
An Out-of-band Approach to SAN-level Cache Management∗

Da Xiao
xiaoda99@mails.tsinghua.edu.cn

Jiwu Shu
shujw@tsinghua.edu.cn

Wei Xue
xuewei@tsinghua.edu.cn

Weimin Zheng
zwm-dcs@tsinghua.edu.cn

Department of Computer Science and Technology
Tsinghua University, Beijing 100084, China

Abstract

SAN-level cache is a new caching approach to reduce
average response time when accessing storage in Stor-
age Area Networks (SANs). Current SAN-level caching
schemes (in-band) have the advantage of flexibility in con-
trol but suffer from poor scalability. In this paper, we
present an out-of-band SAN-level cache model. It sepa-
rates cache management decision making from decision ex-
ecuting to enhance scalability, while flexibility is retained
through the real-time address mapping mechanism. We
also present a cache placement and replacement algorithm
called Access and Cache Queue (ACQ) that is suitable for
the model. The algorithm uses frequency-based admission
control to reduce the frequency of costly cache loading op-
erations with low temporal and spatial complexity. Our
simulation results show that ACQ has a hit rate only 1.5%
lower than the Frequency-Based Replacement (FBR) algo-
rithm, while the load rate is 90% lower when the cache
capacity is one tenth of the total storage capacity. The re-
sponse time of the model using ACQ increases much more
slowly than that of the in-band SAN-level cache with con-
current accesses.

1. Introduction

Caches are commonly used in Storage Area Net-
works(SANs) to reduce the average response time when
accessing storage, such as buffer caches in hosts’ operating
systems, caches in disk arrays, and caches on SCSI disks.
Despite their variety, all these caches are localized to a sin-
gle component of the SAN and thus can not exploit global

∗This work is partially supported by the National Natural Science
Foundation of China under Grant No. 60473101 and 10576018; the Na-
tional Grand Fundamental Research 973 Program of China under Grant
No. 2004CB318205

storage access information to increase efficiency. Recently
a new caching approach for the SAN environment called
SAN-level caching has been studied to address this prob-
lem. SAN-level caching tries to identify globally hot data
blocks and keep them in a dedicated cache to utilize cache
resources more efficiently.

In current SAN-level caching schemes [4, 11], the
cache controller, which makes cache management deci-
sions (placement and replacement), is usually integrated
with a virtualization appliance (also called a redirector) sit-
ting in the data path between hosts and storage. The redi-
rector provides virtual volumes to hosts by redirecting com-
mands and data blocks. It is also responsible for loading
data from disks when a cache miss occurs. Cache resources
are proprietary to the redirector and transparent to hosts.
This SAN-level caching approach will be referred to as the
in-band cache model in the rest this paper.

The in-band cache model has the advantage of flexibil-
ity in control but a major problem with it is scalability.
Due to the fact that the redirector is in the data path and
the cache resource is proprietary to it, it is responsible for
fetching data from disks on cache misses and loading it into
cache when needed, as well as making cache placement and
replacement decisions. The heavy load on the redirector
makes it a bottleneck as the number of concurrent accesses
increases, offsetting potential performance gains through
caching.

Out-of-band SAN virtualization has gained popularity
recently because of its good scalability and high perfor-
mance [2, 10]. In an out-of-band virtualization system,
a metadata server (MDS) is responsible for managing the
mapping from virtual volumes to physical disks, while
hosts access storage devices directly through the SAN. This
method inspired us to design a new SAN-level cache ar-
chitecture to address the problem of poor scalability in the
in-band cache model. However, because the MDS is not in
the data path, it lacks the flexibility of the in-band cache

model. Further study is needed on how to use the MDS
to monitor hosts’ access to storage and identify hot data to
be loaded to cache. It is also necessary to find new cache
placement and replacement algorithms that are suitable for
the new architecture.

In this paper, we present an out-of-band SAN-level
cache model. In the model, cache resource is accessible
to all the hosts. Cache management decisions are made by
the MDS out of the data path while hosts move the actual
data, and thus scalability is enhanced. Hot data identifi-
cation and redirection is done through a mechanism called
real-time address mapping to retain the flexibility of the
in-band cache model. We also present a cache manage-
ment algorithm called Access and Cache Queue (ACQ) that
is suitable for the model. The algorithm uses frequency-
based admission control to reduce the frequency of costly
cache loading operations in the model while maintaining a
hit rate comparable to traditional cache management algo-
rithms with low temporal and spatial complexity.

2. Model Design

2.1. SAN Virtualization Architecture

The virtualization architecture on which the out-of-band
cache model is based consists of two cooperating compo-
nents: a metadata server (MDS) which is responsible for
metadata management, and the virtualization agent on each
host (VA) which provides virtual volumes to the host file
system. Hosts access storage devices directly through the
SAN for data with the help of the VA, while the VA contacts
the MDS for metadata about virtual to physical address
mapping through another network (such as an Ethernet) for
control. The VA is a kernel module in the host’s operat-
ing system. When it receives an I/O request from the up-
per layer (file system/database), it relays the request to the
MDS, where the virtual address in the command is trans-
lated into the physical address. Note that only the com-
mands are relayed, not the actual read/write data. Hence
the MDS is not in the data path. The modified command is
then sent back to the VA and the new request is sent to the
appropriate disks for execution.

This process differs from the typical block-level out-of-
band virtualization approach in [2] in that each I/O request
is sent to the MDS for address mapping rather than be-
ing mapped locally by the VA on the host. Through this
real-time address mapping mechanism, though the MDS is
not in the data path, virtually every I/O command passes
through it except for the actual data. So it has a better over-
all view of the storage access situation and thus can make
better decisions on which data blocks are global hot spots
and should be loaded to cache. The mapping from virtual
to physical address can also be changed dynamically by the

MDS, preserving the flexibility in control in the in-band ap-
proach.

2.2. Out-of-band Cache Model

We incorporated a caching mechanism into the afore-
mentioned virtualization architecture by adding another
component - one or more cache disks that are attached di-
rectly to the SAN and are accessible to all the hosts. We
call our cache resource cache disks because we use them in
exactly the same way as plain disks. Unlike the cache re-
sources in the in-band cache model that are only available
to the redirector, our cache disks are shared among all the
hosts. This offers the opportunity of data loading by hosts
to avoid the bottleneck of MDS in the in-band cache model.

These cache disks can be implemented using DRAM-
based storage technologies such as Solid-State Disk
(SSD) [1, 3]. SSD has random access time measured in
tens of microseconds and can achieve large storage capac-
ity (to tens or hundreds of gigabytes). Moreover, SSD
speaks SCSI or FCP protocols. The capacity of our cache
resource can be easily expanded by adding additional cache
disks to the SAN. These features make it an ideal medium
for implementing a SAN-level cache.

Besides maintaining metadata about virtual to physical
address mapping, the MDS also does bookkeeping of stor-
age access statistics. It uses this information to identify hot
data blocks to be cached. Once a hot block is identified,
the MDS loads the block to the cache disk and updates its
virtualization metadata. On receiving subsequent requests
to the already cached blocks, the MDS maps the virtual ad-
dress to the cache address, instructing the VA on the host
to contact the cache disk for data.

A problem with the model is the communication over-
head. A round trip time for sending an I/O request be-
tween the VA and MDS is introduced. However, the aver-
age round trip time is round 50 sec, while the disk service
time is 8 msec on the average. Although this round trip
time is nontrivial on a cache hit, it is acceptable on average
considering the relatively low cache hit rate in second-level
caches. This will be further evaluated in Section 5.

In the above operating mode (Mode 1), the loading of
hot data blocks to the cache disk is done by the MDS. In
fact, the burden on the MDS can be further relieved by of-
floading this task to the VA, because the cache disks are
accessible to all the hosts. We present another operating
mode (Mode 2), in which the VA performs data loading in-
stead of the MDS. In Mode 2, when the MDS identifies a
hot block, it sends a command to the VA that have sent the
last request, instructing it to load a particular data block to
a specified cache disk position. The VA replies to the MDS
after finishing the loading task. On receiving such a reply,
the MDS updates the virtualization metadata it maintains

and all subsequent requests to this block will be redirected
by the MDS to the cache disk. All commands and replies
can be piggybacked on address mapping requests and re-
sponses to reduce the number of messages passed between
the MDS and the VA.

Mode 2 removes the MDS completely from the data
path. It separates caching decision execution from decision
making, which are done by the VA and the MDS respec-
tively. Mode 2 is more scalable than Mode 1 because less
work is done by the MDS. However, metadata consistency
must be handled when multiple VAs load data simultane-
ously, so management complexity is increased.

3. Cache Management Algorithm: ACQ

The new model provides potential scalability improve-
ment. However, because of the totally new architecture, a
suitable cache management algorithm that is different from
the ones used in the in-band cache model has to be devised
to fully exploit the potential of the new model.

With demand caching typically used in the in-band
cache model, hosts’ requests that are missing from the
cache are fetched from the disk and placed in the cache
at once. However, this placement policy is not suitable for
the out-of-band cache model. As the MDS is not in the
data path, the operation of loading a block into the cache
is more costly in the out-of-band cache model than in the
in-band model. In Mode 1, this incurs an additional disk ac-
cess done by the MDS, while in Mode 2 the cost includes
sending a loading command and reply between the MDS
and VA and maintaining metadata consistency. Due to the
relatively expensive loading operations, a more strict cache
admission checking should be enforced to allow only hot
blocks to be loaded to cache disks. In other words, the
placement algorithm should have a low load rate (the ratio
of loading operation count to total access count).

The SAN-level cache belongs to second-level
caches [11] in a cache hierarchy in a SAN. It was
pointed out in [11] that accesses to a second-level cache
exhibit poorer temporal locality than those to a first-level
cache, and the access frequency distribution among blocks
at the second-level cache is uneven. These facts indicate
that instead of a locality-based replacement algorithm such
as LRU, a frequency-based replacement algorithm should
be employed.

It is also worth noting that the procedure of deciding
cache placement and replacement is to be invoked every
time a host requests a block. The overall performance of
the system will be degraded despite the use of cache if the
algorithm is too slow due to high computational complex-
ity. Low storage overhead is also required of the algorithm
for it to work in real systems.

 /* Procedure to be invoked upon an request to block b */
 if b is in cache queue CQ {

 b.reference ++;
 adjust blocks’ reference in CQ;
 return;
}
if b is in access queue AQ {
 move b to head of AQ;
 b.reference ++;
} else {
 if AQ is full
 remove block at tail of AQ;
 put b at head of AQ;
 b.reference = 1;
}
if CQ is not full {
 remove b from AQ and insert b to CQ
 load content of b into cache disk;
} else {
 c = block in CQ with minimal reference;
 if b.reference >= c.reference {
 remove c from CQ;
 swap out space of c in cache disk;
 move b to CQ;
 load content of b into cache disk;;
 }
}

Figure 1. ACQ algorithm

In summary, a good placement and replacement algo-
rithm for the out-of-band cache should have the following
properties:

• A low load rate as well as a high hit rate

• Some form of frequency-based replacement algorithm

• Low temporal and spatial complexity

We have proposed an algorithm called Access and
Cache Queue (ACQ) to meet the above requirements. Fig-
ure 1 gives a pseudo-code outline for the ACQ algorithm.

The main idea of the algorithm is to use a block’s refer-
ence count as the measurement for its value. When a miss
occurs, the block is allowed to enter the cache only if it
is considered more valuable than some block in the cache.
And the block with the least value is replaced. Here we
use a block’s reference count in a specific period of time to
represent its access frequency.

There are two queues in the algorithm: an Access Queue
(AQ), which is an LRU queue, and a Cache Queue (CQ),
which is sorted by the blocks’ reference count. AQ keeps
recently accessed blocks’ identifiers as the candidates for
placement. CQ keeps already cached blocks’ identifiers.
Upon a reference to block b, ACQ first sees if b is already
cached (in CQ). If so, b’s reference is increased by 1 and
the procedure returns. Otherwise, if b has recently been
accessed (in AQ), b’s reference is increased by 1 and b is
moved to the head of AQ. If not, b is added to the head of
AQ and its reference is initialized to 1. If AQ is full, the

block at the tail is removed. Then ACQ finds the block c
in CQ whose reference count is minimal. b’s reference is
compared with c’s and if b wins, b is added to CQ with
its current reference and c is evicted from the cache in or-
der to make room for b. Note that when there is still free
space in cache, b is placed in the cache without compari-
son. Compared with the static threshold in SANBoost [4],
the threshold changing according to the states of the blocks
in the cache ensures that cache space is efficiently utilized,
especially when the cache disk capacity is big enough to
accommodate the entire working set of the workload.

Compared with demand caching, a block is allowed to
enter the cache only when its reference count exceeds a
certain threshold (the minimal reference count of cached
blocks), so the load rate is reduced effectively. Meanwhile,
access frequency is used as the criterion for replacement ac-
cording to the second-level cache access pattern, and thus
the blocks kept in the cache will have a relatively good
chance of being referenced again. Hence a high hit rate
is achieved.

Low temporal and spatial complexity is obtained by the
use of access queue. As only the currently active blocks
which have been accessed recently are taken into account
when selecting hot blocks, ACQ does not have to main-
tain the access information of every allocated block. This
enables ACQ to put all the information it needs in mem-
ory. With a moderate size of access queue the lookup can
be done very quickly, which ensures the feasibility of the
algorithm in a large-scale storage system.

4. Quantitive Analysis and Comparison

In this section, we present a preliminary analysis of the
average response time of the out-of-band cache model as
compared with that of the in-band model. For simplicity,
we have made the following assumptions when describing
system behavior: the time for a disk to serve a block re-
quest is a constant value, and all requests are reads. Thus,
it is important to emphasize that the analysis is not designed
to predict accurately the response times, but rather to com-
paratively analyze the two models.

• Let Sbe the round trip time of sending a request to the
MDS and getting the response.

• Let D be the time to send a request to disk and retrieve
the data for a particular block. Thus, this will be the
time for a host to get data from the disk in the out-of-
band model and also for the redirector to access data
from the disk in the in-band model.

• Let C be the time to get the data for a particular block
from the cache. This will be the time for a host to get
data from the cache disk directly in the out-of-band

model and also for a host to get data of a cached block
from the redirector in the in-band model.

• Let Q be the queuing delay at the redirector/MDS due
to contention with other simultaneous accesses.

Assume that the placement policy for the in-band model
is demand caching. From simple analysis we can get the
average response timeRTIN andRTOUT for the in-band and
out-of-band model respectively (r1 is the hit rate andr2 is
the load rate):
RTIN = (1− r1)∗ (D+QIN +C)+ r1∗ (QIN +C)
RTOUT = (1− r1−2)∗ (S+QOUT +D)+ r2∗ (S+QOUT +
D+C)+ r1∗ (S+QOUT +C)

Thus the average response times are given by:
RTIN = QIN +(1− r1)∗D+C
RTOUT = S+QOUT +(1− r1)∗D+(r1 + r2)∗C

We can also get the average processing time of each re-
quest, which is the time the redirector/MDS takes to pro-
cess each request. We only give the processing time of
Mode 1 in the out-of-band model because the processing
time of Mode 2 is approximate to zero with a very fast
lookup of AQ in memory. The processing timesPTIN and
PTOUT are:

PTIN = (1− r1)∗D
PTOUT = r2∗D

At first glance the analysis appears to be in favor of the
in-band cache model since an additional round trip time of
S is included in the out-of-band model. However, it is im-
portant to note thatQIN could be much higher thanQOUT

due to the heavier load on the redirector. The work done by
the MDS/redirector can be roughly measured as the pro-
cessing time(PT) of each request. According to the ex-
pression ofPT, we can makePTOUT for Mode 1 smaller
thanPTIN by lowering the load rate, which is one of the de-
sign goals of ACQ.PTOUT for Mode 2 is even smaller, and
therefore is negligible. The less work on the MDS prevents
the exponential growing of queuing delay with increasing
number of concurrent accesses on the redirector in the in-
band cache model so better scalability is achieved.

5. Simulation Results

We have evaluated the feasibility and effectiveness
of the proposed model and algorithm using synthetic-
workload-based simulation. We used Zipf’s workload [6]
to simulate the uneven access frequency distribution in a
second-level cache with the parameterα = 0.2. That is,
if there areN blocks, the probability of accessing a block
numbered i or less is(i/N)α. We first explored the hit rate
and load rate characteristic of ACQ and then compared the
response time of the in-band and out-of-band cache model
with an increasing number of hosts to evaluate the scal-

Figure 2. Cache hit rate

Figure 3. Cache load rate

ability. The parameters are set as follows:S= 0.05ms,
D = 8ms, C = 0.01ms, TotalDiskCapacity= 50GB.

5.1. Cache Hit and Load Rate

We have implemented ACQ and two existing replace-
ment algorithms LRU and FBR [9] in our simulation, and
compared their hit and load rate with varying cache size.

We set AQ’s size to be equal to the size of CQ based on
the following observation we made during our simulation:
the hit rate will grow with AQ’s size but the slope of the
curve becomes lower gradually. When AQ’s size exceeds
CQ’s size, the hit rate almost stops growing. This indicates
that with a moderate size of AQ, a relatively high hit rate
can be achieved, which ensures a low computational and
storage overhead of the algorithm.

Figure 2(a) shows the hit rate of the three algorithms
with varying cache size and Figure 3(b) shows the load rate
of the three, assuming on-demand placement is used for
FBR and LRU. As shown in Figure 2(a), the ACQ and FBR
algorithms have a hit rate very close to each other under all
cache sizes, with ACQ being slightly lower (the difference
is not more than 1.5 percent), while both of them outper-
form the LRU algorithm with an 8 percent improvement

Figure 4. Average RT under varying number
of clients

on average. In Figure 3(b), the load rate of ACQ increases
slightly with increasing cache size but is much lower than
the other two under all cache sizes. The slight increase of
the load rate of ACQ can be explained as follows: as Zipf’s
workload is used, the portion of the top most frequently ac-
cessed blocks that should be kept in cache will grow when
the cache size increases. So there will be a bigger chance
that these blocks are accessed and loaded. With a 5 GBytes
cache size, the load rates of FBR and ACQ are 42.2 and 4.2
percent respectively with a 90 percent decrease. We can
conclude from the results that with a more strict admission
checking, ACQ decreases the load rate significantly while
maintaining a hit rate comparable to general replacement
algorithms.

5.2. Scalability

We have compared the response time of the in-band and
out-of-band cache model to explore the scalability of the
new model. We made a rough estimation of queuing de-
lay Q according to queuing theory:Q = PT ∗ ρ/(1− ρ),
whereρ = PT/AT. PT is the processing time formulized
in Section 4 andAT is the time interval between the ar-
rivals of two successive requests. In the experiment, the in-
band model used the FBR algorithm for replacement and
the out-of-band model operated under Mode 1. A host is-
sued requests at a rate of one request every 12.8 ms on av-
erage (thusAT = 12.8ms/NumberO fClients). The result
is shown in Figure 4.

As shown in Figure 4, when few clients issue requests
simultaneously (less than 8 under the above simulation set-
tings), the average response time (RT) of the in-band model
is shorter than that of the out-of-band model due to the
communication overhead included in the latter. However,
as the number grows, The RT of the in-band model grows
much more rapidly than that of the in-band model. When
there are 20 hosts, the former almost doubles while the lat-
ter increases by only 3.7 percent, which can hardly be seen
in the figure. As analyzed in Section 4, the growing part

in RT is attributed to queuing delay. Therefore, the result
indicates that the out-of-band cache model using the ACQ
algorithm scales better than the in-band cache model with
increasing concurrent accesses. It achieves this by giving
the MDS less work so as to reduce the queuing delay.

6. Related Work

SAN-level cache management is a relatively new branch
in the area of storage cache management and there has not
been much work on it. SANBoost [4] is a SAN-level cache
with frequency-based admission control using a static or
dynamic threshold. It is a typical in-band caching approach
where the appliance is in the data path. Our approach
is more scalable than theirs because the MDS is removed
from the data path. Additionally, in SANBoost, the rule for
determining the dynamic threshold is hard to implement
and the authors did not describe it in detail, while in our
method, the admission threshold is chosen as the minimal
reference count of cached blocks so that the cache capacity
can be utilized more efficiently.

Zhou et al. studied access patterns of second-level
buffer caches and presented a replacement algorithm for
second-level cache called Multi-Queue (MQ) that outper-
forms most other algorithms [11]. MQ divides cached
blocks into multiple queues with different priorities accord-
ing to their access frequency. When a replacement occurs,
the block at the head of the queue with the lowest prior-
ity is evicted. While MQ aims at increasing the hit rate by
using a good replacement algorithm, our ACQ algorithm
aims at reducing the load rate by combining placement and
replacement algorithms. Besides, the architecture on which
the MQ algorithm is based also falls into the in-band cache
model.

Much research has been conducted on general cache
management algorithms such as LRU-K [8], FBR [9],
2Q [5], ARC [7] and MQ [11]. Most of these studies
have focused on cache replacement algorithms. Designed
for different upper-level applications, they make improve-
ments to LRU to enhance the hit rate. The work that comes
closest to our ACQ is the Two Queue algorithm [5]. It uses
two queues to allow only warm blocks to cache. The idea is
similar to ours. 2Q can be considered as a frequency-based
admission control algorithm with a static threshold of two.
Our ACQ algorithm determines the threshold according to
the access state of blocks in cache.

7. Conclusions and Future Work

In this paper, we have presented an out-of-band SAN-
level cache model and a corresponding cache management
algorithm. To the best of our knowledge, this is the first

attempt to design a SAN-level cache with an out-of-band
approach. Our approach addresses the scalability prob-
lem of the in-band cache by adopting a new architecture,
in which cache placement and replace decisions are made
by the MDS out of the data path. The decisions are made
according to the ACQ algorithm so that the least blocks are
loaded to meet the hit rate requirement. The simulation
results show that the model is much more scalable than
the in-band cache model. We are currently implementing
a prototype of the model and plan to test the model and
the algorithm on real benchmarks running on the prototype
system. In addition, we are also investigating the policies
of metadata consistency in Mode 2 in more detail and the
cache consistency mechanism.

References

[1] SolidData. SD3000 Solid-State Disk and White Papers.
http://www.soliddata.com.

[2] StoreAge White Paper. High-Performance Storage Virtual-
ization Architecture. http://www.storeage.com.

[3] Texas Memory Systems. RamSan Solid-State Disk.
http://www.texmemsys.com.

[4] I. Ari, M. Gottwals, and D. Henze. SANBoost: Auto-
mated SAN-level caching in storage area networks. InPro-
ceedings of the 1st International Conference on Autonomic
Computing (ICAC ’04), pages 164–171, 2004.

[5] T. Johnson and D. Shasha. 2Q: A Low Overhead High Per-
formance Buffer Management Replacement Algorithm. In
Proceedings of the 20th International Conference on Very
Large Data Bases (VLDB), pages 439–450, 1994.

[6] D. E. Knuth.The Art of Computer Programming, volume 3.
Addison Wesley, 1973.

[7] N. Megiddo and D. S. Modha. ARC: A Self-Tuning,
Low Overhead Replacement Cache. InProceedings of the
2nd USENIX Conference on File and Storage Technologies
(FAST03), pages 115–130, 2003.

[8] E. J. O’Neil, P. E. O’Neil, and G. Weikum. The LRU-K
page replacement algorithm for database disk buffering. In
Proceedings of the 1993 ACM SIGMOD International Con-
ference on Management of Data, pages 297–306, 1993.

[9] J. T. Robinson and M. V. Devarakonda. Data cache manage-
ment using frequency-based replacement. InProceedings of
the 1990 ACM SIGMETRICS conference on Measurement
and modeling of computer systems, pages 134–142, 1990.

[10] G. Zhang, J. Shu, and W. Xue. MagicStore: A New Out-of-
Band Virtualization System in SAN Environments. InPro-
ceedings of IFIP International Conference on Network and
Parallel Computing2005 (NPC05), Lecture Notes in Com-
puter Science, volume 3779, pages 379–386, 2005.

[11] Y. Zhou, Z. Chen, and K. Li. Second-Level Buffer Cache
Management. IEEE Transactions on Parallel and Dis-
tributed Systems, 15(6):505–519, 2004.

