
Implementation of Offloading the iSCSI and TCP/IP Protocol onto Host Bus
Adapter

Han-Chiang Chen
Industrial Technology Research

Institute
jolly@itri.org.tw

Zheng-Ji Wu
Industrial Technology Research

Institute
wujumper@itri.org.tw

Zhong-Zhen Wu
Industrial Technology Research

Institute
zzwu@itri.org.tw

Abstract

The iSCSI storage can provide high speed, easy
management and low cost advantages to satisfy the
requirements of small-size IT departments. Usually, the
servers running iSCSI protocols suffer from the heavy IO
processing and therefore require an adapter card
relieving the host CPU load. In this paper, we proposed
an effective method which attempts to offload the
processing of iSCSI and TCP/IP onto our designed host
bus adapter card. The adapter card uses embedded Linux
as operating system to perform iSCSI functions and
hardware-accelerating CRC module to optimize the
performance of iSCSI. The experimental results show that
the iSCSI card can provide good performance with less
host CPU load.

1. Introduction

With the increasing demand for network service, such
as web-based Emails, enterprise database, network phone,
audio/video and others, the need for information and
storage equipments grows tremendously in recent years.
Among data storage technologies, Storage Area Networks
(SANs), providing considerable benefits in terms of
performance, flexibility, scalability, security and
centralized data management, have gained the attention of
many IT professionals. The main idea of SANs is to
interconnect servers and storage devices via a network
topology so that SANs resources can be efficiently
allocated, shared and managed. Because of the advantages
of SANs, more and more companies, governments and
academic organizations deploy SANs to achieve highly
reliable data storing and data protection. Today, the
frequently used transmission technology in SANs is Fibre
Channel (FC) [1-5], an industry standard designed for
high performance, low-latency, reliable block-level data
transportation between servers and storage devices.
Currently, its maximum data rate can be up to 4Gb/s.

Despite the advantages of high speed and low latency, the
infrastructure cost for FC SANs can be so expensive that
most small- to medium-size IT departments cannot afford
the expenses. As presented in [14], even in a small, eight-
node FC SAN, this can amount to over $40,000USD in
switches, cables, and host bus adapters for the servers.

In comparison to FC SANs requiring a new, different
and expensive network infrastructure, IP SANs run on an
existing IP network which can provide a significant cost
saving in hardware acquisition, implementation, training
and operation. To make IP SANs available, more and
more IP storage protocols, such as Internet SCSI
Protocols (iSCSI) [8], Fibre Channel over IP (FCIP) [3],
Internet Fibre Channel Protocol (iFCP) have been
proposed to enable storage data transportation over an IP
network. Among these protocols, iSCSI [6-13] is a newly
developed storage network transport protocol which
encapsulates SCSI packets in TCP packets and then
transmits the TCP packets using IP network. Fig. 1
illustrates an IP SAN environment running iSCSI protocol.
The storage devices provide block-based data and the
servers see the remote storage devices as if they were
locally-attached SCSI drives via iSCSI protocol.

Usually, the processing of TCP/IP and iSCSI over
Ethernet can be easily accomplished by software running
on the CPU of the servers or storage devices. For example,
a server running Microsoft iSCSI initiator software can
access the information of an IP based storage device over
Ethernet. However, this software based implementation
may suffer from the problem of heavy CPU processing
load on I/O and networking, especially when Ethernet
technology moves forward 10Gps or above network speed.
Therefore, the objective in the paper is to research an
effective methodology which attempts to offload the
TCP/IP and iSCSI processing from the server CPU to host
bus adapters. To achieve this goal, we have developed a
1Gbps FPGA based iSCSI HBA card having embedded
Linux as its OS and the iSCSI and TCP/IP protocol
running on it. Also, the computation intensive components,

e.g. CRC module, are specifically implemented by
hardware to enhance the system performance. In addition,
the driver for the host to operate the card is ready to use.
With the offloading of the iSCSI and TCP/IP, the
experimental results show that the offloading method can
obtain larger reduction on CPU utilization compared to
the pure software implementation.

The rest of the paper is organized as follows. Section 2
introduces the iSCSI and offloading method in more
details. In section 3, we discuss the hardware, software
and drivers design for the iSCSI HBA. The experimental
results are shown in Section 4 followed by conclusions.

Figure 1. iSCSI Storage Network for IP-SAN.

2. iSCSI offloading methodology

2.1. iSCSI PDU types

Before we discuss the technique of offloading iSCSI
protocol, we would like to define some commonly used
terminology in the standard. In an iSCSI based SAN
environment, an initiator (server) issues SCSI requests,
which is encapsulated into iSCSI packets, referred to as
protocol data units, PDUs. These PDUs are then
transmitted over TCP/IP network to another remote target
storage device through an iSCSI storage switch/gateway.
The target returns the SCSI response/data by a form of
iSCSI messages after analyzing the request iSCSI PDU
received from TCP/IP network. A pair of initiator and
target is called an iSCSI session.

iSCSI PDUs consist of an iSCSI header and iSCSI
data, where the data length is stored within the iSCSI
PDU header. The most commonly used iSCSI PDU types
[8, 9] are:

• iSCSI Command/Response
• Data In/Out
• Ready to Transfer (R2T)
• Login Request/Response
• SNACK PDU

We briefly describe the scenarios of reading and
writing data of an initiator from/to a target. The iSCSI
Command PDU is used to transfer a SCSI command from
an initiator to a target. If the initiator requires writing data
to the target, it will first issue an iSCSI Write command to
the target. Then, the target informs the initiator which part
of the data to be transferred by sending the initiator an
R2T PDU. When receiving the R2T PDUs from the target,
the initiator sends the target the SCSI data encapsulated
into one or more Data Out PDUs. On the other hand, if the
initiator wants to read data from the target, when an iSCSI
Read command received the target will send the requested
data to the initiator in the form of iSCSI Data In PDUs.
Upon completion of the entire data transfer, the target
sends the initiator a SCSI Response PDU indicating
successful completion of the command or any error
condition detected. For each SCSI Command PDU there
is only a corresponding SCSI Response PDU, but possibly
multiple (or no) Data PDUs. iSCSI Data and Response

PDUs must be sent over the same TCP connection in
which their corresponding iSCSI Command PDU was
issued.

2.2. iSCSI offloading method

We now present the proposed offloading method.
Basically, the main idea of offloading iSCSI is to offload
the execution of network card driver, TCP/IP and iSCSI
driver from the server CPU to Host Bus Adapter (HBA),
handling all iSCSI and TCP/IP functions, such as Login,
session establishing, and data transferring in the Full
Feature Phase. We illustrate the idea by the Fig. 2. This
will lead to several significant advantages. First, the
offloading method greatly reduces the CPU load, and
therefore can have more CPU resource reserved to other
applications within the server. Moreover, due to the
acceleration of computation-oriented modules by
hardware, the performance can be further promoted in
terms of throughput and speed.

Network Drivers

TCP/IP

iSCSI Driver

Target System
(iSCSI Storage)

IP
 N

E
T

W
O

R
K

Figure 2. Offloading iSCSI protocol into HBA.

In the point of view of a server, this HBA card can be
regarded to as a generic SCSI card but can remotely
access the storage devices. The only thing that we need to
do is to write a host bus interface driver and then can
easily communicate with the HBA via the driver. The
driver is responsible for delivering SCSI request messages
to the HBA through host bus interface and replying the
SCSI response messages from the HBA to upper layer
applications.

The block diagram for our 1G CCL iSCSI HBA is
shown in Fig. 3. The HBA architecture consists of several
essential hardware components, including Xilinx Vitrex II
PRO FPGA, RS-232 UART console, GPIOs, 64MB flash
memory, 128MB SDRAM, PCI-X Bridge and one Gigabit
Ethernet PHY. The Xilinx FPGA provides an embedded
hardware platform to implement user-designed logic, and
includes two PowerPC 405 CPUs allowing the embedded
OS running on them. The system architecture for FPGA
design will be discussed later. The kernel image of the
embedded OS, stored in the flash memory, is responsible

for dealing with the iSCSI and TCP/IP protocol. The PCI-
X Bridge provides a set of control/status interface
registers allowing the driver communicate with the
embedded OS. The booting flow of the embedded OS is
described as follows. When the machine powers on, the
PPC405 CPU in the FPGA will execute the boot code for
loading the kernel image from the flash memory to the
SDRAM. Then the PPC405 un-compresses the linux
kernel image and jumps to the start of kernel code to
perform the functions of TCP/IP, iSCSI protocols and all
hardware drivers. In the future, the processing of TCP/IP
and iSCSI can be further hardwarized as TOE (TCP/IP
Offloading Engine) and iSHB (iSCSI Hardware Block) to
enable higher speed data transmission.

IP
NETWORK

iSCSI Storage HOST PC

iSCSI HBA on HOST

ISCSI DRIVER

TCP/IP

NIC Driver

Block data
SCSI command

VIRTEX II
PRO FPGA

PPC405

Linux Kernel

root file system

Intel
Gigabit
Ethernet

SDRAM
running

Embedded Linux

flash memory

Figure 3. The Embedded system for
processing iSCSI and TCP/IP.

3. iSCSI host bus adapter design

3.1. iSCSI adapter hardware design

For constructing an iSCSI IP SAN as in Fig. 1, the
application servers and storage devices can be easily
changed to iSCSI-compatible interface by plugging our
iSCSI HBA onto peripheral interface slots. The complete
design of the iSCSI adapter consists of two important
issues: FPAG hardware design and the porting of
embedded OS for the hardware. In the hardware design of
the adapter, we rapidly develop a fundamental hardware
platform using the embedded cad tools provided by Xilinx.
Based on the Xilinx V2Pro FPGA platform, a commercial
embedded linux MontaVista is then ported to manage the
hardware resources and perform the functions of TCP/IP
protocol stacks. Furthermore, we also must insert the
compiled module of iSCSI initiator driver into the
embedded linux kernel to support the iSCSI functions.

Now we present the hardware design of the adapter.
The architecture of our iSCSI adapter is shown in Fig. 4.
There are three digital clock managers (DCMs) generating
different clock speed 66MHz, 100MHz, 125MHz and
300MHz respectively. The 66MHz clock is for the PCI
devices, 125MHz clock for the gigabit Ethernet devices,
300MHz for CPU clock and 100MHz clock for other
devices. There also include two types of bus structures:
Peripheral Local Bus (PLB) and On-chip Peripheral Bus
(OPB) specified by IBM CoreConnect standard. The PLB,
running at 100MHz 64 bit data width, provides a high
speed bus structure of interconnected PPC 405, SDRAM
controller, 1 gigabit Ethernet MAC controller, BlockRAM
controller, DMA/CRC controller and local-to-PLB bridge.
The flash, UART and interrupt controllers are connected
on a slower OPB bus, running 100MHz 32-bit width. The
PLB and OPB devices communicate with via PLB-to-
OPB Bridge.

The Xilinx tools can help us quickly develop a
hardware platform and all hardware components except
user-designed local-to-PLB bridge can be automatically
generated. We must design the local-to-PLB bridge to
allow the host applications to communicate with our
adapter. The PCI host PLX9656 chip of C Mode transfers
SCSI messages between PCI bus and 66MHz local bus,
and our local-to-PLB bridge then moves the data from
local bus to PLB bus. Note that this bridge contains the
interface control and status registers and supports burst
mode for C mode local bus and PLB bus for DMA data
transmission.

The iSCSI adapter works as follows. Consider one
scenario the host performs the SCSI Write request to the
adapter. Support the OS has been loaded and executed in
SDRAM as described in Section 2.2. First, the host driver
checks the status of the adapter and transmits the SCSI
Write command to the local-to-PLB bridge and the SCSI
data to the SDRAM in DMA mode if the adapter is not
under use. After the requested SCSI command/data are
prepared in the adapter, the driver sets the SCSI Write
flag of the control register to start the encapsulation of
iSCSI packets and network transmission over an IP
network. If the requested SCSI write is successfully
completed, the adapter returns response messages by an
interrupt notification. This is the similar case to the
scenario of the SCSI read. We would like to mention that
this initial-version adapter performs the iSCSI and TCP/IP
functions based on the embedded OS, and as a result, still
suffers from the drawbacks of traditional TCP/IP
protocols, such as memory copy, pipeline flush, etc. We
can implement hardware-accelerating modules such as
TOE and iSCSI Hardware Block to promote the system
performance in the future.

Figure 4. Architecture design of iSCSI
adapter.

3.2. iSCSI HBA driver design

After the iSCSI adapter is successfully finished, we
have to implement an adapter driver to allow the host to
communicate with the adapter. As shown in Fig. 5, the
HBA driver receives the SCSI read/write requests from
the SCSI layers and commands the adapter to complete
the requested work.

Here we present the flow of our driver design step by
step. Before testing the driver, we must make sure the
iSCSI adapter can work correctly. The flow of
developing/testing the driver is as follows.

Step 1: Write a simple adapter driver to allow the host OS
(e.g. Linux) to access the HBA SDRAM, PCI
configuration registers, DMA control registers and
interrupt register through PCI-X bus. We must assure that
the driver can move data in the bi-directional with DMA
controller and can receive an interrupt notification.

Step 2: Check whether or not the iSCSI HBA can
successfully connect to remote iSCSI Target to do login
and full feature work.

Step 3: Test whether or not the iSCSI HBA can receive an
interrupt message from the host driver. If successful, this
means the HBA can receive the commands from the host,
and then can transmit the iSCSI packets over network.

Figure 5. The iSCSI HBA Driver interface.

Step 4: Based on Step 1, we further insert the code for
handling the SCSI requests from SCSI-mid level and
interrupt service routine for receiving the SCSI response
and data from the adapter.

Step 5: if the iSCSI Hardware Block and TOE were
used to accelerate the iSCSI operation in the future, we
must modify the iSCSI and TCP/IP protocols in the
HBA to control the hardware circuit.

4. Experimental results

We have implemented our 1G CCL iSCSI HBA
Prototype as in Fig. 6. The test environment includes an
initiator plugging our iSCSI HBA and a target storage
server based a Gigabit Ethernet network. The initiator
platform is with Intel Celeron 1.7GHz CPU, 512M DDR
SDRAM, and Gigabit Ethernet running RedHat Linux 9.0.
The target platform is running RedHat Linux 9.0 based on
Iwill DP533-S Server System, with Intel Xeon 2.8GHz
CPU, Intel 82544 Gigabit Ethernet, 512MB DDR
SDRAM, and 36GB Ultra SCSI hard disk. The target uses
the UNH-iSCSI target driver [9] to perform software
based iSCSI functions.

We compare three cases performing iSCSI protocol to
show the performance and CPU overhead of the initiator
platform. In the first case, the software based iSCSI
initiator (UNH-iSCSI) [9] is adopted to perform iSCSI
without plugging iSCSI HBAs. The second and third
methods perform iSCSI initiator functions plugging the
commercial Qlogic iSCSI HBA and our CCL iSCSI.
Table 1 shows the results of data throughput and CPU
utilization measured by Linux TIObench tool in these
cases. For example, the software based method achieves
roughly 16MB/s data rate with 20.9% CPU load and our
method obtains 11MB/s with smaller CPU load 1.2%. The

experimental result shows that the software-based method
can obtain better throughput results with high performance
CPU, but cause larger CPU load. Though the HBAs
cannot have large improvement on data throughput under
high speed CPU, they still have benefits on relieving the
CPU load, especially in 10Gps network speed. On the
other hand, the processing of TCP/IP and iSCSI by
embedded OS still suffers from the inefficient data
movement. Therefore, the HBAs require more
sophisticated hardware architecture to promote the system
performance.

Table 2 reports FPGA resource utilization of our 1G
iSCSI HBA. Here one PPC405 CPU in FPGA is used to
run the embedded linux, TCP/IP and iSCSI Initiator driver
for offloading work. The other CPU and unused FPGA
resources can be reserved for TOE design in the future
work.

Table 1. Throughput and CPU utilization
measured by Linux TIObench

 Pure
Software

Qlogic
QLA-
4010C

1G CCL
iSCSI
HBA

Write
(MB/s)

15.85 11.35 10.85

Read
(MB/s)

10.55 18.75 10.19

Write CPU
(%)

20.9 3.5 1.2

Without
CRC

Read CPU
(%)

9.3 3.8 2.1

Write
(MB/s)

11.38 3.78 3.75

Read
(MB/s)

6.55 3.98 3.46

Write CPU
(%)

29.6 1.2 1.1

With
CRC

Read CPU
(%)

18.4 2.7 0.9

Table 2. Device utilization summary

XILINX VIRTEX II
PRO FPGA

XC2VP50

Used Total Utilization

External IOBs 215 692 31%

LOCed IOBs 206 215 95%

PPC405s 1 2 50%

RAMB16s 79 232 34%

SLICEs 5444 23616 23%

BUFGMUXs 7 16 43%

DCMs 4 8 50%

Figure 6. iSCSI HBA Prototype.

5. Conclusions

In this paper, we have introduced an effective method
of offloading the processing of iSCSI and TCP/IP onto
our 1G CCL iSCSI HBA. The iSCSI HBA can
significantly reduce the HOST CPU utilization for
application server and IP-based storage server. We also
add the hardware-accelerating module (CRC) to enhance
the system performance. With this iSCSI HBA, one can
easily build an IP SAN with cheaper expense. In the future
work, to enable high-speed data throughput, we should
implement TCP/IP Offload Engine to further improve the
processing of TCP/IP and iSCSI.

Acknowledgement

The authors acknowledge the contributions by many
hardware and software engineers at CCLP300/ITRI who
design the printed circuit board for 1G iSCSI HBA, port
embedded linux and do final test. Our special thanks give
to MOEA (Ministry of Economic Affairs) who support to

the plan "IP based Storage Adapter Technology"
B34BSP3100 in FY94.

References

[1] Fibre channel storage area network design for an
acoustic camera system with 1.6 Gbits/s bandwidth
Zhang Hong; Koay Teong Beng. Proceedings of
IEEE Region 10 International Conference on
Volume: 1 , 2001

[2] John R.Health and Peter J.Yakutis. High-Speed Area
Networks Using a Fibre Channel Arbitrated Loop
Interconnect. IEEE Network, March/April 2000, 51-
56.

[3] “Fibre Channel Over TCP/IP (FCIP),” Internet draft,
draft-ietf-ips-fcovertcpip-12.txt, 2002.

[4] Huseyin Simitci, Chris Malakapalli, Vamsi Gunturu
XIOtech Corporation ”Evaluation of SCSI Over
TCP/IP and SCSI Over Fibre Channel Connections”
IEEE 2001

[5] Robert W.Kembel and Horst L.Truestedt. Fibre
Channel Arbitrrated Loop, the Fibre Channel
Consultane Series. Northwest Learning Associates,
Inc. 2000

[6] Stephen Aiken, Dirk Grunwald, Andrew R. Pleszkun
“A Performance Analysis of the iSCSI Protocol”
Proceedings of the 20th IEEE/11th NASA Goddard
Conference on Mass Storage Systems and
Technologies (MSS’03)

[7] Kalman Z. Meth, Julian Satran IBM Haifa Research
Laboratory Haifa, Israel ”Design the iSCSI
Protocol” Proceedings of the IEEE/11 the NASA
Goddard Conference on Mass Storage Systems and
Technologies (MSS’03)

[8] RFC 3720 - Internet Small Computer Systems
Interface http://www.faqs.org/rfcs/rfc3720.html

[9] UNH-iSCSI consortium
 http://www.iol.unh.edu/consortiums/iscsi/
[10] X. He, Q. Yang, and M. Zhang, ”Introducing SCSI-

To-IP Cache for Storage Area Networks”,
International conference on Parallel Processing
(ICPP’2002), August 2002.

[11] R. Hernandez, C. Kion, and G. Cole, ”IP Storage
Networking: IBM NAS and iSCSI Solutions,”’
Redbooks Publications (IBM), 2001.

[12] Xubin He, Qing Yang, and Ming Zhang “A Caching
Strategy to Improve iSCSI Performance”
Proceedings of the 27th nnual IEEE Conference on
Local Computer Networks (LCN’02)

[13] Kalman Z. Meth and Julian Satran, IBM Haifa
Research Lab “Features of the iSCSI Protocol” IEEE
Communications Magazine • August 2003

[14] Sanz, Inc., “Designing an IP Storage Network”,
http://www.iscsistorage.com/a/wp2.htm

