
RobuSTore: Robust Performance for Distributed Storage Systems
Huaxia Xia and Andrew A. Chien

University of California, San Diego
{hxia, achien}@ucsd.edu

Abstract*1

Emerging large-scale scientific applications involve
massive, distributed, shared data collections in petabytes,
and require robust, high performance for read-dominated
workloads. Achieving robust performance, i.e. low
variability, in storage systems is difficult. We propose
RobuSTore, a novel storage technique, which combines
erasure codes and speculative access to reduce
performance variability and increase performance.
RobuSTore uses erasure codes to add flexible redundancy
then spreads the encoded data across a large number of
disks. Speculative access to the redundant data from
multiple disks enables application requests to be satisfied
with only early-arriving blocks, reducing performance
dependence on the behavior of individual disks.

We present the design and an evaluation of RobuSTore
which shows improved robustness, reducing the standard
deviation of access latencies by as much as 5-fold vs.
traditional RAID. In addition, RobuSTore improves access
bandwidth by as much as 15-fold. RobuSTore secures
these benefits at the cost of a 2-3x storage capacity
overhead and ~1.5x network and disk I/O overhead.

1. Introduction
Existing and emerging large-scale scientific

applications and data-intensive applications have new
requirements on storage systems. These applications
involve read-dominated accesses to massive, distributed
data collections in petabytes, and share the data among
thousands of distributed users. The applications require
not only high performance but also robust performance
from distributed storage systems. Here, robustness means
low-variability in access latency.

In such distributed shared environment, disks have
highly heterogeneous and variable performance, which
prevents conventional parallel accesses from achieving
robust, high performance. Sources of performance
variation include heterogeneous disk types, irregular on-
disk data layout, and differences in disk load. The
combination of the factors leads to 100s of times
difference on individual disk performance. Traditional

* Supported in part by the National Science Foundation -- Cooperative
Agreement ANI-0225642(OptIPuter), CCR-0331645(VGrADS), ACI-
0305390, and Research Infrastructure Grant EIA-0303622. Support from
the UCSD Center for Networked Systems, BigBangwidth, and Fujitsu is
also gratefully acknowledged.
The authors thank Justin Burke and Frank Uyeda for their comments.
1 An extended version of this paper is available as UCSD Tech Report
CS2006-0851.

parallel filesystems use data striping and parallel access to
aggregate disk performance. The access completion
requires a copy of all the stripes, so the performance is
limited by the slowest disk; even if data are replicated, late
arriving disk responses can still delay completion of the
larger request, as in Figure 1.

Figure 1. Aggregating Disks with Conventional Parallel

Scheme: 8 blocks, 2 replicas. Disk performance is varied.

We present new storage architecture RobuSTore, which

combines erasure coding and speculative accesses together.
RobuSTore uses erasure codes to add continuous
redundancy for striping; with such layouts, clients can use
speculative parallel access and decoding of the fast-
returning blocks to both increase performance, and reduce
performance dependence on stragglers (lower variability).
As a result, RobuSTore can efficiently aggregate large
number of distributed storage devices to deliver robust,
high access performance.

The RobuSTore approach is feasible with the following
observations. First, the application workloads are read-
dominated. Further, new technologies have been
improving network bandwidth, CPU speed, and disk
capacity rapidly. For example, the low-cost optical
transmission and Dense Wavelength Division
Multiplexing (DWDM) technique enables individual
fibers to carry 100’s of 10 Gbps “lambdas”, providing
wide-area networks with private 10Gbps or even 40Gbps
connections [1, 2]. CPU speed doubles every 18 months
and disk capacity doubles every 12 months [3].

The remainder of the paper is organized as follows. In
Section 2, we present the RobuSTore approach and
describe the RobuSTore design, and it is the simulation-
based evaluation in Section 3. Section 4 surveys related
work and Section 5 summarizes the work.

2. Robust, High Performance Distributed
Storage

We describe the RobuSTore approach which meets our
three goals: robust access latency, high bandwidth, and
small overhead on access large data segment.

2.1. RobuSTore Idea
The key idea in RobuSTore is the combination of

erasure codes and speculative access. We use erasure
codes to add systematic data redundancy and then exploit
speculative access to statistically aggregate the disk access
bandwidths, producing an earlier and lower-variance in
access latency for large requests.

On write, the client splits a large file or a large data
segment into N data blocks (N=100s~1000s), encodes
them into M coded blocks (M>N) using erasure codes, and
distributes the coded blocks to tens or hundreds of disks.
Erasure coding allows the data reconstruction from almost
any N(1+δ) coded blocks, where δ is zero or a small
number decided by the choice of coding algorithms, and
(1+δ) is called reception overhead.

A read client speculatively requests redundant coded
blocks in parallel. As soon as the client receives enough
number of blocks, it can complete the reconstruction of the
original data, without waiting for later blocks. This
improves the access bandwidth, as shown in Figure 2. In
practice, the client may cancel requests for the unreceived
blocks to save disk IO and network bandwidth.

Figure 2. RobuSTore Data Access. Reconstruction with
first arriving coded blocks. Disk performance is varied.

Furthermore, if any of these early-arrived blocks gets

delayed or lost, the client can utilize the next arrived block
to complete the access. So an individual disk or block has
little impact on the overall access performance, which
improves the performance robustness.

2.2. RobuSTore Design
To realize the RobuSTore idea, we design a flexible

RobuSTore system framework, enabling broad exploration
of the design space. We describe its components and
possible design choices.

RobuSTore storage system architecture includes three
key components: client, metadata server, and storage
servers (see Figure 3).

Figure 3. RobuSTore System Architecture

Client Portal performs many distributed filesystem

functions: accessing metadata, planning layout,
encoding/decoding data, and communicating with storage
servers. The client includes erasure coding modules to
implement the encoding and decoding. If desired, a
separate machine/cluster can be used for coding to save
client CPU or improve coding speed. Coding is
transparent to the storage servers.
While there are many different erasure codes, RobuSTore
uses modified Luby Transform (LT) codes [4, 5]. The LT
codes are part of a general class of low-density parity
check codes and use block-XOR operations based on
sparse bipartite graphs. LT codes have a number of
advantages. First, they are “rateless”, allowing
redundancy to be decoupled from other system design
issues, such as the number of storage servers used.
Second, LT codes use irregular bipartite graphs and block-
XOR operations, enabling fast encoding and decoding
throughputs. Third, LT codes allow decoding to be
overlapped with receiving data from storage servers,
masking decoding time. We adapted LT codes by
generating coding graphs which guarantee decodability
[5], and built a fast implementation which delivered
decoding bandwidth up to 320 MByte/s on a Intel 2.4Ghz
Xeon CPU. Our experiments show that the memory
bandwidth is the bottleneck to coding performance. Our
work suggests that multi-processors of the future or
processors with higher memory bandwidth (such as AMD
Opteron or AMD Athlon 64) will surpass a coding
bandwidth of 1GByte/s.

Metadata Server maintains both file information (size,
organization, and location) and storage server information
(available space, performance, connectivity, current load,
etc). A simple central metadata server minimizes update
and synchronization costs at some penalty in scalability.
Reliability and scalability can be addressed by well-known
replication and failover techniques.

Storage Servers provide data storage at block level
(erasure-coded block, presumed to be larger than disk
blocks). Servers may be single disks or arrays, and each
implements local admission and access control. Servers

typically have variable performance due to heterogeneity
in hardware, data layout, or load.

Access Control: There are many good candidates for
the distributed filesystem security, for example, credential-
based access control is flexible in the environments with a
large number of servers and users.

3. Evaluation
We use a detailed discrete-event simulation to evaluate

the RobuSTore idea across the configuration space,
varying access strategy, the number of storage servers,
data size, block size, network latency, and degree of
redundancy.

3.1. Methodology
We compare RobuSTore and conventional approaches

with different strategies for data layout, redundancy, and
access.

Data Layout and Redundancy: Possible data layout
methods include: (1) split the data into blocks, and
distribute them to many disks; (2) split the data and
distribute the blocks with replication; (3) split the data,
encode the blocks, and distribute these redundant coded
blocks to many disks. They are depicted in Figure 4.

Figure 4. Data Layouts. 8 original blocks; 2x data

redundancy in replicated and coded layouts

Figure 5. Access Strategies. Disk performance is varied.

Access Strategies: Possible data access strategies are:

(1) speculative access, i.e., request redundant blocks at
once in the beginning of the access and cancel the requests
once enough blocks have been received; (2) adaptive
access, in which the client dynamically requests the
unreceived bytes. Examples are shown in Figure 5.
We evaluate the following four combined schemes:

- RAID-0: No data redundancy + speculative access
- RRAID-S: Replication + speculative access
- RRAID-A: Replication + adaptive access
- RobuSTore: Erasure coding + speculative access

3.1.1. Workload and Performance Metrics
Workload: Since our focus is on supporting the needs

of applications with large-read dominated workloads, we

study access performance for single 128MB, 256MB,
512MB, and 1GB reads. Data objects larger than 1GB are
presumed to be accessed by multiple 1GB reads.

Performance Metrics: While robustness is the major
goal of RobuSTore, we must also maintain high bandwidth
with small overhead. So we formalize them into the
following three metrics:

- Standard Deviation of Access Latency: the standard
deviation over a set of one hundred accesses. Smaller
standard deviations correspond to higher robustness.

- Access Bandwidth
- Disk IO Size/Data Size: This is the cost from

speculative access.

3.1.2. Simulation Method
We simulate an environment with one client and 128

storage servers connected by wide-area networks.
Each storage server is simulated using one DiskSim [6]

process. DiskSim processes are configured to have
different disk-level block layouts such that individual disk
performance varies from 0.52MBps to 53MBps. This
represents the performance variability in shared distributed
storage environments with many sources of variability, as
discussed in Section 1.

The virtual client models all other overheads for
metadata access, server connection, network latency, and
block decoding. The metadata access and server
connection are assumed to take constant time; network
latency to each server is configured constant from 1ms to
100ms. For block decoding, since it can be pipelined with
data receiving, extra latency is only incurred for decoding
the last block; we model it as a constant 5 ms overhead.
We assume sufficient network bandwidth and CPU power.

In the experiments, we study the four storage schemes
(RAID-0, RRAID-S, RRAID-A, and RobuSTore) along
five system parameters: number of disks, data size, block
size, network latency, and degree of redundancy. In each
experiment, we vary only one parameter, and compare to a
fixed baseline. The baseline is a typical SAN
configuration: to access 1GB data from 64 disks, 1ms
network round-trip time (RTT), 1MB block size and 4x
data redundancy, except for RAID-0 which always has 1x
data redundancy.

3.2. Results
We simulate the four storage schemes over five

configuration dimensions. Due to space limitation, we
only show part of the results in the paper; more results are
available in [7].

3.2.1. Robustness Improvement
Robustness vs. Number of Disks
When we vary the number of disks from 2 to 128, the

standard deviation of latency changes as depicted in
Figure 6. RAID-0 suffers because it exploits no
redundancy, and the performance is thus subject to the
slowest disk. RRAID-S explores the replicated data to
hide the slow disks; however, it reads the blocks on same

Figure 6. Robustness vs. Number of

Disks.

Figure 7. Bandwidth vs. Number of Disks. Figure 8. Overhead vs. Number of

Disks.

Figure 9. Robustness vs. Data

Redundancy.
Figure 10. Bandwidth vs. Data

Redundancy.
Figure 11. Overhead vs. Data

Redundancy.

disk in fixed order, so its performance depends on both
intra-disk block ordering and inter-disk block mapping.
RRAID-S has the highest variability due to the
combination of these factors. RRAID-A mitigates the
dependency on intra-disk block ordering by accessing
blocks selectively, but still depends on inter-disk block
mapping. When using small number of disks (<8),
RRAID-S and RRAID-A essentially perform whole-file
replication, so they suffer a low-level of inter-disk
dependence and have comparable robustness to
RobuSTore.

Performance variability in RobuSTore is from the total
bandwidth of all the disks and is not related to intra-disk
ordering or inter-disk mapping at all. RobuSTore has the
lowest performance variability for systems with more than
a few disks (>8). The standard deviation of access latency
on 64 disks for RAID-0, RRAID-S, RRAID-A and
RobuSTore are 1.9, 7.3, 1.9, and 0.5 seconds respectively;
and they are 0.63, 3.8, 1.1, and 0.13 seconds on 128 disks.
RobuSTore improves robustness for up to 5x compared to
RAID-0, and more than 15x compared to RRAID-S.

Robustness vs. Redundancy
We vary storage overhead from 1x to 10x (900%

overhead) to quantify its impact (see Figure 9). RAID-0 is
represented by the 1x point on the RRAID-S curve.

In RRAID-S and RRAID-A, the variability comes from
disk speed, intra-disk block ordering (in RRAID-S), and
inter-disk block mapping. Higher data redundancy
reduces impact from inter-disk block mapping, while
increases impact from intra-disk block ordering. RAID-0
only suffers variability from the slowest disk. Due to the
combination of these factors, RRAID-S and RRAID-A

have worse robustness than RAID-0 when redundancy is
small, and gradually get better as redundancy increases.

RobuSTore achieves the best performance robustness,
and needs only 2-3x data redundancy to obtain most of
this benefit. When using more than 4x storage space, the
standard deviation of latency is only ~ 0.5 seconds or
about 25% of the average access latency.

3.2.2. Bandwidth Improvement
In most of our experiments, RobuSTore delivers

significantly better performance than other schemes.
We vary the number of disks and present the bandwidth

results in Figure 7. RobuSTore is slightly worse than
RRAID-A for small numbers of disks (<8) due to the
reception overhead of 1.4x; but it performs the best for
large numbers of disks. RobuSTore achieves 15x the
bandwidth of RAID-0 for 16-128 disks. The access
bandwidth to 1GB on 64 disks is as follows: 31 MBps for
RAID-0, 117 MBps for RRAID-S, 228 MBps for RRAID-
A, and 459 MBps for RobuSTore.

Figure 10 shows that increasing data redundancy
increases the bandwidth of RobuSTore rapidly. The
bandwidth of RRAID-S and RRAID-A both benefit less
than RobuSTore as data redundancy is increased. This is
because their structured redundancy (replication) cannot
adapt to reading more blocks from the faster disks as
flexibly as in RobuSTore.

3.2.3. Access Overhead
The benefits of aggressive access to redundant copies

can yield performance benefits, but it also increases
network and disk I/O costs. Figure 8 and Figure 11 depict
the disk overhead for different schemes. RAID-0 incurs

no additional costs, and achieves a ratio of 1. RRAID-A is
just a little bit more than 1. RRAID-S generates a large
number of speculative requests, reaching overhead ratios
as high as 3x. RobuSTore has cost about 1.4 due to the
requirement of extra blocks for decoding.

4. Related Work
There has been a wealth of work on distributed storage

and performance aggregation of multiple disks.
Parallel file systems ([8-10], etc) aggregate multiple

disks, addressing the performance and capacity limitation
of single disks or servers. They assume uniform arrays of
storage devices in a SAN or LAN environment. However,
these systems do not tolerate dynamic performance
variability in a fashion comparable to RobuSTore.

Some peer-to-peer file sharing systems ([11, 12], etc)
improve access performance by speculatively fetching
from massively replicated data copies. However, the
massive replication is expensive in terms of storage
overhead and access scheduling. Further, these systems
focus on the shared internet where per-node network
bandwidth is as low as 1-10 megabits/s.

Numerous storage systems exploited erasure codes for
data reliability and availability ([13-16], etc.), but not for
robustness or bandwidth.

Collins and Plank’s work [17] studied the usage of
Reed-Solomon Codes and LDPC Codes to improve
bandwidth of wide-area storage systems. However, they
only focused on access bandwidth, with no study on
performance robustness. Furthermore, they assume slow
shared networks, bandwidths < 10MByte/s, and small
number of blocks (N≤100), and they concludes that Reed-
Solomon Codes perform better than or equal to LDPC
codes. In contrast, we focus on performance robustness as
well as bandwidth; we design RobuSTore for high
bandwidth wide-area networks (>10Gbps), and explore a
much wider array of design choices in data coding
parameters, redundancy, layout and access.

5. Summary and Future Work
We have proposed RobuSTore, a system combining

erasure coding and speculative accesses to both improve
performance robustness and absolute performance. We
present a system framework which explains the major
architecture and function required to make it workable.

Using discrete-event simulation, we compare the
performance of RobuSTore with three traditional parallel
schemes across a wide range of system configurations.
These simulation results show that RobuSTore delivers the
best robustness, up to 5x compared to a baseline RAID-0
scheme. At the same time, RobuSTore also provides
highest access bandwidth of nearly 15x from RAID-0.
RobuSTore incurs only moderate I/O costs of about 1.4x
and storage overheads of 2-3x.

We have only taken initial steps in evaluating
RobuSTore. Natural extensions include: 1) evaluation
with a richer set of workloads, varying access sizes and

including writes, 2) empirical studies with a RobuSTore
prototype, 3) experiments with real applications and real
testbeds, 4) study of different algorithms for encoding, and
5) evaluation for multi-user workloads and shared storage
servers.

References
[1] L. L. Smarr, A. A. Chien, T. DeFanti, J. Leigh, and P. M.

Papadopoulos, "The OptIPuter," Communications of the
ACM, vol. 46, pp. 58-67, 2003.

[2] "iGrid2005," http://www.igrid2005.org, San Diego, CA, Sep
26-30, 2005.

[3] E. Grochowski and R. D. Halem, "Technological impact of
magnetic hard disk drives on storage systems," IBM Systems
Journal, vol. 42, pp. 338-346, 2003.

[4] M. Luby, "LT Codes," IEEE 43rd Symp. On Foundations of
Computer Science 2002.

[5] F. Uyeda, H. Xia, and A. Chien, "Evaluation of a High
Performance Erasure Code Implementation," UCSD,
Technical Report CS2004-0798, 2004.

[6] J. S. Bucy and G. R. Ganger, "The DiskSim Simulation
Environment Version 3.0 Reference Manual," Carnegie
Mellon University CMU-CS-03-102, January 2003.

[7] H. Xia and A. A. Chien, "RobuSTore: Robust Performance
for Distributed Storage Systems," UCSD, Technical Report
CS2006-0851, 2006.

[8] P. H. Carns, W. B. L. III, R. B. Ross, and R. Thakur, "PVFS:
A Parallel File System For Linux Clusters," 4th Annual
Linux Showcase and Conference, Atlanta, GA, 2000.

[9] F. Schmuck and R. Haskin, "GPFS: A Shared-Disk File
System for Large Computing Clusters," USENIX Conference
on File and Storage Technologies (FAST), Monterey, CA,
2002.

[10] C. F. System, "Lustre: A Scalable, High-Performance File
System," Lustre File System v1.0 Architecture White Paper
from clusterfs.org, 2002.

[11] "Kazaa," http://www.kazaa.com.
[12] "BitTorrent," http://www.bittorrent.com.
[13] J. Kubiatowicz, D. Bindel, and e. al., "OceanStore: An

Architecture for Global-Scale Persistent Storage," the Ninth
international Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS),
Cambridge, MA, 2000.

[14] R. Bhagwan, K. Tati, Y.-C. Cheng, S. Savage, and G. M.
Voelker, "Total recall: System support for automated
availability management," the First ACM/Usenix
Symposium on Networked Systems Design and
Implementation (NSDI), San Francisco, CA, 2004.

[15] H. Weatherspoon and J. D. Kubiatowicz, "Erasure Coding
vs. Replication: A Quantitative Comparison," the First
International Workshop on Peer-to-Peer Systems (IPTPS),
Cambridge, MA, 2002.

[16] M. Abd-El-Malek, G. R. Ganger, G. R. Goodson, M. K.
Reiter, and J. J. Wylie, "Fault-Scalable Byzantine Fault-
Tolerant Services," Symposium on Operating Systems
Principles, Brighton, UK, 2005.

[17] R. L. Collins and J. S. Plank, "Assessing the performance of
Erasure Codes in the Wide Area," DSN-2005: The
International Conference on Dependable Systems and
Networks, Yokohama, Japan, 2005.

	Introduction
	Robust, High Performance Distributed Storage
	RobuSTore Idea
	RobuSTore Design

	Evaluation
	Methodology
	Workload and Performance Metrics
	Simulation Method

	Results
	Robustness Improvement
	Bandwidth Improvement
	Access Overhead

	Related Work
	Summary and Future Work

