
OSDsim - a Simulation and Design Platform of an Object-based Storage Device

WeiYa Xi Wei-Khing For DongHong Wang Renuga Kanagavelu Wai-Kit Goh
Data Storage Institute, Singapore

xi weiya@dsi.a-star.edu.sg

Abstract

Modeling and simulation is an effective way to design
and evaluate the performance of a network storage sys-
tem. OSDsim is designed and developed for simulation of
an Object-based Storage Device (OSD) system. An OSD
File System (OSDFS) has been designed and developed for
OSDsim. It can provide high throughput for big object re-
quests and also maintain high disk utilization for small ob-
ject requests. The OSDFS can be configured to suit differ-
ent workload patterns. The disk module designed and de-
veloped for OSDsim makes use of the dynamic disk profile
extracted from the actual disk drive through interrogative
and empirical methods. Therefore disk drive simulation
should be accurate. OSDsim has been validated and the
write error is within 5%.

1. Introduction

OSD defines a new object-based interface for a storage
device. This new approach for data storage is currently the
subject of much intensive research and development, both
in industry as well as in academia. Some significant initia-
tives include the work of the Storage Network Industry As-
sociation (SNIA)’s OSD Technical Work Group (TWG) [5]
to draft industry standards and that of the ANSI T10/OSD
Committee to facilitate interoperable solutions [6]. The
Network Attached Secure Disk [2] project at the Parallel
Data Lab at Carnegie Mellon University enables direct data
transfers between clients and online storages without in-
voking the file server in common data access operations.

In an OSD system, file system functionalities are di-
vided into two logical components: a file manager and a
storage manager. A file manager takes care of tasks in-
cluding data hierarchy, naming, file to object mapping, ac-
cess controlect.. While the storage manager is in charge
of actual data retrieving from disk drive. The storage man-
ager component is located on an Object-based Storage Tar-
get (OST) together with disk drive or other storage media.
A new and efficient file system which can provide high

throughput and maintain high disk utilization needs to be
designed for an OSD system.

In this paper we present the OSDsim, especially de-
signed and developed for simulation of an OSD system.
The file system designed can provide high throughput for
large object requests and still maintain high disk utilization
for small object requests. In the following sections, the
OSDsim, including all modules for the simulator, is first
introduced. Detail descriptions are provided for the sub-
modules of the OSDFS storage component and the disk
drive and its parameters extraction. After that is experi-
mental work and validation of the OSDsim. Details are pro-
vided on the performance of OSDsim in the validation test
using actual experimental data to compare with the OSD-
sim’s simulation results. Finally the results of further sim-
ulation and analysis are presented to compare the perfor-
mance of different region settings for OSDFS.

2. OSDsim

OSDsim comprises four main modules. They are the
Object-based Storage Client (OSC) module, Object-based
Storage Target (OST) module, Meta-Data Server (MDS)
module and Network module. Figure 1 shows the OSDsim
module structure with sub-modules.

Figure 1. The OSDsim structure and modules



2.1. OSC Module

The OSC module consists of four main sub-modules.
These are the I/O workload module, user interface, Virtual
File System (VFS), and OSDFS user component.

1. The I/O workload sub-module:This sub-module gen-
erates synthetic traces for the system simulation. It
also provides the interface for taking in external
traces.

2. User interface: The user interface interprets
user commands such as MOUNT, MKDIR, RMDIR,
WRITE, DELETE, MV, CP and READ.

3. VFS: This sub-module implements the directory
lookup, file look up and memory management for the
system.

4. OSDFS user component:Some main functions im-
plemented in this sub-module includes converting the
user interface commands into OSD SCSI commands,
and keeping the file structure hierarchy.

2.2. MDS Module

There are two main sub-modules in the MDS module.
One is for file to object mapping and the other is for meta
data management.

1. File to object mapping:Currently one file to one ob-
ject mapping has been implemented. A unique object
id is also assigned to each object.

2. Meta data management:This sub-module is respon-
sible for managing and retrieving object meta data in-
formation. B tree is used to store the object meta data
information. Each node of the B tree contains the in-
formation of Userobject id, Groupobject id, and in-
ode information.

2.3. Network Module

OSDsim is actually the enhanced and extended version
of SANSim [13] which simulate in detail Fibre Channel
(FC) to frame level. The network module for OSDsim
adopts the FC module in the SANSim

2.4. OST Module

The OST module includes two main sub-modules: a
OSDFS storage component and the disk drive.

2.5. OSDFS Storage Component Sub-module

The OSDFS storage component sub-module located on
the top of the disk drive is responsible for data alloca-
tion and retrieval. Four commands: FORMAT, DELETE,
READ, and WRITE have been implemented.

Figure 2 shows the design structure of this OSDFS stor-
age component. The whole disk is divided into equally
sized regions with each region consisting of four parts: a
region head which stores regions information, a free onode
map which records free onode space, an onode table which
keeps the information on each onode meta data and the area
for data blocks which is the location for actual object data.

Figure 2. Design structure of the OSDFS stor-
age component

There are three main objectives in the designing of the
OSDFS storage component. The firstly is that it should be
efficient to search for continuous free space. Secondly it
should provide high throughput for large object data and
lastly it should be able to maintain good disk utilization for
small object data.

An efficient region management scheme based on extent
was adopted. With this the searching time for continuous
free space is shorter than bitmap searching used by gen-
eral file systems. This is one of the reasons why our file
system can outperform the general file system like ext2[7]
and ext3[4]. The performance comparisons for file sys-
tems can be found in the paper which is also submitted for
MSST2006 titled“Adaptive Extents-Based File System for
Object-Based Storage Devices”. Variable-sized blocks are
used for data allocation and object data are grouped accord-
ing to their sizes. Large object data can be allocated to big
regions and small object data allocated to small regions.
Therefore, OSDFS can provide high throughput for large
object data and still maintain high disk utilization when
there are a lot of small object data.

OSDFS also modifies the onode write scheme from a
general purpose file system as to improve write perfor-
mance. In a general file system an onode (meta data of an
object data on disk) writing normally takes place right af-
ter each object data writing. This scheme is not efficient as



the onode table and data blocks are in different part of the
regions. OSDFS adopts the scheme of writing N (N > 1)
onodes together after writing N objects data. The write per-
formance is improved through a reduction of by seeking
distances.

Read performance can be improved by computing the
data location for non-fragmented objects instead of requir-
ing the retrieval of data location from the disk . Figure
3a shows how the system computes the location of the data
blocks for incoming object requests for the non-fragmented
object data. For the object requests with data fragmenta-
tion, Figure 3b shows that the onode data location informa-
tion has first to be read from the onode table on disk and
then directed to data blocks.

2.5.1. Disk Drive Sub-module OSDsim needs a disk
drive simulation module which can simulate disk drive ac-
tivities accurately. The simulated disk drive must be a SCSI
disk drive available in the market so that OSDsim can be
validated using an actual physical system. Presently, there
is no such disk drive simulation module available. Some
storage system simulators come with a very detailed disk
drive module, for example DiskSim [3]. However many of
the disk drive parameters are not readily available to the
public. Furthermore, many of the simulators use only very
simple disk drive modeling which then affect the accuracy
of the simulation results. They compute the disk perfor-
mance based only on average values such as average seek-
ing times and rotational delays. This is not good enough
for our requirements for the OSDsim.

We obtained disk drive parameters using two methods:
interrogative method and empirical method [12] [11]. We
modify the SCSIBench [8] to suit OSDsim. We are able
to obtain parameters such as cache size, zone information,
cylinder and track skew, LBN to PBN mapping defect re-
gions and actual seeking curve. Such information are gath-
ered and passed to our disk drive module for the disk sim-
ulation. Figure 4 shows the seeking profile obtained exper-
imentally for the disk drive Seagate SCSI ST318437LW.
Figure 4 is the seeking profile with a full seek. Figure 5 is
the expanded view for the first 5000 cylinders. From Figure
4 we can see that there are four points which are obviously
out of the normal seek profile. For such obviously erro-
neous points, we use the previous seeking times instead.

The disk drive sub-module consists of four main compo-
nents: bus interface, cache/scheduler, command processing
and the component consisting of mechanics, data transfer
and data mapping as shown in Figure 6. As the disk drive
module makes use of actual disk parameters, the simulation
of the disk should give better accuracy.

Figure 4. Seeking profile with a full seek

Figure 5. Seeking profile for the first 5000
cylinders

Figure 6. Disk drive module

3. Simulation Validation

3.1. Experiment Set Up

We implemented OSDFS storage component at the user
level on a PC with a 1 GHZ PentiumIII CPU and 512MB
RAM running Redhat Linux, Kernel 2.4.20. The operating
system was installed on a 40GB ATA Maxtor D740X-6L
disk drive and the target performance testing was on the
Seagate SCSI disk drive model ST318437LW.



Figure 3. Diagram to illustrate how a read request is processed

3.2. Comparison of Experimental Data and Sim-
ulation Data

Both read and write performance for different size
ranges from 1KB to 512KB of the object requests were
tested on the system. The system was made to write 5000
object requests first and then to read these back. The per-
formance in terms of throughput were recorded from the
system and computed. There were then compared with the
simulation results from OSDsim by applying the same re-
quests. Figure 7 & 8 shows the performance comparisons
for both experimental and simulation results.

Figure 7 is the performance for write requests compari-
son for both experimental and simulation. The biggest error
is about 4.7% for the write performance when request size
is 64KB.

Figure 8 is the performance for read requests for both
experimental and simulation. The largest error, of about
12.7%, at the point of request size 512KB.

Figure 7. Write performance

Figure 8. Read performance

4. Simulation and Analysis

4.1. Simulation Environment

Simulation and analysis were also performed with the
OSDFS storage component configured with different types
of region settings. The disk drive used for this is a Sea-
gate SCSI disk drive, model ST31843LW. The simulation
is based on closed-loop [9] which means that a subsequent
request is issued only when the previous request complete
its execution.

The assumptions made for the simulations are as follow:

1. The OSDFS file to object mapping is one to one.

2. System cache is large enough for the boot sections, the
region head as well as the free onode map.

3. The write performance is only measured for the data
writing on the disk inStep 3in the following simula-
tion steps.

4. Read performance is for the reading of all the data
written inStep 3in the following simulation steps.

The following steps were employed in the simulation
procedure:



Step 1: Format the disk.

Step 2: Create an aged file system by performing data
writing and deletion. Data with object size close to
size of data unit are continuously written to the disk
until the disk is full. Deletion requests are then per-
formed with every other object delete. As an result,
the free space left on the disk are not continuous and
the largest will be equal to region data unit size

Step 3: Perform write requests on the disk again. The
workload size distribution follows the pattern sum-
marized from the actual trace obtained from HP-UX
machines. These consist of twenty machines located
in laboratories for undergraduate classes [10]. This
workload is referred as Instructional workload (INS)
and the workload size distribution is shown in Figure
9. The write performance is computed based on the
write requests performed in this step.

Step 4: Perform read requests on the disk. The read
requests read out all the data written inStep 3.

Figure 9. Workload size distribution

4.2. Simulation Results and Analysis

The performance of OSDFS was tested for the five dif-
ferent types of region settings shown in Table 1. Figure 10
shows the read and write performances in terms of through-
put for various type of region settings.

Table 1. Region Settings
No. of regions Size of data unit (KB)

1 4
2 4, 128
3 4, 128, 512
4 4, 128, 512, 2048
5 4, 128, 512, 2048, 8196

We can see from Figure 10 that for all the different types
of region settings, the read performances are better than the
write performances. The larger the number of regions used
for the OSDFS, the better the performances.

Figure 11 is the overall disk space utilizations for vari-
ous region settings. We can see that the larger the unit size
of a region, the smaller the disk space utilization.

Figure 10. Performance analysis for different
number of regions

Figure 11. Disk space utilizations for different
regions settings

Figure 12 shows the average number of fragmentation
per object. The number is computed base on data written
in Step 3in the simulation procedure. We can see from
this figure that with five regions, this value is the smallest
while with only one regions this value is the largest. This is
the main reason why the performance for a setting of five
region is better than that with only one region under the
workload of INS.

5. Summary and Related Work

So far we have not seen much work done on OSD sim-
ulation. The only work we are aware of was done in IBM
[1] in which an IBM Object Storage Device for Linux was
developed. The simulator does not design/develop an ob-



Figure 12. . Average number of fragmenta-
tions per object

ject file system. It only uses the local file system to store
object data.

In our work, we have designed and developed an OSD
simulator for an OSD system. The OSDFS storage com-
ponent developed for the simulator is capable of providing
high throughput for large object requests while, at the same
time, maintaining high disk utilization for small object re-
quests. The disk drive module developed for the simulator
simulates not only critical mechanical dynamics but also
the cache/buffer, spare regions and other activities. Actual
parameters which define important characteristics are ex-
tracted from actual disk drives and used in the simulations
to ensure that simulation errors remain very small.

Validation experiments with the actual system imple-
mented with OSDFS at the user lever and installed with an
actual physical disk drive have been conducted to compare
the simulation results with measured performance data ob-
tained from physical system. These show OSDsim to per-
form well with simulation results for write performance to
be within 5% and read performance within 13% of actual
measured data.

References

[1] http://www.haifa.il.ibm.com/projects/storage/objectstore/
osdlinux.html.

[2] http://www.pdl.cmu.edu.
[3] http://www.pdl.cmu.edu/disksim/.
[4] http://www.redhat.com/support/wpapers/redhat/ext3/.
[5] http://www.snia.org/techactivities/workgroups/osd/.
[6] www.t10.org.
[7] R. Card, T. Ts’o, and S. Tweedie. Design and implementa-

tion of the second extended filesystem.In Proceedings of
the First Dutch International Symposium on Linux, 1994.

[8] Z. Dimitrijevi, R. Rangaswami, D. Watson, and A. Acharya.
Diskbench: User-level disk feature extraction tool. 2002.

[9] G. R. Ganger. System-oriented evaluation of i/o subsystem
performance.PhD dissertation, 1995.

[10] D. Roselli, J. Lorch, and T. Anderson. A comparison of
file system workloads.In Proceedings of the 2000 USENIX
Technical Conference, pages pp. 41–54, 2000.

[11] N. Talagala, R. Arpaci-Dusseau, and D. Patterson.
Microbenchmark-based extraction of local and global disk
characteristics.Technical Report CSD-99-1063, University
of California, Berkeley, 1999.

[12] B. L. Worthington, G. Ganger, Y. N. Patt, and J. Wilkes. On-
line extraction of scsi disk drive parameters.In proceedings
of the ACM Sigmetrics, pages pp. 146–156, 1995.

[13] Y.-L. Zhu, C.-Y. Wang, W.-Y. Xi, and F. Zhu. Sansim - a
simulation and design platform of storage area network.In
Proceedings of 21st IEEE / 12th NASA Goddard Conference
on Mass Storage Systems and Technologies, 2004.


