MRRC: an effective cache for fast memory registration in RDMA *

Li Ou, Xubin He, Member, IEEE

Electrical and Computer Engineering Department

Tennessee Technological University
{lou21, hexb} @tntech.edu

Abstract

RDMA reduces network latency by eliminating unnec-
essary copies from network interface card to application
buffers, but how to reduce memory registration cost is
a challenge. Previous studies use pin-down cache and
batched deregistration to address this issue, but only sim-
ple LRU is used as a replacement algorithm to manage the
cache space. In this paper, we propose an effective cache
scheme: Memory Registration Region Cache (MRRC), to
minimize the cost of memory registration and deregistra-
tion in the critical data path of RDMA operations. MRRC
manages memory in terms of memory region, and replaces
old memory regions according to both their sizes and re-
cency. We compare the performance of MRRC with tradi-
tional RDMA memory registration operations. The results
show that MRRC can dramatically reduce the total cost of
memory registrations and deregistrations.

1. Introduction

Remote Direct Memory Access (RDMA)[1, 4, 9, 2, 6]
is emerging as the central feature in modern network inter-
connects. It offers low latency, high throughput, and low
CPU overhead communication in network storage systems.
While RDMA improves network bandwidth and decreases
latency by eliminating unnecessary copies from network
interface card to application buffers, there are a number of
challenges to be addressed. One of the most significant
issues is efficient communication buffer management to re-
duce memory registration and deregistration costs. Previ-
ous research [12, 13, 14, 10] shows that memory registra-
tion is an expensive operation since it requires pinning of

*This work was supported in part by the Research Office under a Fac-
ulty Research Grant and the Center for Manufacturing Research at Ten-
nessee Technological University. It was also partially supported by the
973 Program of China under contract No. 2004CB318202, and Faculty
Research Grant at Institute of Computing Technology, Chinese Academy
of Sciences.

Jizhong Han, Member, IEEE
Institute of Computing Technology
Chinese Academy of Sciences
hjz@ict.ac.cn

pages in physical memory and accessing the on-chip mem-
ory of the network interface card. The cost and overhead of
memory registration dramatically degrade the performance
of RDMA and increase network latency in the critical data
path of I/O operations.

Several attempts [12, 15, 13, 14, 3, 10] have been made
to reduce the overhead of memory registration in RDMA.
In general applications, a pin-down cache [12] is incorpo-
rated in the memory manager. Several cache designs for
memory registration [13, 10] are proposed based on the
pin-down cache to take advantage of temporal locality of
memory accesses of RDMA. Current memory registration
caches manage memories in page level and only consider
LRU as replacement algorithm. Most applications using
RDMA register and deregister memory regions containing
multiple continuous or noncontiguous memory pages, thus,
page level management for registration caches is not ef-
ficient enough. Furthermore, with multiple page memory
regions, the locality of memory accesses is also changed
and general LRU algorithm is probably not the best choice.

In this paper, we propose a new cache management
scheme, Memory Registration Region Cache (MRRC), to
minimize cost of memory registration and deregistration in
the critical data path. MRRC manages memory in terms
of memory region containing one or more memory pages.
MRRC organizes the cache stack using LRU algorithm, but
divides stack into three sections and evicts memory regions
according to both the size and recency. We compare the
performance of MRRC with traditional RDMA memory
registration operations and other typical registration cache
management algorithms such as pin-down cache [12]. The
results show that compared to traditional RDMA memory
registration, MRRC can reduce the total cost of memory
registrations by up to 70%.

2. Design of MRRC

In RDMA operations, memory is accessed and regis-
tered in terms of region, which includes several physical
pages. There are four possibilities for the relationship be-

Frequent
Reference

a7

Resoring

Eviction l
¥

Figure 1. LRU stack of MRRC.

r=0;

/* procedure to be invoked upon a reference to
memory region b */

if b is in cache
move b to the top of the stack;
else if b belongs to memory region ¢
move c to the top of the stack;
else if b overlap with memory region d {
u=b && d;
v=b-u;
move d to the top of the stack;
register v and add v to the top of the stack;
}
else
register b and add b to the top of the stack;

/* procedure to be invoked upon the full of the
cache®/

/* e is the region at the bottom of the stack */

r = e.evictfact;
for each region a in resorting section

a.evictfact =r + 1/s; [* s is size of a region */
Resort each region in resorting section according
to evictfact;
Batched deregister all regions in Eviction
Segment;
Evict all regions in Eviction Segment;

Figure 2. MRRC and MRE algorithms.

tween a memory region newly requested by a RDMA op-
eration and memory regions already cached. First, the new
region exactly matches a cached region, thus, no registra-
tion is needed for actual RDMA operations. Second, the
new region is a subset of a cached region, and also no fur-
ther registration is needed. Third, there is a memory over-
lap between the new region and a cached region. In our de-
sign, the new region is divided into two parts, the first part
is totally matched with or a subset of a cached region, and
the second part is treated as a new region which is regis-
tered immediately. This design not only saves the memory
space, but also improves system performance by pipelining
memory registration and RDMA operations. In the same
time of registration of the second part, the RDMA opera-
tion for the first part can be issued to reduce total response

time. In the last case, there is no overlap between the new
region and any cached region, and a new registration oper-
ation is necessary.

We build the MRRC by using the LRU algorithm and
its data structure: the LRU stack. we partition the MRRC
stack into two sections (shown in Fig. 1), similar to DULO
cache [7]. The top part is the frequent reference section
used for admitting newly accessed memory regions. The
lower part is the Resorting section in which all regions are
treated as candidate for eviction. We further divide the Re-
sorting section into two segments. The lower part is evic-
tion segment. All regions in this segment are ready to be
evicted from the cache and thus to be deregistered.

Memory Resorting and Eviction (MRE) replaces mem-
ory regions in the bottom of the stack according to both
their recency and size. MRE prefers to replace large re-
gions first, because a large region consumes more cache
space and small regions need more registration time com-
pared to one large region with same memory size. Research
in [14] showed that cost of memory registration consists of
two parts. First part is the cost of per registration, and sec-
ond part is cost of per page. In [14], the cost of registering
memory region is modeled as T = a * p + b, where a is the
registration cost per page, and b is the overhead per opera-
tion, and p is the size of the memory region in pages. The
same cost equation can be applied to deregister a region
with different values of a and b. In their testbed, the costs
of per page in registration and deregistration are 0.77us and
0.22us, respectively. The overheads per registration and
deregistration operations are 7.42us and 1.lus. From to
those results, it is easy to understand that registering mul-
tiple small regions is more expensive than registering large
regions with same number of pages. From this model, we
know that one by one deregistration is not efficient. In
MRRC, a batched deregistration scheme is adopted.

Every time when the cache is full, MRE algorithm re-
sorts all memory regions in the Resorting section, accord-
ing to their eviction factor. Eviction factor is a function
of size and recency of a memory region: evict fact(s,r).
In our current design, evict fact(s,r) is defined as r+1/s,
where s is size of a memory region and r is system recency
value. System keeps a global value of . In the initializa-
tion phase, r is set to 0. Every time the cache is full, the r
is reset to the eviction factor of the memory region in the
bottom of the stack. Eviction factor of a memory region is
not renewed unless it is zero, or the region is accessed again
and sent to the top of the stack, in which case Eviction fac-
tor is set to zero again. All regions are assorted according
to their eviction factor: the smaller of the eviction factor,
the closer of a region to the bottom of the stack. At the
end of the resorting, all regions in the eviction segment are
deregistered in one operation and evicted from the cache
space. Fig. 2 outlines the MRRC and MRE algorithms.

Table 1. Characteristics of the Two Traces Used in the Study

Trace | Clients | Client Cache | IOs (millions) | Capacity
Cello92 1 30MB 0.5 per day 10.4GB
HTTPD 7 - 1.1 0.5GB
g s g
T sl T oam b
2] :
E o E W
'-s 4% E %
8ot &
s s
§ W% T+ § 1 b
b 10% 1 b
A% ‘ A% . : ‘ ‘ .
1 2 1 2 4 8 16 32
Request Length (pages) Request Length (pages)
(a) Cello92 (b) HTTPD

Figure 3. Distribution of request size for Cell92 and HTTD traces. A point (L, P) on the curve indicates
that the size of P percent of total requests is L pages.

3. Simulation Results

We use trace-driven simulation to evaluate our MRRC
design. We have developed a simulator to simulate cache
hit ratio of memory registrations. We define hit ratio here
as the percentage of cached memory registration on the to-
tal number of requests of the trace. In order to compare our
work to previous efforts, our simulator implements multi-
ple algorithms, including MRRC, and pin-down cache [12].
We assume a memory page size of 4KB.

To evaluate caching algorithms and policies, we use two
buffer cache access traces as summarized in Table 1. The
HP Cello92 trace was collected at Hewlett-Packard Labo-
ratories in 1992 [11]. It captured all L2 disk I/O requests in
Cello, a timesharing system used by a group of researchers
to do simulations, compilation, editing, and e-mail. We
use the trace collected on April 18 as the workload. The
HTTPD workload was generated by a seven-node IBM SP2
parallel web server [8] serving a 524 MB data set.

Based on the outputs of the simulator running the above
two traces, we calculate the total time for registering all
memory regions using the following formula.

Tioral = sumi_q(ismiss(i) * T, (i) + sum’;_o(Tor (7))
where 7 is the total number of memory regions used in
the trace, and m is the total number of deregistered memory
regions. 7, and T, are the cost of actual memory registra-
tion and deregistration, respectively. 7, and T, are calcu-
lated based the cost model explained in Section 2. ismiss(i)

is a boolean function of the memory region. It outputs 1
if the corresponding region cannot be found in the cache
space, otherwise, outputs 0.

Fig. 3 shows the distribution of request size grouped by
powers of two!. A request size of the two traces is in terms
of memory pages. Most requests in the Cello92 trace are
small: the maximal request size is only 2 pages. The size
of requests in the HTTPD trace varies from 1 page to 32
pages. The difference comes from the environment where
two traces were collected. The Cello92 trace captured all
L2 disk I/O requests in Cello, in which small reading or
writing requests were issued one by one. The HTTPD
workload was generated by a seven-node IBM SP2 paral-
lel web server, where reading request was applied upon the
whole file every time. The distribution of the request size
of the traces influences results of our simulation because
each request is accompanied by a memory registration and
the request size determines the size of a memory region.

We first compare memory region hit ratios between
MRRC and pin-down cache with various cache sizes un-
der the two traces. Fig. 4 shows that under the HTTPD
trace, MRRC has 10% hit ratio improvement compared to
pin-down cache, but the difference is not obvious under the
Cello92 trace. We explained above that the distribtion of
request size in the two traces is totally different. This differ-
ence is the reason for the result of hit ratios. In the HTTPD
trace, there are many large size requests, so MRRC may
optimize its performance by considering both size and re-

Irequest sizes that are not powers of two are rounded down to the near-
est power of two.

—=—Pindown Cache —— MRRC —=—Pindoan Cache —— MRRC

80% 100%
80%
0%
-] _c
% s
B4 f &
] E 4% +
E
W% + ams |
0% - t t t 128 t t - }
M 4M M 16M M M 4M i 161 1M
Cache Size (B) Cache Size (B)
(a) Cello92 (b) HTTPD

Figure 4. Memory registration hit ratios with various cache sizes (Cello92 and HTTPD traces).

. ‘ O Pindown Cache BMRRC . O Pindown Cache H MRRC |
E 5000 E 10000
E 40t E a0 -
= P
%" a0t %" g00

2o | 4000t
))
% o | % ot ’_l
E = " : : " E 0 H

M 4 M 16k M
Cache Size (B) Cache Size (B)
(a) Cello92 (b) HTTPD

Figure 5. Registration/Deregistration cost with various cache sizes (Cello92 and HTTPD traces).

100% 100%

8% 0%

0% %
0% 0%

€% A%

Improvement of T otal
Registration Time
Improvement of T otal
Registration Time

0% 0%
2M 4M BN 160 3 M 4M M 16M 32
Cache Size (B) Cache Size (B)
(a) Cello92 (b) HTTPD

Figure 6. Improvement of MRRC over the basic RDMA operations without the registration cache.

cency. In the Cello92 trace, most requests have same size,
so MRRC cannot distinguish them in terms of memory re-
gion size and only sorts them in the cache space according
to their recency.

Fig. 5 compares total registration and deregistration
time of MRRC and pin-down cache under the two traces.
The total cost in term of registration/deregistration time
keeps the trend of hit ratios. We find that although the dif-
ference of hit ratios under the Cello92 trace is not obvious,
MRRC still reduces the total cost of registration and dereg-
istration, because of its batched registration. The maxi-
mal improvement of cost is about 10%. Fig. 6 shows
the improvement of MRRC over the basic RDMA opera-
tions without memory registration caches. It’s clear that
MRRC reduces the RDMA memory management cost dra-
matically.

4. Related Work

Several studies have been made to improve the per-
formance of memory registration and deregistration of
RDMA. Tezuka et al. [12] propose a pin-down cache for
Myrinet. Pin-down cache delays deregistration of regis-
tered buffers and caches their registration information for
future accesses of the same memory region. Zhou et al.
[15] eliminate pinning and unpinning from registration and
deregistration path by combining memory pinning and al-
location together. They also demonstrated batched deregis-
tration is an efficient way to reduce average cost of dereg-
istration memory. In [13], Wu ef al. propose a two-level
architecture, FMRD, for memory registration by adopting
both pin-down cache and batched deregistration. Based on
pin-down cache, a lazy cache is proposed in [10], which
combines a cache of registration mapping with a lazy ap-
proach to memory deregistration.

Caching is a common technique for improving perfor-
mances of I/O systems. Song et al. [7] propose a new man-
agement scheme, DULO, to balance temporal and spatial
locality of workload. Gill et al. [5] use a new ordering al-
gorithm, WOW, to resort writing sequences of Non-Volatile
cache by combining both spatial and temporal locality.

5. Conclusions

In this paper, we present a new cache management
scheme: MRRC, to improve the performance of memory
registration and deregistration of RDMA. MRRC manages
memory in terms of memory regions and uses MRE as
a cache replacement algorithm, which considers both the
size and recency of memory regions. To further reduce
the memory registration/deregistration cost, MRRC adopts
batched deregistration to avoid deregistering regions at ev-
ery cache replacement.

We have evaluated our MRRC and other typical registra-
tion cache designs using simulations under various work-
loads. The results show that MRRC efficiently increase the
cache hit ratios by 10% and reduces the total cost of mem-
ory registration and deregistration by up to 70% compared
to traditional RDMA operations without optimization.

References

[1] Infiniband trade association. infiniband architecture specifi-
cation, release 1.0, october 24, 2000.

[2] RDMA consortium. architectural specifications for RDMA
over TCP/IP.

[3] C. Bell and D. Bonachea. A new dma registration strat-
egy for pinning-based high performance networks. In /7th
International Parallel and Distributed Processing Sympo-
sium, 2003.

[4] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik,
C. L. Seitz, J. N. Seizovic, and W. K. Su. Myrinet: A gi-
gabitperSecond local area network. /EEE-Micro, 15(1):29—
36, February 1995.

[5] B.S.Gill and D. S. Modha. WOW: Wise ordering for writes
- combining spatial and temporal locality in Non-Volatile
caches. In FAST 2005, December 2005.

[6] J. Hilland, P. Culley, J. Pinkerton, and R. Recio. RDMA
protocol verbs specification (version 1.0). Technical report,
RDMA Consortium, April 2003.

[7] S. Jiang, X. Ding, F. Chen, E. Tan, and X. Zhang. DULO:
An effective buffer cache management scheme to exploit
both temporal and spatial localities. In FAST 2005, Decem-
ber 2005.

[8] E. D. Katz, M. Butler, and R. McGrath. A scalable HTTP
server: The NCSA prototype. Computer networks and
ISDN systems, 27(2):155-164, Nov 1994.

[9] F. Petrini, W. C. Feng, A. Hoisie, S. Coll, and E. Fracht-
enberg. The quadrics network (QsNet): High-performance
clustering technology. In In Hot Interconnects, 2001.

[10] M. Rangarajan and L. Iftode. Building a user-level direct
access file system over infiniband. In 3rd Workshop on
Novel Uses of System Area Networks, 2004.

[11] C. Ruemmler and J. Wilkes. Unix disk access patterns. In
Proc. Winter 1993 USENIX Conf.

[12] H. Tezuka, F. OCarroll, A. Hori, and Y. I. Pindown. Pin-
down cache: A virtual memory management technique for
zero-copy communication. In Int. Parallel Processing Sym-
posium, March 1998.

[13] J. Wu, P. Wyckoff, and D. K. Panda. PVFS over InfiniBand:
Design and performance evaluation. In International Con-
ference on Parallel Processing, Oct 2003.

[14] J. Wu, P. Wyckoff, and D. K. Panda. Supporting efficient
noncontiguous access in PVFS over InfiniBand. In Cluster
2003 Conference, December 2003.

[15] Y. Zhou, A. Bilas, S. Jagannathan, C. Dubnicki, J. F.
Philbin, and K. Li. Experiences with vi communication for
database storage. In ISCA, 2002.

