
Fingerdiff: Improved Duplicate Elimination in Storage Systems.

Deepak Bobbarjung
Purdue University
drb@cs.purdue.edu

Cezary Dubnicki
NEC Laboratories America

dubnicki@nec-labs.com

Suresh Jagannathan
Purdue University

suresh@cs.purdue.edu

Abstract

Minimizing the amount of data that must be stored and
managed is a key goal for any storage architecture that pur-
ports to be scalable. One way to achieve this goal is to
avoid maintaining duplicate copies of the same data. Elim-
inating redundant data at the source by not writing data
which has already been stored, not only reduces storage
overheads, but can also improve bandwidth utilization. For
these reasons, in the face of today’s exponentially growing
data volumes, redundant data elimination techniques have
assumed critical significance in the design of modern stor-
age systems.

Intelligent object partitioning techniques identify data
that arenew when objects are updated, and transfer only
those chunks to a storage server. In this paper, we pro-
pose a new object partitioning technique, calledfingerdiff,
that improves upon existing schemes in several important
respects. Most notablyfingerdiff dynamically chooses a
partitioning strategy for a data object based on its simi-
larities with previously stored objects in order to improve
storage and bandwidth utilization. We present a detailed
evaluation offingerdiff, and other existing object partition-
ing schemes, using a set of real-world workloads. We show
that for these workloads, the duplicate elimination strate-
gies employed byfingerdiff improve storage utilization on
average by 25%, and bandwidth utilization on average by
40% over comparable techniques.

1. Introduction

Traditional storage systems typically divide data objects
such as files into fixed-sized blocks and store these blocks
on fixed locations in one or more disks. Metadata struc-
tures such as file inodes record the blocks on which a file
is stored along with other relevant file-specific information,
and these inodes are themselves stored on fixed-sized disk
blocks. Whenever an object is modified by either inserts,
deletes or in-place replacements, the new blocks in the ob-
ject are written to disk, and the metadata structure is up-

dated with the new block numbers. However due to the
inability to efficiently identify those portions of the object
that are actually new in the latest update, a large part of ex-
isting data must necessarily get rewritten to storage. Thus,
the system incurs a cost in terms of storage space and band-
width whenever data is created or updated. This cost de-
pends upon the storage architecture, but is proportional to
the amount of new data being created or updated.

Recently, systems have been proposed that divide ob-
jects into variable-sized chunks (Henceforth, we will use
the term “chunk” to refer to variable-sized data blocks and
the term “block” to refer to fixed-sized data blocks.) instead
of fixed-sized blocks in order to increase the amount of du-
plicate data that is identified[2, 3]. These techniques enjoy
greater flexibility in identifying chunk boundaries. By do-
ing so, they can manipulate chunk boundaries around re-
gions of object modifications so that changes in one region
do not permanently affect chunks in subsequent regions.

Our contributions in this paper are the following:

• We propose a new device-level variable-sized object
partitioning algorithm,fingerdiff, that is designed to
reduce the storage and bandwidth overheads in storage
systems.Fingerdiff improves upon the duplicate elim-
ination capability of existing data partitioning tech-
niques, while also reducing storage management over-
heads.

• Using real-world workloads, we compare storage uti-
lization and other storage management overheads of
fingerdiffwith those of existing techniques. We eval-
uate the effect of chunk sizes on the performance of
these techniques. We show thatfingerdiff improves
upon the storage utilization of existing data partition-
ing techniques by 25% on average and bandwidth uti-
lization by 40% on average.

Our solution relies on utilizing local computational and
storage resources in order to minimize the cost of writing to
scalable storage networks, by reducing the amount of new
data that is written with every update. This also reduces the
amount of data that has to be stored and maintained in the
storage system, enabling greater scalability.



2. Fingerdiff

Our system model consists of a content-addressable
storage backend that is essentially a variable-sized chunk
store. Applications running on various clients periodically
update data objects such as files to the store using an ob-
ject server. This object server divides objects into variable-
sized data chunks usingfingerdiff and sends those chunks
that are identified as new in the update to the chunk store.

The application will communicate to the object server
apriori the exact specification of an object. The server then
maintains in itsfingerdiff driver, a separate tree for every
specified object. Examples of an object specification are
a single file, all files in one directory or any group of ran-
dom files that the application believes will share substantial
common data. All updates to a particular object will re-
sult in the driver comparing hashes of the new update with
hashes in the corresponding tree.

Typical variable-sized techniques, also referred to as
content-defined chunking(CDC) employ Rabin’s finger-
prints to choose partition points in the object. Using fin-
gerprints allowsCDC to “remember” the relative points at
which the object was partitioned in previous versions with-
out maintaining any state information. By picking the same
relative points in the object to be chunk boundaries,CDC
localizes the new chunks created in every version to regions
where changes have been made, keeping all other chunks
the same. As a result,CDCoutperforms fixed-sized chunk-
ing techniques in terms of storage space utilization on a
content-based storage backend[4].

However the variability of chunk sizes inCDC is rather
limited. Most chunks are within a small margin of error
of an expectedchunksizeparameter. Since this value de-
termines the granularity of duplicate elimination, the stor-
age utilization achieved byCDC is tied to this parameter.
By decreasing this parameter, we can expect better dupli-
cate elimination since new modifications will more likely
be contained in smaller sized chunks. However it has been
shown[5] that, reducing theexpectedchunksizeto fewer
than 256 bytes can be counter productive as the storage
space associated with the additional metadata needed for
maintaining greater number of chunks nullifies the effect
of storage savings obtained because of a smaller average
chunk size. Further, other than storage space overheads as-
sociated with maintaining metadata information about each
chunk (e.g., the hash key map), more number of chunks can
lead to other system dependent management overheads as
well. For example, in a distributed storage environment
where nodes exchange messages on a per chunk basis, cre-
ating a greater number of chunks is likely to result in more
network communication during both reads and writes.

Fingerdiff is designed to overcome the tension between
improved duplicate elimination and increased overheads

of smaller chunk sizes by improvising on the concept of
variable-sized chunks. It does this by allowing larger flex-
ibility in the variability of chunk sizes. Chunks no longer
need to be within a margin of error of an expected chunk
size. The idea is to reduce chunk sizes in regions of change
to be small enough to capture these changes, while keep-
ing chunk sizes large in regions unaffected by the changes
made.

For this purpose,fingerdiff locally maintains informa-
tion about subchunks- a unit of data that is smaller
than a chunk. Subchunks are not directly written to
the storage engine. Instead a collection of subchunks
are coalesced together into chunks whenever possible and
then the resultant chunk is the unit that is stored.Fin-
gerdiff assumes an expected subchunk size parameter (ex-
pectedsubchunksize) instead of the expected chunk size
parameter used inCDC. After calling aCDC implementa-
tion that returns a collection of subchunks,fingerdiffseeks
to coalesce subchunks into larger chunks wherever possi-
ble. A maxsubchunksizeparameter is used to determine
the maximum number of subchunks that can be coalesced
to a larger chunk.

For example, if an object is being written for the first
time, all its subchunks are new andfingerdiff coalesces
all subchunks into large chunks, as large as allowed by a
maxsubchunksizeparameter. If a few changes are made to
the object and it is consequently written to the store again,
fingerdiff consults a local client-side lookup and separates
out those subchunks that have changed. Consecutive new
subchunks are coalesced into a new chunk and written to
the store. Consecutive old subchunks are recorded as a
chunk or a part of a chunk that was previously written. To
incorporate the notion of chunk-parts,fingerdiff modifies
the metadata structures required to remember the chunks
associated with an object. Along with the hash of a given
chunk, metadata structures will also record the offset of the
chunk-part within the chunk and its size.

The key intuition here is that afingerdiff implementa-
tion can assume a lowerexpectedsubchunksizevalue than
the expected chunk size assumed in an implementation of
CDC. This is because after callingCDC, fingerdiff will
merge the resultant subchunks into larger chunks wherever
possible before writing them to the store. Thereforefin-
gerdiffcan improve duplicate elimination without incurring
the overheads of small-sized chunks. Further details of the
fingerdiff algorithm and our implementation can be found
in [1].

3. Experimental Framework

An important goal of this work is to measure the ef-
fectiveness of chunking techniques includingfingerdiff in
eliminating duplicates in a content addressable storage sys-



tem with specific emphasis on applications that write con-
secutive versions of the same object to the storage system.
But apart from storage space utilization, we also measured
the bandwidth utilization, the number of chunks generated
and other chunk related management overheads for differ-
ent chunking techniques. In this paper, we present the re-
sults for storage and bandwidth utilization. More detailed
results can be found in [1]

We used three classes of work loads to comparefin-
gerdiff with CDC. The first one,Sources, contains a set of
consecutive versions of source code of real software sys-
tems. This includes versions of gnu gcc, gnu gdb, gnu
emacs and the linux kernel. The second class,Databases
contains periodic snapshots of information about different
music categories from the Freedb database obtained from
www.freedb.org. Freedb is a database of compact disc track
listings that holds information for over one million CDs.
For our experiments, we obtained 11 monthly snapshots of
freedbduring the year 2003 for the jazz, classical and rock
categories. These snapshots were created by processing all
the updates that were made each month to thefreedbsite.
The third class,Binaries contains executables and object
files obtained by compiling daily snapshots of thegaim in-
ternet chat client being developed at http://sourceforge.net
taken from the cvs tree for the year 2004.

We use the following terminology to defineCDC and
fingerdiff instantiations:

• A cdc-x instantiation is a content defined chunking
strategy with anexpectedchunksizeof x bytes;

• A fd-x instantiation is a fingerdiff instantiation
with a expectedsubchunksize of x bytes and
maxsubchunksizeof 32 KB.

3.1. Total storage space consumed

We calculate storage utilization of a chunking technique
instantiation for a particular benchmark by storing consec-
utive versions of the benchmark after chunking it into vari-
able sized chunks using that instantiation.

The total storage space is calculated by adding the space
consumed by the benchmark data on the chunk store back-
end (backend storage utilization) and the lookup space re-
quired for a given benchmark on the object server (local
storage utilization). The backend storage space consists of
data and metadata chunks for the benchmarks along with
the cost of storing a pointer for each chunk. We calcu-
late this cost to be 32 bytes(20 bytes for SHA-1 pointers
plus 12 bytes to maintain variable-sized blocks). The lo-
cal lookup space is used on the driver to supportfingerdiff
andCDC chunking. This lookup is a tree that maps hashes
of subchunks of an object to information about that sub-
chunk. This tree resides in disk persistently, but is pulled

into memory when an object is being updated and has to
be partitioned. As can be expected, this tree grows as more
versions of the object are written to the store. We measure
the size of the tree for all ourfingerdiff instantiations. The
lookup space is measured as the total space occupied by the
lookup tree for each benchmark in the local disk.

Note that if a replication strategy is used for improved
availability, thebackend storage utilizationwill proportion-
ately increase with the number of replicas but thelocal
storage utilizationwill remain constant for any number of
replicas.

We limit theCDC instantiations for which we show re-
sults tocdc-2k, cdc-256, cdc-128, cdc-64andcdc-32. We
compare these with fivefingerdiff instantiations namelyfd-
2k, fd-256, fd-128, fd-64andfd-32. Note that many more
instantiations are possible, but we limit our presentation
in order to reduce the clutter in our tables and graphs,
while ensuring that the broad trends involved with chang-
ing chunk sizes are clear.

The storage space consumed by each chunking tech-
nique reflects the amount of storage space saved by lever-
aging duplicate elimination on the store. The technique
which best utilizes duplicate elimination can be expected to
consume the least storage space. Table 2 compares the to-
tal (backend+local) storage utilization achieved on account
of duplicate elimination after individually storing all our
benchmarks for all ten chunking instantiations.

For all benchmarks (exceptgaim) either fd-32 of fd-64
consumes the least andcdc-32the most storage. In case of
gaim fd-256consumes the least storage. Among theCDC
instantiations, eithercdc-128or cdc-256gives the best stor-
age utilization. Decreasing the chunk size ofCDC to 64 or
32 increases total storage consumption for all benchmarks.

However for most benchmarks, reducing the expected
subchunk size offingerdiff to 64 or 32 bytes helps us to
increase the granularity of duplicate elimination without
incurring the storage space overheads of too many small
chunks. The last column (% savings) in table 2 gives the
savings achieved by the bestfingerdiff(in most casesfd-32
or fd-64) instantiation over the bestCDC instantiation (ei-
ther cdc-128or cdc-256). In spite of the large number of
hashes for subchunks maintained infingerdiff drivers,fin-
gerdiff improves the storage utilization of the bestCDC .
For example,fd-32 improves backend storage utilization
of the bestCDC by a significant percentage for all bench-
marks that we measured. This improvement varied from
13% for gaim to up to 40% forgcc. The last row in ta-
ble 1 gives the total storage consumed after writing all the
benchmarks to the chunk store. Here, we observed thatfd-
64 gives the best storage utilization. It improves upon the
storage utilization of the bestCDC technique (cdc-128) by
25%.



benchmark cdc-2k cdc-256 cdc-128 cdc-64 cdc-32 fd-2k fd-256 fd-128 fd-64 fd-32 % saving

Sources
gcc 1414 866 828 859 979 1400 799 680 579 498 40
gdb 501 363 344 358 500 498 336 293 255 255 26

emacs 327 258 259 281 457 324 239 220 199 221 25
linux 1204 708 629 692 985 1195 644 520 469 543 23

Databases
freedb 396 348 369 442 644 370 396 317 291 290 17

Binaries
gaim 225 245 301 447 527 213 196 208 244 246 13
Total 4067 2788 2731 3079 4090 3999 2611 2238 2038 2052 25

Table 1. Comparison of the total storage space consumed (in M B) by the ten chunking technique
instantiations after writing each benchmark on a content ad dressable chunk store. The last column
gives the % savings of the best fingerdiff technique over the best CDC technique for each benchmark.

2
k

1
k

25664164

Chunk overhead

1
0

0
0

5
0
0

25664164

Chunk overhead

1
0
0
0

5
0
0

25664164

Chunk overhead

(gcc) (gdb) (emacs)

2
k

1
k

25664164

Chunk overhead

2
k

1
k

25664164

Chunk overhead

2
k

1
k

25664164

Chunk overhead

(linux) (gaim) (freedb)

 cdc-256

 cdc-128

 cdc-64

 fd-256

 fd-128

 fd-32

Figure 1. Comparison of the total network traffic (in MB) cons umed by six of the ten chunking
technique instantiations after writing each benchmark on a content addressable chunk store. The X-
axis of each graph is a log plot which gives the chunk overhead ; i.e the overhead in bytes associated
with transferring one chunk of data from the driver to the chu nk store. The network traffic measured
is between the object server and the chunk store. The Y-axis g ives the total network traffic generated
in MB after writing each benchmark to the chunk store.



3.2. Total network bandwidth consumed

Once the object server identifies the chunks that are new
in each update, it sends each new chunk to the chunk store
along with necessary metadata for each chunk. In our
model, this metadata must include the size of the chunk
(necessary to support variable sized chunks), imposing an
overhead of 4 bytes for every chunk that is sent. Based
on this we calculated the average bandwidth savings of the
bestfingerdiff technique over the bestcdc technique for all
benchmarks to be 40%.

However other models might require extra metadata.
For example, a model akin to the the low bandwidth file
system[3] where the server also maintains object informa-
tion might require the client to send the file descriptor along
with each chunk. Peer to peer architectures might require
the client to check the existence of each hash with the
chunk store[2]. In general, chunking techniques that gen-
erate more chunks will send more traffic over the network,
the exact amount of which will depend on the network pro-
tocol and the system model. Figure 7 illustrates the amount
of network bandwidth consumed by different instantiations
for all benchmarks for a varying amount of metadata traf-
fic overhead per chunk. For each benchmark the per-chunk
overhead is varied from 4 bytes to 256 bytes. Observe that
for all benchmarks, a chunk overhead as low as 4 bytes re-
sults in substantial bandwidth savings for the bestfingerdiff
instantiations over all theCDC instantiations. Note that to
preserve clarity of our graphs, we plot only 3 instantiations
from fingerdiffand 3 fromCDC. However note that we do
plot cdc-128andcdc-256which formed the most efficient
CDC instantiations for all benchmarks. Also observe that
the instantiations that generate more number of chunks (i.e
the CDC instantiations) consume more bandwidth as the
per-chunk overhead is increased from 4 to 256. We con-
clude thatfingerdiffsubstantially improves upon the band-
width utilization ofCDC.

4. Conclusions

Existing object partitioning techniques cannot improve
storage and bandwidth utilization without significantly in-
creasing the storage management overheads imposed on
the system. This observation motivated us to discover a
chunking technique that would improve duplicate elimina-
tion over existing techniques without increasing associated
overheads.

We have proposed a new chunking algorithmfingerdiff
that improves upon the best storage and bandwidth utiliza-
tion of CDCwhile lowering the overheads it imposes on the
storage system. We have measured storage and bandwidth
consumption along with associated overheads of several
CDC andfingerdiff instantiations as they write a series of

versions of several real-world software systems to a content
addressable store. For both these benchmarks, we show
thatfingerdiffsignificantly improves the storage and band-
width utilization of the bestCDC instantiation while also
reducing the rate of increase in storage overheads(fewer
number of chunks were written to the chunk store by the
bestfingerdiff instantiation than the bestcdc instantiation
for all our benchmarks).

Our contention is not that a particularfingerdiff tech-
nique is the best choice in all content based storage engines.
But, by allowing for greater variability of block sizes, and
by being able to better localize the changes made to objects
into smaller chunks,fingerdiff is able to minimize the size
of new data introduced with every update, while keeping
the average size of all chunks relatively large. This in turn
allows it to provide the best storage and bandwidth utiliza-
tion for a given amount of management overhead.

References

[1] D. Bobbarjung, C. Dubnicki, and S. Jagannathan. A tech-
nique to detect data duplicates. Technical report IR No.
05006, NEC Laboratories America, Inc., 2005.

[2] L. Cox, C. Murray, and B. Noble. Pastiche: Making backup
cheap and easy. InProceedings of Fifth USENIX Symposium
on Operating Systems Design and Implementation, Boston,
MA, December 2002.

[3] A. Muthitacharoen, B. Chen, and D. Mazieres. A low-
bandwidth network file system. InSymposium on Operating
Systems Principles, pages 174–187, 2001.

[4] C. Policroniades and I. Pratt. Alternatives for detecting re-
dundancy in storage systems data. InUsenix Annual Techni-
cal Conference, pages 73–86, 2004.

[5] L. L. You and C. Karamanolis. Evaluation of efficient
archival storage techniques. Inproceedings. of the 21st
IEEE Symposium on Mass Storage Systems and Technologies
(MSST), April 2004.


