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Abstract*1 

Emerging large-scale scientific applications involve 
massive, distributed, shared data collections in petabytes, 
and require robust, high performance for read-dominated 
workloads.  Achieving robust performance, i.e. low 
variability, in storage systems is difficult.  We propose 
RobuSTore, a novel storage technique, which combines 
erasure codes and speculative access to reduce 
performance variability and increase performance.    
RobuSTore uses erasure codes to add flexible redundancy 
then spreads the encoded data across a large number of 
disks.  Speculative access to the redundant data from 
multiple disks enables application requests to be satisfied 
with only early-arriving blocks, reducing performance 
dependence on the behavior of individual disks.  

We present the design and an evaluation of RobuSTore 
which shows improved robustness, reducing the standard 
deviation of access latencies by as much as 5-fold vs. 
traditional RAID.  In addition, RobuSTore improves access 
bandwidth by as much as 15-fold.  RobuSTore secures 
these benefits at the cost of a 2-3x storage capacity 
overhead and ~1.5x network and disk I/O overhead. 

1. Introduction 
Existing and emerging large-scale scientific 

applications and data-intensive applications have new 
requirements on storage systems.  These applications 
involve read-dominated accesses to massive, distributed 
data collections in petabytes, and share the data among 
thousands of distributed users.  The applications require 
not only high performance but also robust performance 
from distributed storage systems.  Here, robustness means 
low-variability in access latency.   

In such distributed shared environment, disks have 
highly heterogeneous and variable performance, which 
prevents conventional parallel accesses from achieving 
robust, high performance.  Sources of performance 
variation include heterogeneous disk types, irregular on-
disk data layout, and differences in disk load.  The 
combination of the factors leads to 100s of times 
difference on individual disk performance.  Traditional 
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parallel filesystems use data striping and parallel access to 
aggregate disk performance.  The access completion 
requires a copy of all the stripes, so the performance is 
limited by the slowest disk; even if data are replicated, late 
arriving disk responses can still delay completion of the 
larger request, as in Figure 1.  

 
Figure 1. Aggregating Disks with Conventional Parallel 

Scheme: 8 blocks, 2 replicas.  Disk performance is varied. 
 
We present new storage architecture RobuSTore, which 

combines erasure coding and speculative accesses together.  
RobuSTore uses erasure codes to add continuous 
redundancy for striping; with such layouts, clients can use 
speculative parallel access and decoding of the fast-
returning blocks to both increase performance, and reduce 
performance dependence on stragglers (lower variability).  
As a result, RobuSTore can efficiently aggregate large 
number of distributed storage devices to deliver robust, 
high access performance. 

The RobuSTore approach is feasible with the following 
observations.  First, the application workloads are read-
dominated.  Further, new technologies have been 
improving network bandwidth, CPU speed, and disk 
capacity rapidly. For example, the low-cost optical 
transmission and Dense Wavelength Division 
Multiplexing (DWDM) technique enables individual 
fibers to carry 100’s of 10 Gbps “lambdas”, providing 
wide-area networks with private 10Gbps or even 40Gbps 
connections [1, 2].  CPU speed doubles every 18 months 
and disk capacity doubles every 12 months [3]. 

The remainder of the paper is organized as follows.  In 
Section 2, we present the RobuSTore approach and 
describe the RobuSTore design, and it is the simulation-
based evaluation in Section 3.  Section 4 surveys related 
work and Section 5 summarizes the work. 

 



2. Robust, High Performance Distributed 
Storage 

We describe the RobuSTore approach which meets our 
three goals: robust access latency, high bandwidth, and 
small overhead on access large data segment. 

2.1. RobuSTore Idea 
The key idea in RobuSTore is the combination of 

erasure codes and speculative access.  We use erasure 
codes to add systematic data redundancy and then exploit 
speculative access to statistically aggregate the disk access 
bandwidths, producing an earlier and lower-variance in 
access latency for large requests. 

On write, the client splits a large file or a large data 
segment into N data blocks (N=100s~1000s), encodes 
them into M coded blocks (M>N) using erasure codes, and 
distributes the coded blocks to tens or hundreds of disks.  
Erasure coding allows the data reconstruction from almost 
any N(1+δ) coded blocks, where δ is zero or a small 
number decided by the choice of coding algorithms, and 
(1+δ) is called reception overhead. 

A read client speculatively requests redundant coded 
blocks in parallel.  As soon as the client receives enough 
number of blocks, it can complete the reconstruction of the 
original data, without waiting for later blocks.  This 
improves the access bandwidth, as shown in Figure 2.  In 
practice, the client may cancel requests for the unreceived 
blocks to save disk IO and network bandwidth. 

 
Figure 2. RobuSTore Data Access.  Reconstruction with 
first arriving coded blocks.  Disk performance is varied. 

 
Furthermore, if any of these early-arrived blocks gets 

delayed or lost, the client can utilize the next arrived block 
to complete the access.  So an individual disk or block has 
little impact on the overall access performance, which 
improves the performance robustness.  

2.2. RobuSTore Design 
To realize the RobuSTore idea, we design a flexible 

RobuSTore system framework, enabling broad exploration 
of the design space.  We describe its components and 
possible design choices.  

RobuSTore storage system architecture includes three 
key components: client, metadata server, and storage 
servers (see Figure 3). 

 
Figure 3. RobuSTore System Architecture 

 
Client Portal performs many distributed filesystem 

functions: accessing metadata, planning layout, 
encoding/decoding data, and communicating with storage 
servers.  The client includes erasure coding modules to 
implement the encoding and decoding.  If desired, a 
separate machine/cluster can be used for coding to save 
client CPU or improve coding speed.  Coding is 
transparent to the storage servers. 
While there are many different erasure codes, RobuSTore 
uses modified Luby Transform (LT) codes [4, 5].  The LT 
codes are part of a general class of low-density parity 
check codes and use block-XOR operations based on 
sparse bipartite graphs.  LT codes have a number of 
advantages.  First, they are “rateless”, allowing 
redundancy to be decoupled from other system design 
issues, such as the number of storage servers used.  
Second, LT codes use irregular bipartite graphs and block-
XOR operations, enabling fast encoding and decoding 
throughputs.  Third, LT codes allow decoding to be 
overlapped with receiving data from storage servers, 
masking decoding time.  We adapted LT codes by 
generating coding graphs which guarantee decodability 
[5], and built a fast implementation which delivered 
decoding bandwidth up to 320 MByte/s on a Intel 2.4Ghz 
Xeon CPU.  Our experiments show that the memory 
bandwidth is the bottleneck to coding performance.  Our 
work suggests that multi-processors of the future or 
processors with higher memory bandwidth (such as AMD 
Opteron or AMD Athlon 64) will surpass a coding 
bandwidth of 1GByte/s. 

Metadata Server maintains both file information (size, 
organization, and location) and storage server information 
(available space, performance, connectivity, current load, 
etc).  A simple central metadata server minimizes update 
and synchronization costs at some penalty in scalability.  
Reliability and scalability can be addressed by well-known 
replication and failover techniques.  

Storage Servers provide data storage at block level 
(erasure-coded block, presumed to be larger than disk 
blocks).  Servers may be single disks or arrays, and each 
implements local admission and access control.  Servers 

 



typically have variable performance due to heterogeneity 
in hardware, data layout, or load. 

Access Control: There are many good candidates for 
the distributed filesystem security, for example, credential-
based access control is flexible in the environments with a 
large number of servers and users. 

3. Evaluation  
We use a detailed discrete-event simulation to evaluate 

the RobuSTore idea across the configuration space, 
varying access strategy, the number of storage servers, 
data size, block size, network latency, and degree of 
redundancy.   

3.1. Methodology 
We compare RobuSTore and conventional approaches 

with different strategies for data layout, redundancy, and 
access.   

Data Layout and Redundancy:  Possible data layout 
methods include: (1) split the data into blocks, and 
distribute them to many disks; (2) split the data and 
distribute the blocks with replication; (3) split the data, 
encode the blocks, and distribute these redundant coded 
blocks to many disks.  They are depicted in Figure 4. 

 

 
Figure 4. Data Layouts.  8 original blocks; 2x data 

redundancy in replicated and coded layouts 
 

 
Figure 5. Access Strategies. Disk performance is varied. 

 
Access Strategies:  Possible data access strategies are: 

(1) speculative access, i.e., request redundant blocks at 
once in the beginning of the access and cancel the requests 
once enough blocks have been received; (2) adaptive 
access, in which the client dynamically requests the 
unreceived bytes.  Examples are shown in Figure 5. 
We evaluate the following four combined schemes: 

- RAID-0: No data redundancy + speculative access 
- RRAID-S: Replication + speculative access 
- RRAID-A: Replication + adaptive access 
- RobuSTore: Erasure coding + speculative access 

3.1.1. Workload and Performance Metrics 
Workload: Since our focus is on supporting the needs 

of applications with large-read dominated workloads, we 

study access performance for single 128MB, 256MB, 
512MB, and 1GB reads.  Data objects larger than 1GB are 
presumed to be accessed by multiple 1GB reads. 

Performance Metrics:  While robustness is the major 
goal of RobuSTore, we must also maintain high bandwidth 
with small overhead.  So we formalize them into the 
following three metrics: 

- Standard Deviation of Access Latency: the standard 
deviation over a set of one hundred accesses.  Smaller 
standard deviations correspond to higher robustness. 

- Access Bandwidth 
- Disk IO Size/Data Size: This is the cost from 

speculative access. 

3.1.2. Simulation Method 
We simulate an environment with one client and 128 

storage servers connected by wide-area networks. 
Each storage server is simulated using one DiskSim [6] 

process.  DiskSim processes are configured to have 
different disk-level block layouts such that individual disk 
performance varies from 0.52MBps to 53MBps.  This 
represents the performance variability in shared distributed 
storage environments with many sources of variability, as 
discussed in Section 1. 

The virtual client models all other overheads for 
metadata access, server connection, network latency, and 
block decoding.  The metadata access and server 
connection are assumed to take constant time; network 
latency to each server is configured constant from 1ms to 
100ms.  For block decoding, since it can be pipelined with 
data receiving, extra latency is only incurred for decoding 
the last block; we model it as a constant 5 ms overhead. 
We assume sufficient network bandwidth and CPU power. 

In the experiments, we study the four storage schemes 
(RAID-0, RRAID-S, RRAID-A, and RobuSTore) along 
five system parameters: number of disks, data size, block 
size, network latency, and degree of redundancy.  In each 
experiment, we vary only one parameter, and compare to a 
fixed baseline.  The baseline is a typical SAN 
configuration: to access 1GB data from 64 disks, 1ms 
network round-trip time (RTT), 1MB block size and 4x 
data redundancy, except for RAID-0 which always has 1x 
data redundancy.  

3.2. Results 
We simulate the four storage schemes over five 

configuration dimensions.  Due to space limitation, we 
only show part of the results in the paper; more results are 
available in [7]. 

3.2.1. Robustness Improvement 
Robustness vs. Number of Disks 
When we vary the number of disks from 2 to 128, the 

standard deviation of latency changes as depicted in 
Figure 6. RAID-0 suffers because it exploits no 
redundancy, and the performance is thus subject to the 
slowest disk.  RRAID-S explores the replicated data to 
hide the slow disks;   however, it reads the blocks on same 

 



 
Figure 6. Robustness vs. Number of 

Disks. 

 
Figure 7. Bandwidth vs. Number of Disks. Figure 8. Overhead vs. Number of 

Disks. 

 
Figure 9. Robustness vs. Data 

Redundancy. 
Figure 10. Bandwidth vs. Data 

Redundancy. 
Figure 11. Overhead vs. Data 

Redundancy. 
 
disk in fixed order, so its performance depends on both 
intra-disk block ordering and inter-disk block mapping.  
RRAID-S has the highest variability due to the 
combination of these factors.  RRAID-A mitigates the 
dependency on intra-disk block ordering by accessing 
blocks selectively, but still depends on inter-disk block 
mapping.  When using small number of disks (<8), 
RRAID-S and RRAID-A essentially perform whole-file 
replication, so they suffer a low-level of inter-disk 
dependence and have comparable robustness to 
RobuSTore.  

Performance variability in RobuSTore is from the total 
bandwidth of all the disks and is not related to intra-disk 
ordering or inter-disk mapping at all.  RobuSTore has the 
lowest performance variability for systems with more than 
a few disks (>8).  The standard deviation of access latency 
on 64 disks for RAID-0, RRAID-S, RRAID-A and 
RobuSTore are 1.9, 7.3, 1.9, and 0.5 seconds respectively; 
and they are 0.63, 3.8, 1.1, and 0.13 seconds on 128 disks.  
RobuSTore improves robustness for up to 5x compared to 
RAID-0, and more than 15x compared to RRAID-S. 

Robustness vs. Redundancy 
We vary storage overhead from 1x to 10x (900% 

overhead) to quantify its impact (see Figure 9).  RAID-0 is 
represented by the 1x point on the RRAID-S curve. 

In RRAID-S and RRAID-A, the variability comes from 
disk speed, intra-disk block ordering (in RRAID-S), and 
inter-disk block mapping.  Higher data redundancy 
reduces impact from inter-disk block mapping, while 
increases impact from intra-disk block ordering.  RAID-0 
only suffers variability from the slowest disk.  Due to the 
combination of these factors, RRAID-S and RRAID-A 

have worse robustness than RAID-0 when redundancy is 
small, and gradually get better as redundancy increases. 

RobuSTore achieves the best performance robustness, 
and needs only 2-3x data redundancy to obtain most of 
this benefit. When using more than 4x storage space, the 
standard deviation of latency is only ~ 0.5 seconds or 
about 25% of the average access latency. 

3.2.2. Bandwidth Improvement 
In most of our experiments, RobuSTore delivers 

significantly better performance than other schemes.  
We vary the number of disks and present the bandwidth 

results in Figure 7.  RobuSTore is slightly worse than 
RRAID-A for small numbers of disks (<8) due to the 
reception overhead of 1.4x; but it performs the best for 
large numbers of disks.  RobuSTore achieves 15x the 
bandwidth of RAID-0 for 16-128 disks.  The access 
bandwidth to 1GB on 64 disks is as follows: 31 MBps for 
RAID-0, 117 MBps for RRAID-S, 228 MBps for RRAID-
A, and 459 MBps for RobuSTore. 

Figure 10 shows that increasing data redundancy 
increases the bandwidth of RobuSTore rapidly. The 
bandwidth of RRAID-S and RRAID-A both benefit less 
than RobuSTore as data redundancy is increased.  This is 
because their structured redundancy (replication) cannot 
adapt to reading more blocks from the faster disks as 
flexibly as in RobuSTore. 

3.2.3. Access Overhead 
The benefits of aggressive access to redundant copies 

can yield performance benefits, but it also increases 
network and disk I/O costs.  Figure 8 and Figure 11 depict 
the disk overhead for different schemes.  RAID-0 incurs 

 



no additional costs, and achieves a ratio of 1.  RRAID-A is 
just a little bit more than 1.  RRAID-S generates a large 
number of speculative requests, reaching overhead ratios 
as high as 3x.  RobuSTore has cost about 1.4 due to the 
requirement of extra blocks for decoding. 

4. Related Work 
There has been a wealth of work on distributed storage 

and performance aggregation of multiple disks. 
Parallel file systems ([8-10], etc) aggregate multiple 

disks, addressing the performance and capacity limitation 
of single disks or servers.  They assume uniform arrays of 
storage devices in a SAN or LAN environment.  However, 
these systems do not tolerate dynamic performance 
variability in a fashion comparable to RobuSTore. 

Some peer-to-peer file sharing systems ([11, 12], etc) 
improve access performance by speculatively fetching 
from massively replicated data copies. However, the 
massive replication is expensive in terms of storage 
overhead and access scheduling.  Further, these systems 
focus on the shared internet where per-node network 
bandwidth is as low as 1-10 megabits/s.  

Numerous storage systems exploited erasure codes for 
data reliability and availability ([13-16], etc.), but not for 
robustness or bandwidth. 

Collins and Plank’s work [17] studied the usage of 
Reed-Solomon Codes and LDPC Codes to improve 
bandwidth of wide-area storage systems.  However, they 
only focused on access bandwidth, with no study on 
performance robustness.  Furthermore, they assume slow 
shared networks, bandwidths < 10MByte/s, and small 
number of blocks (N≤100), and they concludes that Reed-
Solomon Codes perform better than or equal to LDPC 
codes.  In contrast, we focus on performance robustness as 
well as bandwidth; we design RobuSTore for high 
bandwidth wide-area networks (>10Gbps), and explore a 
much wider array of design choices in data coding 
parameters, redundancy, layout and access. 

5. Summary and Future Work 
We have proposed RobuSTore, a system combining 

erasure coding and speculative accesses to both improve 
performance robustness and absolute performance.  We 
present a system framework which explains the major 
architecture and function required to make it workable. 

Using discrete-event simulation, we compare the 
performance of RobuSTore with three traditional parallel 
schemes across a wide range of system configurations.  
These simulation results show that RobuSTore delivers the 
best robustness, up to 5x compared to a baseline RAID-0 
scheme.  At the same time, RobuSTore also provides 
highest access bandwidth of nearly 15x from RAID-0.  
RobuSTore incurs only moderate I/O costs of about 1.4x 
and storage overheads of 2-3x. 

We have only taken initial steps in evaluating 
RobuSTore.  Natural extensions include:  1) evaluation 
with a richer set of workloads, varying access sizes and 

including writes, 2) empirical studies with a RobuSTore 
prototype, 3) experiments with real applications and real 
testbeds, 4) study of different algorithms for encoding, and 
5) evaluation for multi-user workloads and shared storage 
servers.   
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