
A Framework for Managing Inter-Site Storage Area Networks using
Grid Technologies

Fritz McCall

University of Maryland
Institute For Advanced

Computer Studies
fmccall@umiacs.umd.edu

Ben Kobler
NASA Goddard Space

Flight Center
ben.kobler@nasa.gov

Mike Smorul
University of Maryland
Institute For Advanced

Computer Studies
toaster@umiacs.umd.edu

Abstract

The NASA Goddard Space Flight Center and
the University of Maryland Institute for
Advanced Computer Studies are studying
mechanisms for installing and managing
Storage Area Networks (SANs) that span
multiple independent collaborating institutions
using Storage Area Network Routers (SAN
Routers). We present a framework for
managing inter-site distributed SANs that uses
Grid Technologies to balance the competing
needs to control local resources, share
information, delegate administrative access,
and manage the complex trust relationships
between the participating sites.

1. Introduction

1.1 A Background Introduction to SAN

Routing

SAN Routers that use protocols like iSCSI,
FCIP, and iFCP to interconnect geographically
distributed SANs over high-speed IP networks
are typically deployed to support business
continuity and disaster recovery for
applications that:
• Replicate data between data centers that

are connected over wide-area IP networks
in order to increase data availability or to
support efficient Disaster Recovery [1]

• Extend SAN connectivity within the data
center or to remote sites within a
metropolitan area using IP networks as a

ubiquitous interconnect for the purpose of
server clustering, LAN-free remote tape
backup, or remote data access. [1]

• Expedite adoption of networked storage by
reducing the cost of the equipment and
expertise needed to deploy a SAN
infrastructure based solely on Fibre-
Channel connectivity. [1]

Deployments like these represent the state-of-
the-art for SAN extension technologies in
production environments. Basic data transfers
for these applications proved to be scalable
and robust on 10-Gigabit networks with
transcontinental latencies during data transfer
exhibitions at SC2002 [2] [3].

There is also a growing interest in running
shared file systems over IP SANs between
geographically distributed sites in order to
support high-performance, data-intensive, and
grid computing. Although these applications
are much more experimental than those
described above, previous work presented at
MSST2003 demonstrated the feasibility of
running the CentraVision File System (CVFS)
and the Global File System (GFS) over IP
SANs that connected the Goddard Space Flight
Center, the University of Maryland, and the
Gilmore Creek Alaska Ground Station Facility
[4]. Related work at the San Diego
Supercomputer Center and on the Teragrid
showed the feasibility of running the Global
Parallel File System over 10 and 30 Gigabit-
Ethernet IP networks that connected the San

Diego Supercomputer Center (SDSC), the
National Center for Supercomputing
Applications (NCSA) and the show floors at
SC2003 and SC2004. [5]. In the past year,
both the Teragrid and the Distributed European
Infrastructure for Supercomputing
Applications began to deploy the first
production shared global file systems [6].

The Goddard Space Flight Center and the
University of Maryland maintain a test bed as
a continuation of the research presented at
MSST2003, and in order to support new
evaluations of shared file systems and IP SAN
technologies within the Metropolitan-Area

Network established by the Mid-Atlantic
Crossroads. Figure 1 illustrates our test bed.

Our test bed is built on McData Eclipse
Storage Routers installed at NASA Goddard
Space Flight Center (GSFC) and the
University of Maryland Institute for Advanced
Computer Studies (UMIACS). Each site has
existing high-end computing, data storage, and
visualization systems in order to support
experimentation on specific inter-site SAN
applications. GSFC and UMIACS are
connected with Gigabit Ethernet links through
the Mid-Atlantic Crossroads Meta-pop (MaX)
and high-speed wide-area connectivity through
Internet2.

Figure 1. The GSFC-UMIACS IP SAN Testbed

In our test bed, we are particularly interested in
developing mechanisms for managing IP
SANs that span multiple independent

administrative organizations, because
distributed administration has been a
particularly difficult aspect of our previous

work. Current management systems lack
mechanisms to establish strong authentication
and fine-grained trust between participating
sites. Instead, most command-line interfaces
provide just a few levels of authorization, such
as read-only, read-write or administrative
access. We also lack mechanisms to deal with
the dynamic nature of inter-site SANs in which
we assume that networks will change and sites
will occasionally reconfigure or expand their
environment. Finally, we need mechanisms
that can reduce the level of inter-site
coordination and administrative intervention
needed to configure and maintain IP SAN.

This paper presents a prototype management
system that allows participating sites to
delegate administrative authority for specific
administrative functions using secure Web
Services. We discuss the overall design of our
management system, its software components
and security model, and a sample
administrative application that will operate in
the GSFC-UMIACS IP SAN test bed.

1.2 Our approach: Applying grid
technologies to inter-site SAN management

The overall approach of our prototype
management system is to apply Grid-
computing technologies to the problem of
delegating administration and managing trust
between participants in an inter-site SAN.
Each site runs a management server that
supports remote procedure calls for two secure
web services: an “invocation” service that
allows authenticated users to invoke trusted
administrative scripts at remote sites and a
“rights” web service that applies fine-grained
authorization policies to allow or deny
authenticated user requests. Several
technologies are needed to secure the system:
all of its communications are encrypted using
the Secure Sockets Layer, and both of its web
services are secured according to the OASIS
Web Services Security Specification (WS-

Security). A Public Key Infrastructure (PKI)
identifies participating users, sites, and
services with X.509 certificates.

In practice, our system allows users to
remotely execute shared administrative scripts
through a command-line interface to the
Invocation Web Service in order to manage
systems at remote sites in an inter-site IP SAN.
Their requests are authenticated through the
Public Key Infrastructure and authorized by
the Rights Web Service that maintains the
database of the site’s trusted users and their
permissions. Our system also provides an
interface that allows each site to independently
define what administrative scripts they would
like to share with specific remote users.
Figure 2. Provides an overview of the major
software components in our management
system, their functionalities, and their
relationships.

The main goals of our prototype are to
demonstrate:

• methods for strong authentication and fine-

grained authorization that can support
distributed storage management,

• a software environment in which local sites
can retain control of their own resources
even while delegating some administrative
tasks to remote collaborators,

• tools to reduce the level of inter-site
coordination and administrative
intervention required to manage an IP SAN
that operates between collaborating but
independent organizations.

Our prototype addresses each of these goals
with software components that have been
implemented in the Grid Computing
community.

Figure 2. Software Components of the Management System

2. Description of Software components

2.1 The Management Server

The core of our system is the management
server, which handles all of the inter-site
management requests through its secure web
services, manages the authorization databases,
and executes the administrative scripts on
behalf of remote users. It is built on a Secure
Sockets Layer-enabled Apache Tomcat Server
[7] with Java 1.5 and the Unlimited Strength
Cryptography extensions from Sun
Microsystems. We configure Tomcat with a
number of software packages and security
enhancements to support:
• Secure transport based on mutually

authenticated connections through the
Secure Hypertext Transport Protocol
(HTTPS) in which both the client and the
server must present trusted X.509
certificates in order to communicate,

• Apache Axis- an implementation of the
Simple Object Access Protocol (SOAP)
recommendation to the W3C that we use as
a messaging layer to implement our Web
Services. [8]

• Apache WSS4J- an implementation of
WS-Security that we use to implement
message level security for our web
services. [9] [10]

• Security constraints within the Tomcat
server that limit access to the web services
to trusted users that have valid entries in
our authorization database.

The software configuration that supports
secure web services on the management server
is very similar to the Producer-Archive
Workflow Network’s (PAWN) Receiving
Server that was presented at MSST2005. [11]

The management server also hosts a MySQL
relational database management system [12] as
an authorization database. It contains a table
of authorized users, which we represent by
X.509 Subject Identifiers, and a table of
permissions that grant or deny those users
access to specific administrative scripts. Both
Tomcat and the Rights Web Service use these
databases to authorize user requests.

2.2 The Invocation Web Service

The invocation web service provides the
programmatic interface for our system’s

remote management capabilities. When a user
requests the remote execution of an
administrative script, the Invocation Web
Service processes the request as follows:
1. It receives the request as a SOAP message

over a mutually-authenticated and
encrypted SSL connection,

2. It uses WSS4J to ensure that the message is
secure. It confirms that the message is
signed by a valid X.509 certificate and that
it has not been tampered with in any way.

3. It calls the Rights Web Service to confirm
that the user is trusted and authorized to
call the requested administrative script.

4. It checks the requested scripts arguments
and inputs for disallowed characters or
potentially malicious strings.

5. It executes the requested script and returns
the standard output and error to the remote
user.

It also provides an interface with which users
can browse available scripts and an interface
that allows each site to manage the repository
of scripts that they wish to share.

2.3 The Script Repository

Our prototype administrative scripts are
written in Expect [13], because it provides a
convenient interface for configuring the
McData Eclipse Routers using their command
line interface through the telnet protocol.
Expect is an extension of tcl that is frequently
used by systems administrators to automate
complex configuration tasks through terminal
interfaces [14].

In our environment at the University of
Maryland, most administrative scripts are
implemented in Perl, Expect, or Shell Scripts,
and we wanted to ensure that local
administrators would be able to easily author,
check, and update the scripts as needed. Our
approach also allows us to share third-party
binary programs whose functionality we might
not be able to replicate in a home-grown

program. Administrators and vendors already
have existing tools for troubleshooting and
managing filesystems, SANs, and IP networks,
and we wanted to be sure that they could be
use in our environment whenever it was
possible and practical.

The careful development of administrative
scripts is an important aspect of the system’s
overall security model. The security model for
our administrative scripts is very similar to
Common Gateway Interface scripts, which can
be particularly vulnerable to input injection
attacks if they are not carefully written and
called. Given their administrative privileges
on the SAN routers, it is particularly important
that all of the shared administrative scripts be
carefully written and reviewed before they are
put into service.

2.4 The Rights Web Service

The rights web service provides the
programmatic interface to determine what
remote users and sites are authorized to access
each administrative script. It allows us to
associate certificate common names that
identify users with the scripts that they are able
to invoke through the invocation web service.

The rights web service’s is responsible for the
following steps:
1. It re-checks the validity of the client’s

certificate, even though the Tomcat server
has validated the certificate during mutual
authentication.

2. It checks that the client certificate is not
listed in the Certificate Revocation List
published by our Certificate Authority.

3. It extracts the Common Name from the
client’s X.509 certificate and queries the
database to be sure that it is listed as a
trusted user in our authorization database.

4. It ensures that the trusted user is authorized
to invoke the requested administrative

script by querying the permissions table in
out authorization database.

It should be noted that in a large grid
installation, something like the Community
Authorization Service would be a better choice
because it would support greater functionality
as an authorization system. However, we
implemented a more basic authorization
service because our test-bed is only intended to
support just tens of sites with a relatively small
number of test users.

2.5 The Classads Registry

We are also developing a central registry of
administrative information about the
distributed SAN based on the Classified
Advertisements (classads) library developed as
part of the Condor project at the University of
Wisconsin.[15] Classads allow us to
accurately describe resources in our distributed
SAN as well as policies that should govern
their use. The Classads language is particularly
attractive for our administrative registry
because it allows administrators at the
invocation site to control how their site is
described and the policy requirements for
using their resource.

3. Ongoing Deployment in GSFC-UMD Test
bed

3.1 A Sample Application

GSFC and UMIACS have developed and
tested the prototype management framework
and are in the process of deploying
management servers in their IP SAN test bed.
One of the main goals of this effort is to
demonstrate the ability of our software to grant
authority to a user so that he or she can
bootstrap access to a remote SAN device and
subsequently tear down that connection
without any administrative intervention. In
this section, we describe the configuration of
the management system in our test bed, and

our approach to delegate administrative control
of a SAN logical unit number (LUN) from the
test SAN at UMIACS to a user at GSFC.

3.2 Preparing the Local SAN environments
at UMD and GSFC

In order to prepare the existing SAN
environments for interaction with the new
management system, each site’s administrative
staff will need to complete the following tasks:

• Strictly partition shared SAN devices from

private SAN devices through a physical
reconfiguration or through Zone or LUN-
masking policies. Isolating shared
resources helps each site retain control and
ownership of their own systems. In this
configuration, no SAN-attached device can
ever be accessed by remote sites unless it is
manually configured into the shared zone.

• Storage Routers must be configured for
basic connectivity and functionality. Each
router needs a public Ethernet connection
that will communicate with other storage
routers to move data across the inter-site
SAN and a private Ethernet connection that
needs to be isolated and protected from
untrusted networks so that we can use it to
safely administer the SAN Router using
unencrypted protocols like Telnet or
SNMP.

• Register and configure a unique mSAN
identifier for each Storage Router and a
unique Zone identifier for each shared
SAN zone. Otherwise, identifier conflicts
can occur and iFCP connections will fail.

• The Management Servers needs to be
configured. It needs a public interface that
remote users can access and it needs to be
connected to the SAN router’s private
management network so that it can access
the SAN router’s command-line interface.
It also needs to be configured with the
router’s login username and password.

Figure 3. Preparing the GSFC-UMD SAN Test bed for our Management Software

Figure 3. illustrates how the test bed will be
prepared for our management system. In
particular, it shows the division of shared and
private SAN zones, as well as how the
management servers and participating hosts
connect to each other over IP networks and to
the SAN Routers. It also depicts the
separation of the private management network
at each site and the public network
connectivity between each site.

3.3 Manually Sharing LUNS between UMD
and GSFC

If we were to manually bootstrap an inter-site
SAN connection between zones at UMD and
GSFC without our management system in
place, we would take the following steps:

1. We would determine the IP address and
mSAN id of both the GSFC and UMIACS
SAN routers.

2. We would ensure that the SAN routers
have different mSAN ids.

3. We would agree on a common zone id to
represent our new inter-site SAN on both
storage routers. This zone id needs to
match for bi-direction connectivity within
the inter-site SAN, so this needs to be
agreed upon before any configuration takes
place.

4. Both sites would independently create a
new zone with the common zone id.

5. Both sites would connect their storage
router’s R_PORT with the SAN fabric that
they want to share, and associate the
R_PORT with the newly created zone.

6. UMIACS would add the GSFC SAN
Router’s IP and mSAN identifier to the

access control list for the iFCP connections
on our storage router, and we would
specify that we will share our new zone
over the connection.

7. GSFC would add the UMIACS SAN
Router’s IP and mSAN identifier to the
access control list for the iFCP connections
on our storage router, and we would
specify that we will share our new zone
over the connection.

This is what we have done in the past, and it is
easy to see how error prone this process can be
between multiple sites with so much
coordination of administrative information by
phone and email. We feel that the limitations
of these current management systems present a
serious barrier to developing large-scale inter-
site SANs.

3.4 Sharing LUNS between UMD and GSFC
using the Management System.

Our management system simplifies the setup
process significantly because it provides a
secure registry for all of the requisite
administrative information including IP
addresses, mSAN identifiers, and Zone
identifier for the participating SAN routers.
Administrators can browse the available
remote resources to support manual
configurations of existing resources and be
assured that they are choosing settings that will
not conflict with other sites. Scripts can access
the administrative information program-
matically to support automatic configuration of
new systems. In fact, new zones and SAN
routers that are installed into the framework
require even less coordination, because they
can register unique identifiers when they are
first installed.

The management system in our test bed will
also demonstrate dynamic reconfiguration of
the shared SAN. In the manual configuration
described above, sharing LUNs between

UMIACS and GSFC requires separate
administrative intervention on both sides of the
connection to share and unshare a LUN, and,
unfortunately, both administrators end up
running the same commands over and over
again on their respective SAN Routers.
Scripting these repetitive commands and
making them available to trusted users through
the Invocation Web Service enables users to
reconfigure the inter-Site SAN and to access
remote SAN devices as needed without any
administrative intervention. We are excited
about the possibilities for this type of dynamic
inter-site storage area network.

4. Summary

Our pilot system shows some ways in which
widely used web and Grid Computing
technologies can be successfully employed to
support the complex security issues and trust
relationships that arise in inter-site SAN
installations.

5. Acknowledgements

We would like to acknowledge the many
engineers at GSFC and UMIACS who have
supported this work, especially Hoot
Thompson, Bill Fink, Paul Lang, Mike Van
Opstal, Gary Jackson, Steve Willet, and Mike
McGann.

6. References:

[1] T. Clark, “Designing Storage Area
Networks: A Practical Reference for
Implementing Fibre Channel and IP SANs.”
Addison Wesley Professional, March 2003

[2] H. Yang, “Fibre Channel and IP SAN
Integration.” MSST 2005: 101-113

[3] Phil Andrews, Tom Sherwin, Bryan
Banister, “A Centralized Data Access Model
for Grid Computing”. MSST 2003: 280-289

[4] Hoot Thompson, Curt Tilmes, Robert
Cavey, Bill Fink, Paul Lang, Ben Kobler:
“Considerations and Performance Evaluations
of Shared Storage Area Networks at NASA
Goddard Space Flight Center.” MSST 2003:
135-145

[5] Phil Andrews, Bryan Banister, Patricia A.
Kovatch, Chris Jordan, Roger L. Haskin:
Scaling a Global File System to the Greatest
Possible Extent, Performance, Capacity, and
Number of Users. MSST 2005: 109-117

[6] Phil Andrews, Patricia A. Kovatch, Chris
Jordan: Massive High-Performance Global
File Systems for Grid computing. SC 20005:
53

[7] The Apache Tomcat Server,
 http://tomcat.apache.org/.

[8]The Apache Axis Project,
http://ws.apache.org/axis/

[9] The Apache WSS4J Project,
http://ws.apache.org/wss4j/

[10] A. Nadalin, C. Kaler, P. Hallam-Baker,
and R. Monzillo. Web Services Security: SOAP
Message Security, Oasis Standard 200401,
March 2004.

[11] Joseph JaJa, Mike Smorul, Fritz McCall,
Yang Wang: Scalable, Reliable Marshalling
and Organization of Distributed Large Scale
Data Onto Enterprise Storage Environments.
MSST 2005: 197-201

[12] The MySQL Database,
 http://www.mysql.com/

[13] Libes, D., "Exploring Expect: A Tcl-
Based Toolkit for Automating Interactive
Applications", O'Reilly & Associates, January
1995.

[14] Libes, D., "Using Expect to Automate
System Administration Tasks," Proceedings of
the Fourth USENIX Large Installation
Systems Administration (LISA), Colorado
Springs, CO, October 17-19, 1990.

[15] The Condor Project,
http://www.cs.wisc.edu/condor/

