self explanatory. The metric ‘Load imbalance
index’ is used to find how badly the most-heavily loaded
node is loaded relative to the most-lightly loaded node.
Let Lmax be the number of objects stored at the most
heavily loaded node and Lmin be the number of objects
stored at the most lightly loaded node. Then the load

imbalance index is calculated as
max

minmax

L
LL −

.

The metric ‘fairness index’ is used to determine how

fairly (or evenly) objects are distributed over all the
storage nodes in a cluster. Let m and s be the mean and
standard deviation. Then the fairness index [8] is

calculated as ()21
1

m
s+ .

3.1 Performance Results for small storage
clusters

Figure 2 shows how evenly our bit-window algorithm

distributes the objects across the nodes in a storage cluster
with 11 nodes. It plots the number of objects stored at
each of the 11 nodes. From the figure, it can be observed
that the objects are evenly distributed and the difference
between the heavily-loaded node and the lightly-loaded
node is only 3249 which is a very small number when
compared with the number of objects stored.

420000
424000
428000
432000
436000
440000
444000
448000
452000
456000
460000
464000
468000
472000
476000
480000

N
um

be
r
of

 o
bj
ec

t k
ey

s
pe

r
no

de

1 2 3 4 5 6 7 8 9 10 11

Node Number

Figure 3 plots the load imbalance index versus the number
of nodes when the number of nodes is varied from 9 to 16.
From the results, it is observed that the imbalance index is
very small. Even the highest imbalance factor itself is
below 0.008 which is very small. The highest imbalance
factor occurs when N=9 where there are relatively high
number of invalid node indices.

0
0.008
0.016
0.024
0.032
0.04

0.048
0.056
0.064
0.072
0.08

0.088
0.096

Lo
ad

 im
ba

la
nc

e
fa

ct
or

9 10 11 12 13 14 15 16

Number of nodes

Figure 2. Bit–Window Algorithm:
Object Placement in a 11-node cluster

Figure 3. Bit–Window Algorithm: Load
imbalance Index for varying number of
nodes (small clusters)

Figure 4 plots the fairness index for clusters with number
of nodes varying from 9 to 16. We observe that the
fairness index is very close to 1. This shows that the bit-
window algorithm is very efficient for evenly distributing
the objects.

0.9998

0.99982

0.99984

0.99986

0.99988

0.9999

0.99992

0.99994

0.99996

0.99998

1

1.00002

9 10 11 12 13 14 15 16

Number of nodes

F
ai

rn
es

s
In

de
x

3.2 Performance Results for large storage
clusters

Figure 5 shows how evenly our bit-window algorithm

distributes the objects across the nodes in a storage cluster
with 2500 nodes. It plots the number of objects stored at
various nodes. From the figure, it can be observed that
the objects are evenly distributed and the difference
between the heavily-loaded node and the lightly-loaded
node is only 140 which is small when compared with the
number of objects stored.

1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700

N
um

be
r

of
 o

bj
ec

t k
ey

s
pe

r
no

de

50 300 900 1500 2100 2500

Node number

Our results show that imbalance factor is very small

and fairness index is very close to 1. Due to space
limitations, these results are not presented.

4. Conclusions

In this paper we developed a novel and efficient
method based on Bit-Windows for object placement and
lookup services in object-based storage clusters. Our
method ensures even distribution of objects. It does not
need to hop through multiple nodes for object placement
and lookup, thus reducing the message overhead. It
supports node additions and deletions with low number of
object migrations. We studied the performance of the
method through theoretical analysis and simulation
results.

References

[1] Mike Mesnier, Carnegie Mellon and Intel, Gregory R.
Ganger, Carnegie Mellon , Erik Riedel, Seagate Research ,
Object-based Storage, IEEE Communications Magazine, v.41
n.8 pp 84-90, August 2003.

[2] Jie Yan ,Yao Long Zhu, Hui Xiong, Renuga Kanagavelu ,
Feng Zhou ,Lih Weon So. A design of Metadata server cluster
in large distributed object-based storage. Twelfth NASA
Goddard /Twenty-First IEEE Conference on Mass Storage
Systems and Technologies (NASA / IEEE MSST2004) ,April
2004.

[3] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H.
Balakrishnan. Chord: A scalable peer-to-peer lookup service for
internet applications. In Proceedings of the 2001 ACM
SIGCOMM Conference, pages 149–160, 2001.

[4] B. Bloom. Space/time trade-offs in hash coding with
allowable errors. Communications of the Association for
Computing Machinery, 13(7):422–426, 1970.

[5] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels, R.
Gummadi, S. Rhea, H.Weatherspoon, W.Weimer, C.Wells, and
B. Zhao. OceanStore: An architecture for global-scale persistent
storage. In Proceedings of the International Conference on
Architectural Support for Programming Languages and
Operating Systems. ACM, November 2000.

[6] Hong Tang and Tao Yang. Differentiated Object Placement
and Location for Self-organizing storage Clusters. Technical
Report 2002-32, University of California, Santa Barbara.,
November 2002.

[7] FIPS 180-1. Secure Hash Standard. U.S. Department of
Commerce/NIST, National Technical Information Service,
Springfield, VA, Apr. 1995.

[8] R. Jain, D. Chiu, and W. Hawe, "A Quantitative Measure of
Fairness and Discrimination for Resource Allocation in Shared
Computer Systems," DEC Research Report TR-301, Sep 1984.

Figure 4. Bit–Window Algorithm:
Fairness Index for varying number of nodes
(small clusters).

Figure 5. Bit–Window Algorithm: Object
Placement for a 2500-node cluster.

