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Abstract

Bricks or Storage Nodes - SNs holding a dozen or
more disks are cost-effective building blocks for ultrareli-
able storage. We describe the Multilevel RAID - MRAID
paradigmfor protecting both SNs and their disks. Each SN
is a k-disk-failure-tolerant KDFT array, while replication
or {-nodefailure tolerance - /{NFTs paradigmis applied at
the SN level. We provide the data layout for RAID5/5 and
RAID6/5 MRAIDs and give examples of updating data and
recovering lost data. The former requires storage transac-
tionsto ensure the atomicity of storage updates. In Conclu-
sionswe outline areas for further research.

1. Introduction

The volume of generated data requiring ultrareliable
storage is increasing very rapidly. This is accompa-
nied with rapid increases in disk capacities and reliabil-
ity, e.g., 500 gigabyte disks and a Mean Time to Disk
Failure - MTTF of 108 hours are being mentioned. Re-
dundant Arrays of 1nexpensive/lndependent Disks - RAID
paradigm [6] utilizes replication (RAID1) and Erasure
Coding (RAID2-5 and RAIDS®) to attain higher reliability
is not directly applicable to Very Large Disk Arrays - VL-
DAs. RAID1 was originally based on mirrored disks, but
higher levels of redundancy may be viable, e.g., 3-way and
2 x 2, where two disks provide remote backup. RAID3-5
(resp. RAIDG) dedicate one (resp. two) out of N disks to
parity, so that the contents of one (resp. two) failed disks
can be recovered. Hamming codes associated with RAID2
are not popular.

In addition to redundancy, striping was introduced in
conjunction with RAID to balance disk loads by partition-
ing large datasets into smaller chunks of data called stripe
units. Stripe units are allocated in a round-robin manner
on the N disks of an array. RAID3-5 (resp. RAID6) dedi-
cate one (resp. two) out of N stripe units to parity. Stripe
units in a row are referred to as a stripe. Full-stripe writes
can be carried out efficiently, since the parities are com-

puted on the fly as successive stripe units are being writ-
ten. RAIDO does not provide redundancy, but implements
striping, which distinguishes it from just a bunch of disks -
JBOD.

We envision VLDASs which are based on storage bricks
or Sorage Nodes - SNs. Each brick consists of a number
of disks, an array controller, a cache, which may be par-
tially nonvolatile - NVRAM, and interconnect capability
[8]. Bricks are attached to a high bandwidth SAN (storage
area network) for transmitting data, but an additional IP
network is used to send/receive I/O commands and other
messages.

RAID controllers at multiple levels are utilized in [2]
to configure a hierarchical RAID - HRAID array. The
higher and lower RAID levels of HRAID are specified as
RAIDX(M)/Y(N), where X and Y denote the RAID level
and M (resp. N) denote the number of virtual disks at the
higher level, which are in fact SNs (resp. physical disks at
lower level). We utilize Multilevel RAID - MRAID to or-
ganize numerous SNs constituting a VLDA into coherent
groupings, but instead of a hierarchy of RAID controllers
as in [2], we use Data Routing Nodes - DRNSs, which may
be hardened by replication, to maintain the relationship
among SN, e.g.. that two SNs are mirrors.

A recent study evaluates the reliability of arrays of stor-
age bricks [16]. Each brick is a RAIDO, RAIDS5, or RAID6
and a replication of one to three is considered across bricks
[16]. A recursive solution method is developed to ana-
lyze the Markov chain model, which takes into account
the MTTF of bricks and disks, and rebuild time which is
affected by the disk transfer rate, network bandwidth, and
disk capacity (and bandwidth) utilization. The performance
metric of interest is "data loss events per petabyte-year”.
The sensitivity of Mean Time to Data Loss - MTTDL to
MTTFs, rebuild block size, and link speed is quantified.
A study dealing with reliability mechanisms in very large
storage systems utilizes Markov chain models with repair
to compare the MTTDL in 2- and 3-way mirroring and mir-
rored RAID5 arrays [24].

The paper is organized as follows. Sections 2 and 3
discuss erasure coding and replication to protect disks and



SNs. We specify the layout of MRAID5/5 and MRAID6/5
and their operation from the viewpoint of updating parities
and recovery. We introduce storage transactions to ensure
correctness in updating parities, especially when the pari-
ties are distributed across nodes. In Section 4 we summa-
rize the discussion and outline areas for further research.

2. Caoding Inside Storage Nodes

There are N nodes each with d disks, so that the total
number of disks is D = d x N. The number of data disks
per SN is n, the number of check disks is k, and the number
of spare disks is s, so that d = n+k+s We postulate
minimal redundancy coding, so that k check disks imply
a k-disk-failure-tolerant - KDFT array.

We consider k disk failure tolerant arrays - KDFTs with
0 < k< 3: k=0 corresponds to RAIDO, k = 1 to RAID5,
k=2 to RAIDS6, and k = 3 is referred to as RAID7. RAID6
and RAID7 can be implemented via Reed-Solomon codes,
as well as specialized parity codes such as EVENODD
[3],[4] and rotated diagonal parity - RDP parity layouts
[7]. RM2 which tolerates two disk failures [13], but incurs
a higher level of redundancy than RAID6 and exhibits a
poor performance with two disk failures [19] is not consid-
ered further.

Rebuild is the systematic reconstruction of the contents
of a failed disk on a dedicated spare disk or spare areas
distributed among all disks. The latter is preferable to the
former, since disk bandwidth is wasted otherwise [18]. The
parity sparing method [5] combines two RAIDS5 disk arrays
into one RAID5 by coalescing their parities, i.e., using the
parities of one array as the spare areas of the other. Simi-
larly, when a single disk fails in RAIDBG, the Q parities can
be used as spare areas to convert it to a RAID5 (with P par-
ities only) operating in normal mode. A further conversion
from RAIDS5 to RAIDO is possible.

When a block on a failed disk is accessed, RAIDS5 ac-
cesses corresponding blocks on all surviving disks to re-
construct it. Since each disk also has its own load, the load
on the remaining disks is roughly doubled. The load on sur-
viving disks is tripled when two disks fail. Clustered RAID
selects a parity group size g, which is smaller than the num-
ber of disks d, so that the load increase in accessing a failed
disk is given by the declustering ratio: a = (g—1)/(d—1)
[12]. The load increase in RAID5 and RAIDG6 disk arrays
processing read and write requests is given in [21].

When a spare disk or areas are available, rather than
recreating data blocks on demand, the rebuild process sys-
tematically reconstructs successive data blocks of the failed
disk on a spare disk [12]. RAID5 rebuild processing
may be unsuccessful due to a second disk failure, which
is highly unlikely unless disk failures are correlated, but

rather when latent sector failures - LSFs are encountered.
This is one of the justification for RAID6 [3].

Updating small data blocks in kDFTs is referred to as
the small write penalty, since it requires 2(k+ 1) read-
modify-writes- RMWs to update data and parity blocks [6].
RMW can be implemented as a request to read old data
and parity blocks, followed by a disk rotation to write both.
Given dgis = dnew @ doig the new parity is computed at
the disk holding the parity as: pnew = Poig ® dgifs. “Write
holes” caused by system failures can be obviated by com-
puting the parity at the disk array controller, which does
logging for recovery [15]. This requires independent re-
quests to read and write data and parity blocks. The re-
construct write method of updating parities is preferable in
some cases [20].

3. Internode Level Replication and Erasure
Coding

Replication or erasure coding across the SNs provides
data protection for SNs as well as their disks, when local
recovery is not possible. Note that the failure rate for SNs
(excluding disk failures) may be higher than disks. Ex-
ternal disk requests arriving at communication nodes are
sent to DRNs (data router nodes), which are aware of data
placement in the array. A DRN may consist of a cluster
of DRNs for load-sharing, scalability, and fault-tolerance.
A cluster of DRNs constitutes a data-sharing system [14].
Data in VLDA is partitioned into fragments and fragments
are allocated to DRNSs.

SN replication is preferable to erasure coding across
SNs for high access rates. M-way replication increases ac-
cess bandwidth by this factor. Read requests can be pro-
cessed at any one of the M SN, but updates should be writ-
ten to all SN, i.e., read-one, write-all paradigm [15]. With
two-way replication when a single SN fails then the read
load at the other SN is doubled. This problem can be dealt
with by using a more sophisticated data allocation methods
for mirrored data such as interleaved declustering, chained
declustering, and group rotate declustering, whose reliabil-
ity and performance is compared against basic mirroring in
[22].

According to the linearizability correctness paradigm
reads must access the latest version of written data [9],
which is simple to implement when all requests to access
replicated data are channeled through one DRN. Appro-
priate concurrency control methods for replicated data are
required otherwise [15]. Since storage level replication and
redundancies, i.e., parities, are not exposed to the applica-
tion level, storage transactions in addition to application
level transactions, are required to ensure correctness.

Erasure coding introduces less redundancy than repli-
cation and is applied to a subset of SNs, rather than all



SNs at once. We postulate ¢ SN clusters, so that there are
M = N/c SNs per cluster with £ out of M check SNs. In ad-
dition to striping across the disks of an SNS, striping may
be carried over across the disks in a cluster. Striping at this
level results in a balanced load across the disks. The case
M = d (same number of clusters as disks) lends itself to
a straightforward layout for parities, so we explore it first.
We first set k = £ = 1, which implies nested RAID arrays:
RAID5(M)/5(d). Parities at the two levels are referred to as
P and Q parities, respectively.

A dedicated SN which holds all Q parities has the disad-
vantages associated with RAID4 disk arrays: (i) In a write
intensive environment to small blocks it may become a bot-
tleneck. (ii) When all disk accesses are reads the check SN
remains unutilized, unless there are SN failures. If all the
blocks on the check SN are assigned to Q parities, then the
Q parities will be unprotected against disk failures at that
SN. If one of the disk at the check SN fails then the corre-
sponding disks at the other SNs need to be read to recon-
struct its contents (assuming spare space is available). An
alternative solution is not to protect P parities and use the
unutilized space at the check SN to local P parity blocks,
so that they can protect Q parities. In other words, the Q
parities at the check SN are treated as data blocks, which
are protected by P parities.

Given the disadvantages of dedicating the full capacity
of an SN to parity, we distribute the Q parities across M
SNs, while the capacity equivalent of one disk per SN is
already dedicated to P parities. The starting pointis M — 1
“data” disks and a single check SN with Q parities. The
even distribution of Q parities over the M SNs is straight-
forward for M = d, in which case each SN allocates 1/d
of its capacity to P parities and 1/d to Q parities. The two
parities can be placed in parallel diagonals for load balanc-
ing purposes. P parities protect data blocks and also the Q
parities in the same stripe, while Q parities apply across the
SNs. A distributed sparing scheme is also applicable at the
SN level.

Example 1. A disk array with four SNs and four disks:
M = d =4 is used as an example in this paper. Each block
(or stripe unit) is specified as xlmJ where 1 < i <d is the
stripe or row number, 1 < j < d is the disk number, and
1 <m< M is the SN number. Only four rows are shown,
since the pattern repeats itself. The Q parities are rotated
from disk to disk and SN to SN to balance the load for
updating disks.

To update d3; we first compute d35 ' = df"™ & dZ9¢
and next update its parities in parallel: pi’s" = p33® @

2ditf  _inew _ lold o q20iff 1diff _
digp v gy =0g1 ®dy; - Wenextcomputeq,; =
Qe @ q3%? to update its P parity: p}’R = p;%¢ ® qif’l'f "

Note that updating the Q parity associated with pi3

would result in cascading updates starting with: pifisiff _

2new o n20ld  3new _ q3o0ld oy n2diff isi
Pis @ Paz . Uig =0z3 ®Py3 - INthisimplementa-

tion P parities protect Q parities, but this is not true vice-
versa. Note that this coincides with the second option of
not protecting parities for a dedicated check SN.

Disk failures can be dealt with firstly inside an SN, but
otherwise using the erasure coding scheme across SN. As
an example of an SN failure we assume that SN; has failed
and reconstruct its first stripe.

dil = dil D q‘11,1- diz = Qiz D diz- Qi4 = di4@ di4-
pi3 = dh & diz D CI%,4-

Just in case disk 1 or D1 at SN has also failed, it should
be reconstructed before SN; can be reconstructed: dil =
P2, ® g2 3@ d?,. In fact for higher efficiency it is best to
interleave rebuilding at D1 at SN, with rebuilding SNy End
of Example 1.

Storage Transactions A race condition arises in updat-
ing p} 3 when di, and df , are updated at the same time,
since pf 5 might be set to either pi = di9% @ d}?™ @
pi%3? or pi"" = di3? @ di%" © p1%Y, while pi 5 should
reflect the outcome of both updates: p§" = di?™ @ di'5™.
A similar situation arises when dil and dil are updated as
far as the updating of g7 ; is concerned.

The well-known solution to the lost update problem is
to associate a transaction with each update. We use the
strict two-phaselocking - 2PL concurrency control method,
where each transaction holds all of the locks to the end [15].
R and W stand for reading and writing of the data block
in parentheses. Reads (resp. writes) are preceded by the
acquisition of a shared (resp. exclusive). The NVRAM
at each node can be used for logging for recovery [15].
A two-phase commit - 2PC protocol is required to ensure
the atomicity of distributed transactions [15]. which result
from updating Q parities, as shown below.

Transaction (update dﬂam ={ 1- R(di"l'd),
2 — W(di—ﬁaN), 3 _ d]l-’dliff _ d%f‘la“’ o df’{d,
4— R(pld), R(cfald), 5 pinew = 14" g plold, nen —
Gl © ity 6 - Ayl = dr o

af9d, RIPIY), 7—pite = pidl @]y, 8—wW(pi™)).

Assuming that disk D1 at SNy has failed then di9¢ is not
accessible. A transaction attempting to read an inaccessible
data block is aborted according to [1]. The system then
issues a new transaction which includes a fork-join request
to reconstruct di ,, i.e,, df; = df, ® pi3® 0, A more
sophisticated transaction p?ocessihg mode is péstulated in
this study, so that SNs which upon receiving requests to
read or write data blocks issue appropriate substransactions
depending on the detailed state of the SN, which is only
known locally. The transaction is aborted only when the
requested block cannot be recovered.

Distributed dynamic locking with blocking (or wait on
conflict) policy may lead to distributed deadlocks, whose



| Node 1 I Node 2 I Node 3 I Node 4 |
dil diz pis ara] 951 piz Qis df, Pi1 a5 dis di,[ aia] di, dis p£11,4
d%,l p%,z CI% 3 d% 4 pg 1 qg,z d%,s dg 4 q% 1 d% 2 dg,s p§,4 d% 1 d% 2 p%,s Q:zt,4
RISl SIS i i S S R g R R
Qga| 9zp| dz3| Pga| 931| 93| Pas| %4a| 921| Pap| %a3| Y24l Paa| Yap| das| dag
detection and resolution incurs extra messages. Distributed 4. Conclusions

concurrency control methods based on local resolution of
lock conflicts (at the SNs) via aborts are appropriate in this
case. Transaction aborts are affordable, since the probabil-
ity of data conflict is very small and aborted transactions
are restarted by the system. The wound-wait, wait-die [17]
belong to this category. The time-stamp ordering method is
the preferred concurrency control method according to [1].

The system then issues a new transaction which in-
cludes a fork-join request to reconstruct d1 1 e, d11 =
17269 p1,3®q174. A more sophisticated transaction process-
ing mode is postulated in this study, so that SNs which upon
receiving requests to read or write data blocks issue appro-
priate substransactions depending on the detailed state of
the SN, which is only known locally. The transaction is
aborted only when the requested block cannot be recov-
ered.

Distributed dynamic locking with blocking (or wait on
conflict) policy may lead to distributed deadlocks, whose
detection and resolution incurs extra messages. Distributed
concurrency control methods based on local resolution of
lock conflicts (at the SNs) via aborts are appropriate in this
case. Transaction aborts are affordable, since the probabil-
ity of data conflict is very small and aborted transactions
are restarted by the system. The wound-wait and wait-die
methods [17] belong to this category. The time-stamp or-
dering method is the preferred concurrency control method
according to [1].

Example 2. There are M =5 SNs and d = 5 disks per
SN. Each SN is a RAID5: k= 1 and the parity is denoted by
P. Across the SNs we have RAID6 with £ = 2 and parities
denoted by Q and S. Only the first row is shown for brevity.

(dilv d::ll,Zv pi3’ in’ S},S)’
(p:f,l’ qiz: 5},37 d:13,4’ dis),
(Silﬂ diza disa pim qis)-

If SNy and SN, fail we can reconstruct d ; and d? | us-
ing g}, and 7 ;. d, can be reconstructed by noting that
dizédiz = qiz, although s}, could also be used for this

purpose. We similarly note that df 5 & df 5 = o 5. Greater
than k disk failure at an SN are speual cases of full node
failures and can be protected using Q and S parities. End
of Example 2.

(d 11,p12,q13,§4, 5),
%,1;5‘11,2, d1,3, d1,4; p175)1

We have described the Multilevel RAID - MRAID
paradigm to organize disks into reliable groupings in VL-
DAs. Replication at the higher level and a kDFT at the
lower level is a simple organization to protect SNs at the
higher level and disks at the lower level. Erasure coding at
both levels results in significant savings in redundancy. We
have specified two MRAIDs with RAID5 and RAIDSG at the
higher level and RAIDS at the lower level. A design deci-
sion made in this study is to protect parities across SNs with
parities protecting the disk at each SN, but not vice-versa.
Examples of updating parities and recovery from disk and
SN failures are given. Combinations of replication and era-
sure coding can be used to provide fault-tolerance at three
levels, inside SNs, across SNs in a cluster, and across clus-
ters (replicated clusters).

We introduce the need for storage transactions to en-
sure correct interaction of read and write requests Dis-
tributed transactions are required across SNs and the prob-
lem is more challenging since we allow disk and SN fail-
ures. Given that the probability of conflicting updates is
small, the preferred concurrency control method will min-
imize the number of internode messages, rather than just
data conflicts.

To gain insight into MRAID reliability we have devel-
oped approximate models to compare the reliability of rep-
resentative MRAID arrays combing mirroring with RAID5
and RAIDG6 [23]. The applicability of Markov chain mod-
els for estimating MRAID MTTDLs is also explored, but
we have also resorted to simulation.

We are developing cost models for MRAIDs to evalu-
ate the performance of the system, as was done in [19] for
2DFTS. Timing diagrams in the form of task systems will
be used to determine the latency associated with more com-
plex operations.

Operation in degraded and rebuild mode is also of in-
terest. In both cases replication seems to preferable to era-
sure coding, because of the very high bandwidth require-
ments in the latter case for SN repair. Replication is a
good substitute for the backup/restore paradigm to mag-
netic tapes, since the backup of very large disks takes ex-
cessive amounts of time.
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