
Relational Database Active Tablespace Archives Using HSM Technology

David I. Boomer
IBM

boomerd@us.ibm.com

Abstract

This paper describes a prototype active tablespace
archive that was created using standard relational
database data management capabilities of IBM’s DB2
Universal Database (UDB) and the hierarchical storage
capabilities of IBM’s High Performance Storage System
(HPSS). In the prototype, DB2 UDB and HPSS are linked
using the capability of UDB to use a standard
UNIX/Posix file for table space and the ability of HPSS to
present a standard UNIX/Posix file system interface for
both disk-resident and tape-resident data through its
Linux Virtual File System (VFS) feature. This integration
allows the current data and the active tablespace archive
to be accessed with one set of semantics and, through
federation, would allow them to be seen as a single data
source.

1. Introduction

Here we introduce the topic of relational database
active tablespace archives and explain its relevance to
relational database archiving and hierarchical storage
management.

A relational database active tablespace archive is
defined here to be an archive that can be addressed
directly using relational database semantics, even if the
archive is on tape, or partly on tape. First we introduce
the concept of an active tablespace archive in terms of
integrating standard relational database capabilities with a
hierarchical storage management system. We describe the
Virtual File System (VFS) interface that makes this
linkage possible without modifying either the relational
database management system code or the hierarchical
storage management system code. We then describe the
prototype implementation and the functional tests that
were run. Future work is described, including the need for
more performance measurements. We conclude with an
assessment that the active tablespace archive can
significantly enhance access to archived data for data
mining and similar near-real-time applications.

1.1. RDBMS Archiving

Typical RDBMS archive solutions are based on a two-
tiered approach, the first tier being history databases and
the second tier being flat or non-relational data files. The

history databases use disk technology and house the
archive data for a predetermined amount of time, after
which, it is moved to the second tier file archives. This
architecture allows the second tier file archives to take
advantage of less expensive storage media, such as tape,
either directly or via hierarchical storage management
(HSM) technology. However, placing the data in non-
relational file archives adds complexity to data retrieval
process when the archived data is needed to satisfy
business queries.

In the active tablespace archive architecture, the first
tier history databases can interact directly with the HSM
technology, reducing and/or eliminating the need for a
“second tier” based on non-relational file archives. The
second tier and beyond (3rd, 4th, etc.) in the active
tablespace archive scenario now become relational
database tables defined using different storage
technologies managed by the HSM.

This architecture allows users to access both the
current operational databases and the archive databases
with the same semantics and table structures. It is even
possible to federate the archive and production databases
to appear as a single data source to the end user. This
interaction between RDBMSs and HSMs reduces the need
to design and manage complex retrieval processes for
second tier non-relational file archives as well as
maximizes the availability of the archived data. This may
also simplify development of new applications and make
it possible to interface legacy software with the Active
tablespace archives.

1.2. Impact of Large Volumes of Data

Improving production database performance and
minimizing the storage investment are common goals.
Retaining seldom-accessed data in the production
database adds cost and overhead. We quote Smith and
Vogel on this topic:

With databases growing at an exponential rate, ever-
increasing volumes of data are a pressing concern for
data centers. An accumulation of historical
transactions, the advent of data warehousing, and other
factors contribute to the accumulation of inactive data,
which is less likely to be accessed. — But businesses
can't necessarily (or may not want to) get rid of
inactive data altogether for several reasons. Some

might need the data to comply with government
requirements. Other businesses might want the data
because they anticipate building trend analyses. And
many keep inactive data to maintain a complete
history of their customers [1].

It is clear that managing the size of mission critical
databases is important. The benefits include [4, 5]:
• Reduced storage costs
• Improved application performance
• Faster response times
• Reduced overhead of maintenance activities
• Deferred and/or reduced upgrade and maintenance

fees

1.3. The Basics

Archiving is the process of moving unused or seldom
accessed data from the production database to an archive
data store. The data stores can be [1, 4, 5]:
• Table archives when fast or SQL access is necessary.
• File archives when SQL access isn't needed and

access is less time sensitive or to take advantage of
less expensive storage technology. Access to the file
archives is more complex and may require multiple
steps such as determining the requested data location
and the loading or staging the data back to a format
that cam be queried.

• Combination of table archives and file archives.
Used when the data has a defined access pattern that
requires it to remain on disk for a specified amount of
time then moved to file archives.

Figure 1 illustrates the typical archive architecture for
relational data. The first step is to move the less-used data
to the table archives (history tables). Then, after a
predefined period of time, move the data from the table
archive to the file archives.

Figure 1. Typical Archive Architecture [1]

There are several archiving applications that use this
architecture. These applications provide the tools for
managing the data relationships and ensuring that all of
the archived data maintains its business context. They
also provide rules defining when and what gets archived
(and then purged), so specific related sets of records get
archived versus archiving an entire table [4, 5].

1.4. The Challenges

Organizing Archive Activities. Most of the archiving
tools are very good at identifying data relationships and
organizing the archive activities. Much thought needs to
go into:
• Determining the access patterns of the data including

access frequency, expected service times, and typical
result set size (# of records), classify as 10’s, 1000’s,
1,000,000’s, etc.

• Determining when data is available for archival.
• Determining purge characteristics, what data should

be purged and when.
• Cost of storage technology alternatives.

Access to file archives. When access to data residing
in file archives is needed, the following must be managed:
• Determining which file archives contain the requested

data.
• Retrieving the data to the target tables.
• Querying/using the data.

Some of the generally available archiving tools provide
interfaces to manage and simplify access to data stored in
file archives [5]. However, access is still controlled and
managed by the custom interface. History databases, on
the other hand, provide a standard SQL based interface as
well as other tools such as indexes and views that can be
managed by the end user. One of the database tools
available is a “union all view”. This could be constructed
over the production and history data to provide a single
interface for the end user queries.

Schema Changes. Mission critical data schema can
change. As the production application evolves, so do the
data structures supporting it. Over time the structural
context of the archived data will vary from the production
version. Most archive tools will manage the metadata
describing the data in the file archives. This will be used
when retrieving the data in order to maintain its original
business context. Deploying schema changes against
historical data is typically avoided because of complexity,
legal reasons and/or corporate policy.

More emphasis has been placed on how to restore it to
its original structures and then relating it to the current
production schema structures.

However, with the ability to store and access all of the
historical data through a relational database, the option to
deploy schema changes may be more feasible. Keeping 2
copies of the data may be an option now: an original to
satisfy legal/corporate policies and a copy that
incorporates the production schema changes.

2. Basics of Hierarchical Storage

HSM technology manages files across multiple tiers of
storage technology. These tiers are classified by access
requirements and cost. The top of the storage hierarchy is
used for faster access and higher cost storage technology
such as high speed disk, and the bottom is reserved for
data requiring low frequency of access and lower cost
storage devices such as tape. The HSM provides
intelligent management of how and where the data resides
in the storage hierarchy. In most cases, the data starts at
the top of the hierarchy and moves down based on
migration policies managed by the HSM [2].

When a file that has migrated down the hierarchy is
again accessed, the file is staged back to the top of the
hierarchy. Upon the I/O request, the file is staged back to
disk from the storage hierarchy, where the I/O request is
satisfied. However, when incorporating database object
files it can be cumbersome, especially where the table
files are very large (100s of GB and even terabytes) and
the request is for only a few records.

3. The Prototype active tablespace archive

Our prototype used IBM’s High Performance Storage
System (HPSS) as the HSM component and DB2 as the
relational database management system.

HPSS is software that manages multiple petabytes of
data on disk and robotic tape libraries. A new version 6.2
of HPSS provides a standard Linux/POSIX read() write()
interface that is implemented as a Linux Virtual File
Server VFS). HPSS provides highly flexible and scalable
hierarchical storage management that keeps recently used
data on disk and less recently used data on tape [2].

DB2 Universal Database (UDB) has the capability to
use a standard Linux/POSIX file for its tablespaces, and
this enables it to place its table space on an HPSS file.
This capability allows transparent storage of DB2 data
object files directly in the HPSS storage hierarchy. This
transparency allows the data to exist anywhere in the
storage hierarchy regardless of the technology (disk, tape,
etc.). HPSS has the capability to manage 5 tiers in the
storage hierarchy. This capability would allow a data
archive repository to be constructed with the following
tiers:
• High speed disk
• Slower, less expensive disk technology
• High speed, low capacity tape libraries
• Low speed, high capacity tape libraries

• Shelf tape

Initial movement of the data from production could be
directly to the first tier in the hierarchy (High speed disk),
and then moved down the hierarchy based on policies
managed by the HSM.

Figure 2. DB2 table archives built inside of HPSS

Figure 2 shows an archiving architecture that does not
require file archives in order to take advantage of less
expensive storage technology. When DB2 requests data
via an SQL query, HPSS will satisfy the request by
reading the data directly from the file object wherever it
exists in the storage hierarchy, no staging back to disk is
necessary.

4. The Prototype

The goal of the prototype was to demonstrate that a
relational database could be constructed using an HSM
storage hierarchy for the table data.

The prototype database was developed using multiple
copies of data across a variety of tablespace
configurations. The HPSS configuration used two storage
hierarchies: “disk only” (single tier) and “disk to tape”
(two tiered). Some of the tablespace configurations were
distributed such that some used disk-only HPSS class of
service and others used the “disk to tape” hierarchy [2].

Figure 3 illustrates table configurations using DB2
tablespace container files defined to use the mounted
HPSS virtual file system and high speed disk arrays.

Figure 3. Prototype Environment

The prototype used a “union all” view defined over all
of the data sources. This view was used as a query
source to demonstrate the ability to submit a single query
that searches data in production tables defined using high
speed disk arrays and data in history tables defined using
an HPSS storage hierarchy.

5. Future work

The current prototype environment demonstrates
functional capability. Plans include:
• Incorporating new partitioning capabilities available

in the next release of DB2 and analyzing its impact
on the architecture of the archive databases and the
HSM configuration.

• Environments that test scalability.
• Incorporating a Data Warehouse Monitor to analyze

what is getting accessed in the archive. This
information could be used to determine when and
what to move up and down the HSM storage
hierarchy [3].

• Federation of HSM-managed archived files into
historical databases. New capabilities with federation
make flat file data available to a relational database as
though it were another table. These federated files
will not have the same capabilities as regular
relational tables, but there may be enough function to
include the file data in normal business queries and
satisfy the requirements of a data archive.

• Impact of an HSM managing the database storage
objects on normal database maintenance activities
such as backups and code updates.

6. Conclusions

The active tablespace archive architecture can
significantly simplify the interface to the archived data.
The remarkable capabilities of this architecture include:
• This capability allows users to access both the current

operational databases and the archive databases with
the same semantics and table structures.

• The ability to transparently store relational database
object files directly in an HSM. This means that no
custom code need be developed in order to access the
files. It is all handled via the virtual file system
interface into HPSS.

• The ability to read the requested data from its
location in the storage hierarchy without staging it
back to the HSM disk cache. This capability is very
desirable for scenarios that have large relational
database object files with queries that are typically
requesting small numbers of records. If this
capability did not exist, the HSM disk cache may
have to be much larger and therefore more costly, to
handle the expected query workload.

• This active tablespace archive architecture
significantly reduces the need to remove data from a
relational database format.. The ability for the
database to transparently take advantage of less
expensive storage alternatives, such as tape, makes
the file archive tier unnecessary.

• Schema changes against the archived history data are
more of a possibility. This might be accomplished
with the methodology provided to modify the
production data store’s schemas. The fact that the
archives are in a relational database as opposed to
archived flat files makes this more feasible.

References

[1] Bryan F. Smith (IBM) and Thomas A. Vogel (IBM),
“Take a Load Off: Archive Inactive Data”, published
in DB2 Magazine Quarter 4, 2003 · Vol. 8, Issue 4.

[2] Harry Hulen (IBM), “The Basics of High
Performance Storage System” http://www.hpss-
collaboration.org/hpss/about/HPSS-Basics.pdf

[3] W.H. Inmom (Sun Microsystems), “Managing The
LifeCycle of Data”

[4] “Store Smarter: Enterprise Active Archive
Solutions,” Princeton Softech, March 2005

[5] “Archiving Complex Relational Databases,”
Princeton Softech, March 2005

	1.Introduction
	1.1.RDBMS Archiving
	1.2.Impact of Large Volumes of Data
	1.3.The Basics
	1.4.The Challenges

	2.Basics of Hierarchical Storage
	3.The Prototype active tablespace archive
	4.The Prototype
	5.Future work
	6.Conclusions

