
Adaptive Extents-Based File System for Object-Based Storage Devices

Wei-Khing For Wei-Ya Xi
Data Storage Institute, Network Storage Technology Division

Email:{FOR Wei Khing, XI Weiya}@dsi.a-star.edu.sg

Abstract

Object-Based Storage Systems is emerging as the stor-
age architecture in the next wave of storage technology. An
Object-Based Storage System is rquired to deal with object-
based storage devices (OSD) workloads which are gener-
ally different from the general purpose file system work-
loads. This paper describe how we implemented a user-
level Object-Based Storage Device File System (OSDFS)
which utilizes extents in the traditional bitmap, an adaptive
metadata updating scheme, a wasted free space data allo-
cation scheme, extended size of an object mapping (onode
ID) to include information of metadata so as to achieve a
high performance and high throughput file system for OSD.
Our experiments show that OSDFS is able to maintain its
continuity in allocating free space for objects up to 98%
of disk utilization. In addition, OSDFS is not only out-
performs ext2 and ext3 in handlingOSD workloads, but
also provides better performance when dealing withgen-
eral purpose file system workloadsas compared to conven-
tional file systems.

1. Introduction

With the recent advances in network technologies such
as Gigabit fiber optic network [4] and the proliferation of
wireless technologies (i.e WiFi, WiMax [1] (in the near fu-
ture)), ubiquitous data accessing can be done in a much
shorter time as never before. As a result, thousand tonnes
of email, e-commerce transactions, multimedia files can be
generated and uploaded to a network in a day, putting un-
precedentedly pressure on the storage industry to develop a
more efficient storage technology in managing and storing
network data.

In fact, the storage industry has already moved from
the old Direct Attached Storage (DAS) architecture to the
Network Attached Storage (NAS) architecture and Storage
Area Networks (SAN) architecture in managing network
data. However, both of the NAS and SAN architectures
have their own limitations [7, 14]. NAS provides file shar-

ing for heterogeneous network platforms with the use of a
file server in handling all the metadata (data that describe
data), but the throughput is limited by the file server. SAN
overcomes NAS’s limitations by providing direct access
to the storage devices. Nevertheless, SAN compromises
not only its security for better performance, but also suf-
fers compatibility drawbacks of different platforms for file
sharing. As such, a next generation storage technology -
Object-Based Storage System [7, 8, 14] was proposed to
overcome the deficiencies in NAS and SAN.

The Object-Based Storage System has the advantages of
both the SAN and NAS architectures in providing scalable,
block based accessing (high performance), and secure ob-
ject sharing for heterogeneous Operating System networks.
Files are treated as objects and stored in Object-Based Stor-
age Devices (OSD) [2, 6]. Like other general storage sys-
tems, the OSD has its own file system - an object-based
file system in handling how the objects are being stored.
A good file system not only is able to provide high perfor-
mance and high throughput for the storage system, but it is
also able to maintain high utilization of the storage system.

In this paper, we show that through our Object-Based
Storage Device File System (OSDFS) which utilizes the
well-known extents [13, 16] method, we can provide a high
performance and high utilization storage architecture for
OSD. In addition, we have also proposed an adaptive meta-
data updating scheme and extended the size of an onode ID
to accommodate metadata in enhancing the file system per-
formance. We described our OSDFS is suitable for imple-
mentation in an object-based storage system. We evaluated
our OSDFS with various kind of workloads [15, 17] and
showed that our OSDFS can provide high throughput and
high storage utilization for object-based storage system.

The rest of the paper is structured as follow: in Section
2, we give an overview of the Object-Based Storage Sys-
tem and provide further details on our project. We then
describe the related works in Section 3. In Section 4, we
describe our OSDFS which includes its architecture, man-
agement policies and the novelty of our file system. Our
evaluation results in Section 5 show that OSDFS is suitable
for various kind of workloads and provides better perfor-



mance as compared to conventional file systems such as
ext2 [9] and ext3 [5]. We conclude in Section 6 with some
discussions on possible further works.

2. Background

In current network storage technologies, the block-
based data accessing approach (i.e SAN) and the file shar-
ing data accessing method (i.e NAS) are the two com-
mon ways for a client to retrieve data from storage de-
vices. Block-based data accessing method provides a
higher throughput than the file sharing data accessing
method since there is no contention with the storage de-
vices. However, it is less secure as compared to the file
sharing method since the block-based architecture provides
clients direct access to the storage devices. Moreover, un-
like file sharing, servers in SAN need to have the same
format with one another in order to enable data sharing
in a heterogeneous platform, making block access limited
in data sharing applications. With the emergence of the
Object-Based Storage System, the deficiencies of SAN and
NAS can be alleviated.

Figure 1 shows the architecture of an Object-based
Storage System. It consists of three main components:
the Object Manager(OM), the Object-Based Storage De-
vices(OSDs) and clients. OM is responsible for managing
metadata of OSDs in a storage system. It also provides au-
thentication when a client wants to access the data in an
OSD. OSD is a device that stores the clients’ data. Each of
the OSDs consists of an object-based file system for man-
aging the free spaces and the stored data. When a client
needs to access to an OSD, it first needs to obtain authenti-
cation from OM. Once this is done, OM sends the metadata
(i.e object mapping) of the OSD to the client. Finally, with
the metadata and authentication, the client can access the
OSD directly. As a result, unlike NAS and SAN, an Object-
Based Storage System does not need to compromise either
its performance or its security for high throughput and se-
cure data communication between clients and OSDs.

As Object-Based Storage Systems appears likely to be
the next wave of storage technologies, our project aims
to build an Object-Based Storage System with OSDFS
embedded in every OSD. The ultimate objective of our
project is to develop a real-time large-scale distributed
Object-Based Storage System capable of providing and
handling millions or even billions of requests in a single
day of different kind of workloads without any compro-
mise in throughput and utilization of the storage system.
To achieve this, we need to address two challenging issues
in designing OSDFS:

1. High performance and high utilization file system.In
a storage system, it is important to have a file sys-
tem that is able to provide high performance and high

Figure 1. Object Based Storage System Ar-
chitecture

utilization of the storage system. For this reason,
we have adopted the renowned extents(index, size)
method in managing the free spaces and storing in-
dex in onodes. In addition, we have also utilized
an adaptive metadata updating scheme instead of a
synchronous metadata updating scheme to achieve a
high performance file system (More on this will be
discussed in Section 4.6). Moreover, onode ID with
embedded metadata is another innovative feature used
in enhancing the performance of the file system (See
Section 4.7).

2. Heterogeneous workloads file system.In order to de-
sign a file system that is suitable for various kinds of
workloads, we have designed our workload based on
[15, 17] (i.e INS, OSD Scientific workloads). As a re-
sult, there are five different type of workloads used in
benchmarking our OSDFS. In addition, we also pro-
vide user-friendly utility for the user to configure the
OSDFS in dealing with other workloads. This is ex-
tremely useful for the user who knows their workloads
in advance so that OSDFS can be tuned to maximize
its performance.

3. Related Works

Although the Object-Based Storage System is a recent
popular research area in network storage technology, there
is only a few research focus on the design of the object-
based file system as many of the Object-Based Storage Sys-
tem adopted general purpose file system (i.e ext2, ext3) as
their object file system. However, the workloads encoun-
tered by OSDs are quite different from the general pur-
pose file system workload. As such, designing an efficient
object-based file system instead of using a general purpose
file system is a crucial step in improving the performance



of the overall large-scale Object-Based Storage System.
As far as we know, only two related works [17, 18] fo-

cussed on designing and improving the performance of the
object-based file system. In [17], OBFS was designed spe-
cially to hande OSD workloads. The workload was cate-
gorized into small and large objects and based on this cat-
egorization, the OBFS stored the small objects to the small
region which consists of a bitmap area and the onode ta-
ble and the large objects to the large region which utilize
embedded onodes in reducing the seeking time of the hard
disk. However, the OBFS adopted a synchronous update
scheme for writing small workloads which involved a seek
time to the onode table. In addition, reading data also in-
volved a seeking distance for the hard disk to read from the
onode table and then to the data area. In [18], EBOFS uti-
lized the extents as their allocation unit and the B+ tree as
their tree list in maintaining the object free list as well as
their object lookup table. To reduce the hard disk’s seeking
overhead, EBOFS groups the free extents into a series of
buckets based on the free extent size. However, how tightly
extents in the free list should be grouped is a design ques-
tion in the design of EBOFS and a poor grouping decision
will degrade the performance of EBOFS.

In OSDFS, we proposed a new feature by embedding
extentsin the traditional bitmap area. As such, unlike [18],
we avoid the grouping of free extents issue which can affect
the storage system performance. On the other hand, to re-
duce the seeking time to the onode table as encountered in
[17], we used anadaptive metadata updating schemebased
on either the total requests size or the number of requests
in updating the data to the onode. For reads, instead of re-
quiring a seek time in reading metadata from the onode and
then to the data area, we expanded the onode ID in [17] to
include information on the size of the object. Hence, the
location of an object can be determined by an equation in-
stead of having to read the metadata from the hard disk.

4. Design of OSDFS

As mention previously, the main objective in designing
OSDFS is to provide a high throughput, high disk utiliza-
tion file system architecture for large-scale distributed stor-
age systems in dealing with large volumes of data in a sin-
gle day. In addition, our OSDFS needs not only to be de-
signed for the OSD’s workload (in the order of 1MB [18]),
but to be also suitable for the general purpose file system
workloads. To address the above challenges: high through-
put, high disk utilization and suitable for OSD workloads as
well as general purpose file system workloads, we have in-
cluded in our OSDFS features such as extent-based bitmap
and an adaptive metadata update scheme. Figure 2 shows
the architecture of OSDFS. It consists of the following fea-
tures in providing an efficient and reliable file system for

OSD:

1. An extent-based bitmap and onode.OSDFS embeds
extents in the traditional block oriented bitmap for
handling free spaces. In addition, OSDFS also uses
extents in storing logical block addresses in the onode
to represent the location of data. (See Section Section
4.3 and 4.5 for more details)

2. An innovation data allocation scheme.In OSDFS, in
order to maintain the high performance of the file sys-
tem, we have proposed an innovative data allocation
scheme which include data allocated to different re-
gion based on their wasted disk space; adaptive meta-
data updating scheme in improving the file system
performance while minimizing possible data loss due
to unexpected failures such as system crash or power
failure; an efficient continuous free space searching
by using extents-based bitmap (more on this will be
discussed in Section 4.6).

3. An onode ID with embedded metadata.Similar to
[17], OSDFS also uses Onode ID for object mapping.
We extend the size of the Onode ID such that it is able
to accommodate the size information of an object. As
a result, OSDFS can improve the performance of read
requests as the location of an object can be determined
based on the metadata embedded in the Onode ID in-
stead of having to read the metadata from Onode ta-
ble which involve a seeking time (See Section Section
4.7) .

Figure 2. (a) OSDFS Architecture; (b) Struc-
ture of a Region in OSDFS



4.1. OSDFS Architecture

In each of the OSD, there is one boot sector, in which
the region size, number of regions and pointer to the free
region are recorded. We have divided the plain disk into
regions of uniform size (i.e 256 MB). This is not only for
ease of management as compared to the management of the
full plain disk, but it can also provide multi variable sizes
of blocks in an OSD (more on this will be discussed in next
section).

In each region, there is one region head where infor-
mation about the region such as region ID, free onodes,
starting address of onode table and starting address of data
area of eachof the region are stored. Besides, in each re-
gion, there is also an extents-based bitmap area for free
spaces management as well as the onode table where meta-
data of the data in that region are recorded. The extents-
based bitmap area and the onode table have been designed
to accommodate the maximum number of objects in each
region.

4.2. User Configurable Variable Size of Block

In OSDFS, each of the regions can be configured into
blocks of the same size. However, different regions may
have different sizes of blocks (i.e. 4 KB, 512 KB). Provi-
sions is made for the user to be able to configure up to 3
different types of sizes of blocks based on their workloads
distribution. This user-friendly feature is useful for the user
who knows their workloads in advance so that they can
configure the file system to perform efficiently, with higher
throughputs and higher utilization especially when the file
system encounters fragmentation. In general, the perfor-
mance of the file system with a smaller size of blocks (i.e
4 KB) will decrease drastically when fragmentation occurs
as compared to a file system that consists of a larger size
of blocks (i.e 512 KB). This is because file system with
a smaller size of blocks requires a larger number of frag-
mented free spaces to store a complete data, while a file
system with a larger size of blocks only requires a few frag-
mented free spaces to hold this data. Hence, a file system
with a smaller size of blocks needs to seek to different lo-
cations to store the data. As a result, the performance will
be degraded.

In addition, with this user configurable feature, our OS-
DFS can be used as a general-purpose file system such as
ext2, ext3 when dealing with small sizes of files while still
maintaining the high utilization. In this paper, we are not
focusing on the effect of the number of variable sizes of
blocks on the performance of the file system when deal-
ing with different kind of workloads. This is an interesting
research issues which will be investigated in future.

4.3. Onodes

In OSDFS, the metadata of each of the files are stored in
an onode table. The number of onodes and blocks are the
same in each region. An onode consists of the size of a file
on disk, the file size, and the oblock array where locations
of the data are stored. Each oblock can store up to 110
data locations in the format of extents(lbn, size in blocks).
For continuous data, only one array of oblock is needed to
store the data location. More than one array is only needed
in an oblock when storing the data locations of fragmented
files. The oblock makes use of the ext2 direct and indirect
pointer to store the data locations if the data locations of a
fragmented file exceed the number of arrays in an oblock.
In OSDFS, one onode is designed to be 512 Bytes.

4.4. OnodeID

The Onode ID is an identifier for a particular onode. It is
used in mapping the object ID forwarded from the clients.
Onode IDs are maintained in a tree list and uses in deter-
mining the location of a stored data. In OSDFS, the Onode
ID is designed to be a 64-bit data. It consists of Region ID,
Onode Index, Type of Region (i.e 4 KB or 512 KB) and
size of the objects. We embed the metadata of an object
such as the types of region that the object’s data reside and
the size of the objects. This is extremely useful in handling
read requests without having to read the metadata from the
onode table which will involve a seek delay, and hence de-
crease the performance of the file system. Figure 3 shows
the structure of an Onode ID.

Figure 3. Structure of Onode ID with
Embedded-Metadata

4.5. Extents-Based Bitmap

Like a traditional file system, OSDFS also has a bitmap
area in each region. The bitmap area is used to mark the
unused block. However, unlike the traditional bitmap, we
use extents(index, size) to represent the free spaces in each
region. This not only provides an easy way in maintaining
the free spaces in a hard disk, but also provides an efficient
scheme in searching continuous free space to allocate data.
In addition, fragmented files in OSDFS are greatly reduced
as compared to other file systems such as ext2. Tests show
that OSDFS only encounters fragmentation when the disk



reaches above 95% of utilization (write data to a plain disk
until 95% of the disk has been utilized).

In a bitmap,odd number arrays always record the free
onode index in the region while theevennumber of the
bitmap arrays store the continuous free spaces. For ease
of understanding, Figure 4 shows how the extents(index,
length) are embedded in the bitmap in managing the free
spaces in a region. The onode index 30 has 5 continuous
blocks of free spaces (index 30 to index 34 are the free
spaces).

Figure 4. Extents-Based Bitmap

Figure 5 shows the bitmap operation when aWRITEre-
quest is forwarded to OSDFS. OSDFS scans the bitmap
array to find the exact match of the continuous free space
required by the object (See Figure 5(a)). If there is no ex-
act match between the continuous free spaces and the data
size, OSDFS will allocate the data to the area that has the
larger continuous free spaces than the data as shown in Fig-
ure 5(b).

Figure 5. Bitmap Operation for WRITE Re-
quest

When dealing with aDELETE request (Figure 6), OS-
DFS first scans the bitmap area to check if any of the arrays
in the bitmap area can be merged to form a continuous free
spaces (See Figure 6(a)). If there there cannot be done,
OSDFS will allocate the free spaces to the unused bitmap
array as shown in Figure 6(b).

4.6. Data Allocation Strategies

A good allocation strategy and file system structure are
the key components in designing a high throughput stor-
age system. OSDFS consists of the following strategies in
allocating data to provide a high throughput storage sys-
tem: (1) data allocation based on wasted disk space; (2)

Figure 6. Bitmap Operation for Delete request

adaptive schemes for metadata updating; (3) extents-based
bitmap for continuous free space searching.

4.6.1. Data Allocation Based on Wasted Disk Space
In OSDFS, data are allocated to different regions based on
their wasted disk space. For example: consider a disk with
two different types of regions, 4 KB and 512 KB. When
a request requires a size larger than 508 KB but smaller
than 512 KB, OSDFS will allocate this data to the 512 KB
region instead of the 4 KB region. This is because 128
blocks will be required if the 4 KB region is chosen and the
wasted free space will be 4 KB. If we allocate this data to
the 512 KB region, the wasted memory is also 4 KB. As a
result, allocation of the data to the 512 KB region is pre-
ferred as only one block is involved in the 512 KB region
as compared to 128 continuous blocks in the 4 KB region.
Moreover, allocation of data to the larger block-size region
will provide a higher throughput as compared to that for the
smaller block-size region when the file system encounters
fragmentation.

4.6.2. Adaptive Scheme for Metadata Updating In
order to enhance the performance of the file system while
minimizing the possible loss of data in the event of an un-
expected system crash or power failure, OSDFS uses an
adaptive metadata updating scheme in writing metadata to
the onode. OSDFS updates the metadata to the onode based
on either the total size of the files it has encountered or the
number of write requests it has completed in a type of re-
gion but the metadata are being buffered. If the number of
requests it has encountered exceeds a preset counter, it will
update all the previous buffered metadata in one time. For
example, if the preset counter is set to 10 requests, OSDFS
will update the previous 9 requests’ metadata and the cur-
rent request’s metadata when OSDFS is dealing with the
10th request. On the other hand, if the total size of the
files exceeds a certain threshold (i.e 100 MB), OSDFS will
update the onodes which reside in its buffer even though
the number of requests is less than the preset counter. This
adaptive scheme provides a higher throughput than the syn-
chronous update scheme where the file system has to up-
date the metadata (in an onode table) while writing the data



to the hard disk. In addition, we have not adopted em-
bedded onodes [10] as our OSDFS architecture. This is
because when the data is corrupted or the storage system
crashes, we can recover back the data since we know the
location of the onode table.

4.6.3. Continuous Free Space Searching Using Ex-
tents As mention previously, OSDFS uses a traditional
bitmap in managing free spaces. However, we utilize an
extent-based bitmap instead of the traditional block-based
bitmap. This is to ensure ease of searching of continuous
free spaces for the incoming requests. When a request is
forwarded to the file system, the file system decide which
region is suitable for the incoming request based on the
above wasted space allocation strategy. After the region
has been selected, a check is made whether there is such
an initialized region. If OSDFS does not find such a re-
gion, the file system will initialize one of the free regions
to allocate the data. If there is such a region, the file sys-
tem will first look for the continuous free spaces from the
extent-based bitmap to allocate the data. If the continuous
free spaces are not large enough to contain the data, the file
system will create a new region to store the data. When
there is a lack of uninitialized free region, the file system
will allocate the data to the old initialized region and search
for the continuous free spaces to allocate the data. In OS-
DFS, fragmentation occurs when the disk is almost full.
The overall flow of write request is shown in Figure 7.

4.7. Data Searching Using Embedded-Metadata
Onode ID

Data searching is another component that affects the
performance of the file system. Because most of the read
requests are random, it is impossible to predict the location
of the next data. As such, minimizing the seek distance
become the main design criteria in providing a high perfor-
mance file system. In OSDFS, we minimize the seeking
distance when dealing with read requests by using Onode
ID with embedded metadata. In [17], Onode ID are used in
mapping the object ID and maintained in a hash list. How-
ever, the read request will require one seek distance where
the file system needs to read the metadata from the onode
table and seek back to the data area. To improve the file
system performance, we have redesigned the Onode ID so
that it can accommodate the metadata such as the region
type as well as the size of the files. As a result, the location
of a file can be determined using Equation 1. By redesign-
ing the Onode ID which includes metadata, OSDFS can
avoid reading metadata from the onode and hence improve
the read performance.

DataLBN= RegData+OIndex∗SizeBlk/SecSize (1)

Figure 7. Write Operation with (a) Data Al-
location Based on Wasted Disk Space Scheme;
(b)Adaptive Scheme for Metadata Updating; (c)
Continuous Free Space Searching Using Extents

where DataLBN is the starting address of the file,
RegDatais the staring address of the data area in a re-
gion (this value is determined when the region is initial-
ized),OIndexis determined from the Onode ID (bit 32 to
bit 47) (See Fiure 3),SizeBlkis the number of blocks that
can be supported in a region (it is depends on the region
type - Onode ID bit 0 to bit 15),SecSizeis the size of one
sector which is 512 Bytes.

From the Onode ID, we have the information about the
size of an object. Hence, we can read the data with the in-
formation of the staring address of the object and the size
of the object. However, this method is only applicable for
a continuous object. For a fragmented object, because its
data resides in multi-locations, we cannot determine the en-
tire data by using the above equation. OSDFS requires
loading the metadata from the onode table which will in-
volve a seeking distance to onode table when dealing with
fragmented files. Nevertheless, our file system seldom en-
counter fragmented objects since it utilizes the extent in
allocating continuous free spaces.

Figure 8 shows the data searching of a continuous object
while Figure 9 shows the data searching of a fragemented
object which will involve a seeking distance for the hard
disk.



Figure 8. Data Searching of a Continuous Ob-
ject

Figure 9. Data Searching of a Fragemented
Object

5. Evaluation and Results

OSDFS was evaluated using different kinds of work-
loads such as INS, RES, WEB, NT based on [15] and Sci-
entific Workload based on[17]. We have also compared the
performance of our OSDFS with Linux ext2 and ext3. Our
OSDFS runs in the user-level and uses SCSI commands to
read or write data directly to the disk, while ext2 and ext3
run in the kernel level which making use of the VFS layer.
We inject the workloads to the ext2 and ext3 file system
using I/O meter [3]. In order to have fair comparison, we
have mounted the drive using-o syncparameters, which is
similar to [17] so that the data can write synchronously to
the disk.

5.1. Experimental Test bed

We set up our test bed in a 1 GHZ PENTIUM III PC
with 512 MB of RAM, running on Red Hat 9 Linux, Ker-
nel 2.4.20. All the evaluation experiments are conducted
on a Seagate ST318437LW SCSI hard disk. Table 1 shows
the hard disk specifications. We have divided the plain disk
into 3 GB partitions. For five of the workloads, we gen-
erated various sets ofrandomwrite and read requests. The
disk is filled up with the write requests until it is full. All the
write requests are done synchronously since we mounted
the disk to use synchronous I/O. After that, we read all the

data we have written to the disk. For a set of requests, we
repeat the experiment 3 times and we take the average out
of the 3 results. After that, we took an average value out
of the various set of random requests for a particular work-
load.

Table 1. Specifications of Seagate
ST318437LW SCSI Hard Disk

Formatted Capacity 18.4 GB
Head 2

Interface Ultra3-SCSI Wide
Rotational Speed 7200 RPM

Single Track Seek (read/write) 0.4ms/0.5ms
Max Full Seek (read/write) 14.9ms/15.5ms

5.2. Results

We compare the throughput of Linux ext2 and ext3 ver-
sus our OSDFS for random writes and reads using 5 dif-
ferent types of workloads. We compare the random writes
and reads instead of the sequential write and read requests
because in real life, almost all the data forwarded to the
file system are random. Figure 10 shows the throughput
of write operations while Figure 11 shows the through-
put of read operations of ext2, ext3 and different variable
sizes of blocks of OSDFS which include 4 KB region, 4
KB and 512 KB regions, and 4 KB, 256 KB and 1 MB
regions. In comparison, OSDFS delivered much better per-
formance than ext2 and ext3 regardless of the workloads
encountered. It can obviously be seen that the read perfor-
mance of OSDFS is improved greatly as compared to ext2
and ext3. This is because the location of an object is cal-
culated instead of requiring the metadata to be loaded from
the onode table and perform a seek to the data area. Even
with the different variable sizes of blocks, OSDFS still can
deliver the same throughput for the storage system. This
is because OSDFS utilizes extents in allocating free spaces
for the data.

In this paper, we do not compare the effects of different
settings of the variable size of blocks to the performance of
the storage system. In general, a single region will deliver
slightly better write and read performance than multiple re-
gions when the file system can maintain the continuity of
its objects. This is because we utilize extents to represent
the free spaces and allocate the data to these free spaces.
For example, 16 blocks of 4 KB is equivalent to 1 block of
64 KB which is equal to 128 of 512 Bytes sectors. How-
ever, the performance of the file system will be greatly re-
duced for a single region when the file system encounters
fragmentation.



Figure 10. Performance of WRITE Request
dealing with different kinds of workloads

Figure 11. Performance of READ Request
dealing with different kinds of workloads

6. Conclusion and Future Work

The primary objective of designing an object-based file
system is to provide a high performance, high throughput
and high utilization storage file system to the object-based
storage devices. In this paper, we presented the implemen-
tation of OSDFS in the user-level using extents in the tra-
ditional bitmap for management and allocation of continu-
ous free spaces in order to minimize the fragmentation of a
file. In addition, we proposed an innovative data allocation
strategy which includes data allocation based on wasted
disk space and an adaptive metadata updating scheme. We
also embed the metadata of an object into the Onode ID
to enhance the file system performance. We have shown
that OSDFS not only can provide better performance as
compared to ext2 and ext3 when dealing with the OSD
workload (i.e Scientific workload), but also outperforms
ext2 and ext3 when dealing with general purpose work-
loads such as INS. OSDFS is suitable in supporting various
kind of workloads due to its multi variable size of block re-
gions, improved free spaces management by using extents

in the traditional bitmap, improved data allocation scheme,
an adaptive metadata updating scheme and data searching
scheme.

In order to evaluate OSDFS more completely which in-
clude scheduler and cache buffer, we will implement our
OSDFS in the kernel level by making use of VFS. In ad-
dition, investigating the effect of multiple variable sizes of
blocks is another main research focus for our project. We
will also be extending our work to the kernel level in order
to support various applications such as content-sensitive or
context-sensitive file system[11, 12]. For example, the file
system must allocate continuous free spaces in large sizes
of block such as 10 MB region for storing video data.

References

[1] http://www.ieee802.org/16/.
[2] http://www.intel.com/technology/computing/storage/osd/.
[3] http://www.iometer.org/.
[4] http://www.nlr.net/architecture.html.
[5] http://www.redhat.com/support/wpapers/redhat/ext3/.
[6] http://www.snia.org/techactivities/workgroups/osd/.
[7] Object-based storage: The next wave of storage technology

and devices.Intel White Paper.
[8] www.t10.org.
[9] R. Card, T. Ts’o, and S. Tweedie. Design and implementa-

tion of the second extended filesystem.In Proceedings of
the First Dutch International Symposium on Linux, 1994.

[10] G. R. Ganger and M. F. Kaashoek. Embedded inodes and
explicit groupings: Exploiting disk banthwidth for small
files. In Proceedings of the 1997 USENIX Technical Con-
ference, pages pp. 1–17, 1997.

[11] H. C. K. and C. R. H. An application of a context-aware file
system. Pervasive Ubiquitous Computing, pages pp. 339–
352, 2003.

[12] S. Khungar and J. Riekki. A context based storage system
for mobile computing applications.In Proceedings of Sec-
ond European Symposium on Ambient Intelligence, pages
pp. 55–58, 2004.

[13] L. M. McVoy and S. R. Kleiman. Extent-like performance
from a unix file system.In Proceedings of the 1991 USENIX
Technical Conference, pages pp. 33–44, 1991.

[14] M. Mesnier, G. R. Ganger, and E. Riedel. Object-based
storage.IEEE Communications Magazine, Vol. 41:pp. 84–
90, 2003.

[15] D. Roselli, J. Lorch, and T. Anderson. A comparison of
file system workloads.In Proceedings of the 2000 USENIX
Technical Conference, pages pp. 41–54, 2000.

[16] A. Sweeney, D. Doucette, W. Hu, C. Anderson, M. Nishi-
moto, and G. Peck. Scalability in the xfs file system.In Pro-
ceedings of the 1996 USENIX Technical Conference, pages
pp. 1–14, 1996.

[17] F. Wang, S. A. Brandt, E. L. Miller, and D. D. E. Long.
Obfs: A file system for object-based storage devices.In
Proceedings of 21st IEEE / 12th NASA Goddard Conference
on Mass Storage Systems and Technologies, 2004.

[18] S. A. Weil. Leveraging intra-object locality with ebofs.Uni-
versity of California, Santa Cruz, 2004.


