
Content-Based Block Caching

Charles B. Morrey III and Dirk Grunwald
Dept. of Computer Science

University of Colorado, Boulder
Boulder, CO 80309-0430

March 13, 2006

Abstract

In this paper we propose a novel cache management
mechanism termed the Content-Based Buffer Cache. The
Content-Based Buffer Cache (CBBC) attempts to maintain
a single copy of any block in memory according to its con-
tents. In the presence of repeated content, this mecha-
nism increases the effective size of the buffer cache. Over-
heads for maintaining this extra state information are small
and bounded, providing an overall system performance im-
provement. Additionally, we eliminate writes to blocks
where the new and old content are the same, reducing pres-
sure on the I/O subsystems in the presence of these “Silent
Writes”.

We have logged traces of block-level disk access for a group
of workstations over a several month period using a mod-
ified Linux kernel designed to boot off of an iSCSI target.
We have analyzed single client access, as well as multi-
ple client access to distinct logical disks using a unified
block cache. There is significant replication of content
and significant numbers of “Silent Writes” within a sin-
gle workstation trace, improving the Content-Based Buffer
Cache read hit rate as much as 80% over the traditional
buffer cache design. We have also found that there is sig-
nificant sharing of contentbetweendisks, which benefits
content-based caching performance in the presence of a
unified cache. For our workloads, these results indicate
that content-based buffer caches dramatically improve I/O
performance when used to manage a cluster of similar stor-
age.

1 Introduction

Most, if not all, modern magnetic disk-based storage sys-
tems have some sort of DRAM buffer cache that is used
to improve performance of the I/O system. These buffer

caches reduce disk I/O by caching recently used blocks and
decrease write latency by buffering writes to non-volatile
storage. In addition, some storage systems use these buffer
caches to enable disk prefetching of content that is likely
to be referenced in the future. In large storage servers, the
disk buffer cache may be very large, ranging from 4-30GB.
Most operating systems also use a buffer cache to cache
disk blocks; the size of that buffer is usually adjusted dy-
namically to fill memory that is otherwise unused. In both
storage servers and operating systems, the size and man-
agement policy of the buffer cache is critical. If the cache
is too small or makes poor use of the buffer cache items,
there is little performance improvement.

Traditional buffer caches use anaddressto locate or index
blocks in memory. A large storage server may export sev-
eral logical disks or logical units (“LUNs”). These LUNs
may either share a common buffer cache or have private
caches. In either case, the blocks are simply addressed
by their location on the disk, and all cache maintenance is
done using that location as a unique identifier of the block.

In this paper we propose a novel cache management and in-
dexing mechanism termed theContent-Based Buffer Cache
(CBBC). The Content-Based Buffer Cache indexes blocks
in two ways – using the traditional address based index-
ing anda second indexing mechanism that summarizes the
content of a buffer cache block. The Content-Based Buffer
Cache maintains a single copy of any block in the cache ac-
cording to its contents. For reads, the Content-Based Buffer
Cache maintains address information to quickly locate a
block, if it exists, in the cache. To reduce evictions, when a
write occurs the cache addresses the block by its contents,
and only evicts something if the written block doesn’t exist
in the cache.

If many blocks have the same content, then storing only
one copy of the block in the cache increases the cache’s
effective size. More cache space reduces the number of
required cache evictions and thereby improves cache hit
rate for reads. Additionally we can avoid writing to the

disk if we know that the contents already on the disk are
identical to the content being written. We call these writes
“silent writes” because they can be safely eliminated with-
out changing the state of the disk contents.

The Content-Based Buffer Cache can improve buffer cache
utilization if identical data is written to different locations
within the same logical disk. It can also improve perfor-
mance if the same data is written to locations ondifferent
logical disks. For example, consider a cluster of clients
connected to several LUNs of a storage server in a storage
area network (SAN). If those clients have similar content
(e.g. access similar software or data), the content-based
buffer cache can maintain a single copy of that data across
all the clients.

Significant research has been done recently using content
tracking to improve performance of systems by trading
CPU time to compute hashes for other system resources
that are more precious ([1], [2], [3]). The Content-Based
Buffer Cache trades computation and asmall amount of
cache memory for its improved read hit rate, and elimina-
tion of silent writes.

The major contributions of this research include: a novel
cache management mechanism, Content-Based Buffer
Caching, which improves read hit rate by as much as 80%,
while maintaining small computational overheads, an in-
frastructure for logging complete system block-level disk
access (including swap partitions and the root system par-
tition) on a centralized server, and an analysis of traces ob-
tained over a several month period for a set of workstations.

The remainder of this paper is organized into five sections.
In Section 2 we examine the detailed cache implementation
and the logging mechanism and implementation. Section 3
describes and analyzes our workloads. We then discuss our
results in Section 4; in Section 5 we detail related work and
how it compares to our current research. Finally, we offer
some conclusions in Section 6.

2 Detailed Design and Implementation

We implemented the design of the Content-Based Buffer
Cache as a simulator to better explore the tradeoffs between
computation and space overheads of the content tracking,
and read hit rate. We developed two simulators. The first
uses counts of specific events to estimate performance. The
second uses the DiskSim [4] simulator to provide more ac-
curate timing estimates. DiskSim has a cache module that
models offset caches used in modern storage systems. This

Content Hashtable

8

5

9

2

0/0 0/3

0/81/2

1/5

1/8

10

9

8

7

6

0

5

4

3

2

1

Block Cache

0/2

LUN MAP 1

LUN MAP 0

8 8 5

8 95

2

Figure 1: Data structures used in the cache simulator.
Client accesses are handled by doing a lookup in the LUN
map at the appropriate offset, possibly updating the content
of the block cache and content hash table, and then serving
or writing the content in the block cache. LUN maps hold
only pointers to blocks in the block cache. content hash
table entries are a chained list of pointers to all blocks in
the block cache which hash to that hash entry. The block
cache entries contain the blocks themselves, and a list of all
LUN/offsets which point to that block. Additionally (not
shown), LRU information is kept in the block cache, so
block evictions can be done.

cache module was modified to implement the CBBS data
structures, while still maintaining accurate disk timing in-
formation. We used disk traces obtained over the course of
several months of logging to drive these simulations.

2.1 Cache Simulator

The cache simulator takes as input a trace of block accesses
(reads and writes) to one or more LUNs, a block cache size,
and the fraction to be devoted to content management. The
simulator reads the trace files in temporal order, performs
the buffer cache algorithms described below and records
statistics about specific events.

There are three main data structures created, as shown in
Figure 1. The first data structure is the LUN map. Each in-
stance of the LUN map represents the client system’s view
of that LUN. The LUN map can be implemented using any
mapdatatype; it is currently implemented using a binary
tree, with the leaves containing pointers to blocks in the
block cache. A traditional offset cache has each LUN map
entry point to a unique block cache entry. However, with
content caching, more than one LUN map entry can point
to a single block in the block cache. By recognizing when
blocks with different LUN offsets have the same content,
the cache can store a reference to a single cache block in
each LUN map entry.

The size of each LUN map is determined by the number
of valid entries in the block cache, and the access pattern
to that LUN. However, for content caching, the LUN map
could theoretically consume all cache space with LUN map
entries pointing to a single cache block. Currently, the
DiskSim implementation of the CBBC dynamically tunes
this tradeoff between cache blocks and LUN map refer-
ences automatically using the LRU algorithm. When the
cache is full and a new LUN map reference to an existing
cache block is needed, the LRU cache block’s LRU LUN
map reference is discarded. If LUN map reference eviction
causes all references to the LRU cache block to be freed,
then that cache block is freed as well, and its space becomes
available either for additional references, or reallocation as
a cache block.

The second data structure is the block cache itself. Each en-
try in the block cache consists of a 512 byte block, and a list
of LUN/offset pairs, (matching the LUN map references
described above), that are currently referencing that block.
These block cache entries are maintained in an LRU queue
of blocks that, as described above, is used when evicting
blocks or LUN map references; it is also possible to use
LRU approximations such as clock algorithms, which may

0 500 1000 1500 2000

0
50

00
15

00
0

25
00

0

Size of data, in bytes

T
im

e
fo

r
op

er
at

io
n,

 in
 c

yc
le

s
on

 P
en

tiu
m

−
4

SHA1
MD5
CRC32
memcmp

Figure 2: Time for various memory operations on a 2.4Ghz
Pentium 4 CPU, in number of processor cycles. For small
memory regions, the CRC32 hash is about as fast as a mem-
ory copy and significantly faster than the MD5 or SHA1
hashes.

be more space efficient. We would like to explore this in
future work. The size of the block cache bounds the num-
ber of blocks and references that can remain in memory,
affecting cache hit rate, and therefore performance. The ra-
tio of LUN/offset pairs to blocks is currently controlled en-
tirely by the LRU algorithm, and so by the request stream.
We will also be exploring fixing the ratio, or bounding the
maximum and minimums of the ratio to determine its effect
on overall cache performance.

Finally, the third data structure is the content hash table.
The content hash table only indicates that blocksmaycon-
tain the same values; we use a full bit-wise comparison of
the block to insure this is the case. If multiple blocks have
different contents, but thesamehash value, each block is
stored in a different block cache entry, and a pointer to each
block cache entry is stored in the chained list for that hash
value. Therefore, whenever new a block arrives, it is di-
rectly compared with all other blocks that hash to the same
hash value before it is inserted. Architecting the cache in
this manner allows us to control the tradeoff between the
number of full block comparisons which must be done on
insertion, and the cache space devoted to the content hash
table. By making bitwise comparisons to verify potentially
matching blocks indicated by hash values, we are able to
use inexpensive hash functions. Figure 2 shows the time
(measured in processor cycles) needed to hash or com-
pare regions of memory on a 2.4 Ghz Pentium 4. For a
512-byte memory block, the CRC32 hash takes about the
same time as a memory comparison (about 3500 cycles)
and about half the time of an MD5 hash and about a quar-
ter of the time of the SHA1 hash. Since we do not use the

hash value without checking for collisions of content, using
the CRC32 algorithm saves computational overhead versus
MD5 or SHA1.

Checking a new block for insertion is done by generating
a content hash of the block, and looking the hash up in
the content hash table. If there is no matching hash table
entry, then a new cache block to store the data is allocated
or reclaimed by LRU eviction, the LUN map is updated to
point to that block, and the content hash table is updated
with a new entry for the new block. If there is a matching
hash table entry, then each block pointed to by the chained
list of pointers is compared bitwise with the new block for
a match. If there is a match, then that block content already
exists in the cache and the LUN map is updated to point to
that new block. If there is no match, then a new cache block
to store the block is allocated or reclaimed, the LUN map is
updated to point to that block, and the content hash table is
updated with an additional entry for that content hash value
which points to the new block.

Reclaimation of blocks is done by evicting blocks from the
block cache using LRU order. Eviction is done by invali-
dating each LUN map entry that points to the evicted block
(via the list of LUN/offset pairs kept with the block in the
block cache), and then removing the evicted block from the
content hash table entry’s list of block pointers.

The bound on the time needed to insert a new block into
the cache is equal to the time necessary to calculate a
CRC32 hash plus the time required to compare each block
that collides in the hash table. Figure 4 is a plot of the
number of comparisons required versus different hash ta-
ble sizes. As the hash table consumes more of the available
cache space (i.e. the hash table gets a larger portion of a
fixed cache size), the number of comparisons required goes
down. Generally speaking, the number of these compar-
isons is directly affected by the size of the hash table, since
larger hash tables will have generally fewer collisions given
uniform hash function distribution. However, the overhead
of comparing blocks may not be significant – CPU compu-
tation is thousands of times faster than a disk access (and
the gap continues to widen). Assuming a random disk ac-
cess time of 10ms, more than 6,000 512 byte block mem-
ory comparisons can be done in the time required for a sin-
gle disk access. (Assuming a sequential transfer rate of 30
MB/s, the disk can transfer one block every 16us, which is
still greater than 10 comparisons per block transferred on a
2.4Ghz Pentium 4.)

The eviction time for clean blocks is bounded by the time
required to invalidate all LUN map entries. (e.g. on the
order of the amount of sharing for that block times the cost
of a memory operation). Content-Based Buffer Caching

reduces the number of dirty blocks by tracking silent writes
and not marking those blocks dirty. The current DiskSim
simulator implements write-thru caching, so not marking
blocks dirty implies directly reducing the number of writes
seen by the disk.

Figures 3 (a) and (b) describe the read and write operation
pictorially. The operation of CBBC for the case of a read is
described as follows:

The simulator checks the LUN/offset to see if there is a
valid cache entry for that offset. If there is a valid cache
entry, then that block in the block cache is returned, a “read
hit” is recorded, and that entry is moved to the top of the
LRU queue. If there is no valid cache entry, then the block
is read from disk and its content hash is computed. If this
value is in the hash table, then the contents of each block is
compared with the fresh block looking for a match.

If there is a match, then that block is updated with the
LUN/offset reference, it is moved to the head of the LRU
queue, a “read miss, content hit” is recorded, and the block
is returned. If no match is found, then a new block is in-
serted into the block cache (i.e. possibly evicting a block
if the cache is full) the LUN map is updated with the block
cache offset for the new block, the content hash entry list
is updated with the new block offset, a “read miss, content
miss” is recorded, and the block is returned.

The case for a write has more states: When the write
occurs, if there is already a valid cache entry at that
LUN/offset, the contents of the old block are compared
with the new block. If they are the same, then a silent write
is recorded, and nothing else occurs. If the contents differ,
then the number of LUN/offset references for that block is
checked. If this LUN/offset is the only reference to this
block, then the block can be replaced in place and a private
write is recorded. The old entry in the content hash must be
removed, and the hash of the new block must be checked.
If there is an entry for that hash, then those blocks must
be compared with the new block. If the contents of any of
those blocks match, then their LUN/offset lists are updated
with the new block’s LUN/offset, and the block cache en-
try for the old block is discarded. If none of the blocks
match, or if there are no blocks with which to compare,
then the block cache entry for the old block is reused. The
key feature of a private write is that no block with other
LUN/offset references is evicted, although a cache entry
might be freed because of a content hit.

If there is a valid cache entry at the LUN/offset for the
write, but the contents do not match and there is more than
one reference to the block in the block cache, then the con-
tent hash table is searched to see if the block is somewhere

Read LUN 0

offset 16

Check LUN

Map (0,16)

Read Block

in from disk

Compute Hash

of Block

Hashtable

Lookup

Iterate thru blocks

comparing contents

Add to

Hashtable

Grab empty

BPI,

Populate

with these

contents

Evict LRU

BPI

Add (0,16)

to refs for

the BPI in

Hashtable

Add BPI

location to

LUNMap

Promote BPI

to MRU

Return Data

to app

End

Buffer Pool Index < 0
Buffer Pool Index >= 0

NULL BPI List

No Match Contents Match

Buffer Pool Full Buffer Pool

Not Full

Write A to LUN

0 offset 16

Check LUN

Map (0,16)

Compute Hash

of A

Hashtable

Lookup

Iterate thru blocks

comparing contents

Add to

Hashtable

Grab empty

buffer from pool,

populate with

these contents;

sync to disk

Evict LRU

block

Add (0,16)

to backrefs

for the new

block

Add block

location to

LUNMap

Promote BPI

to MRU

Return to

app

End

Buffer Pool Index < 0

Buffer Pool Index >= 0

NULL BPI List

No Match Contents Match

Buffer Pool Full Buffer Pool

Not Full

Full Compare

block and A

Same Content

Different Content

Compute Hash of

block, lookup,

remove BPI Ref. in

Hashtable

Remove LUNMap Backref to

(0,16) from block

More Refs to BPI Last Ref Gone

Clear BPI

(a) Flowchart for read operation (b) Flowchart for write operation

Figure 3: Flowcharts showing the operations on the various data structures used to maintain the content buffer pool

else in the cache. If the block is elsewhere in the cache,
then a “LUN map hit, different content, multiple reference,
content hit” is recorded, the block cache entry for the old
block is updated to remove the reference to the LUN/offset,
and the block cache entry for the new block is updated to
reference the LUN/offset. No eviction is necessary in the
preceeding case. However, if the content is not found else-
where in the cache, then a “LUN map hit, different con-
tent, multiple reference, content miss” is recorded, a block
is evicted if the cache is full, and the new block is inserted
into the block cache.

If there is no valid cache entry at the LUN/offset, then the
content hash of the new block is computed and a lookup
is performed in the content hash table. If the new block’s
content hashes to an entry with valid block pointers, then

the content of each of the blocks is compared with the
new block to see if there is a match. If one of the blocks
matches, then its LUN/offset list is updated, it is moved
to the head of the LRU queue, and the LUN map is up-
dated to point to that block. This is a “LUN map miss,
content hit”, and does not require an eviction. If, on the
other hand, there is no valid entry in the hash table, or none
of the blocks matches, then a new entry is added to the con-
tent hash table, and a new block is inserted into the block
cache, evicting the least recently used block if the cache is
at capacity. This is a “LUN map miss, content miss”.

The statistics kept are outlined in Table 1. The various
statistics besides read hits and write hits are used to ex-
plain improved hit rates and detection of silent writes in
Section 4.

Read & Write Statistics Kept Costs a Disk I/O Causes an Eviction
Read Hit No No
Read Miss, Content Hit Yes No
Read Miss, Content Miss Yes Yes
Write Hit in LUN map, Different content, Multiple References, Content Miss Yes Yes
Write Miss in LUN map, Different content, Multiple References, Content Miss Yes Yes
Write Hit in LUN map, Different content, Multiple References, Content Hit Yes No
Write Miss in LUN map, Different content, Multiple References, Content Hit Yes No
Write Hit in LUN map, Different content, Single Reference, Private Write Yes No
Write Hit in LUN map, Same content, Silent Write No No

Table 1: Statistics maintained for the cache simulator. Multiple references implies that there are multiple LUN/offset
pointers pointing to the block which is at the current LUN/offset. A Content Hit is a block found elsewhere in the buffer
cache using the content hash table. Accesses which cause evictions only do so if the cache is at capacity.

2.2 Disk Logging Mechanism and Implementa-
tion

To test the hypothesis that content similarity exists at the
block level, and to enable greater manageability of our ex-
perimental lab machines we designed a system where each
workstation can network boot an iSCSI disk, which we then
record disk traces of. The central server we used to host the
iSCSI targets is a Pentium 4 2.4 Ghz server with 2.4 Ter-
abytes of RAID5 disk on two 3ware 7500 Escalade IDE
RAID cards.

To enable network booting, we installed bootPROMS con-
taining Etherboot code on each workstation’s network card.
We then modified an Linux initial ramdisk to include ether-
net drivers and the Cisco iSCSI initiator. Finally, we wrote
a small network server which accepts authentication from
clients (their MAC address in this case), and returns iSCSI
configuration information which the Cisco client uses to
connect and authenticate to its individual iSCSI target.

The Intel iSCSI reference implementation [5] provides an
iSCSI target as a user space process. Virtual disks are pro-
vided by exporting appropriately sized files or block de-
vices as the “backing store” for a virtual disk. In order
to obtain the block level read and write traces that we re-
quire, we instrumented the Intel iSCSI target to compute
the 128 bit MD5 hash of each block read from or written
to each logical unit (LUN). This provides a content-based
block “address” with very low probability of collision. The
target then writes a transaction log that contains informa-
tion about the blocks being read or written, time stamps
and content summary hashes. In addition, for write opera-
tions, we copy the actual data from the backing store to a
write log.

We were able to install Mandrake Linux 9.1 on a single

workstation, and then copy the contents of that disk to the
central server. We then simply copied the contents of the
disk repeatedly to serve up disks to each client workstation.
We also used VMWare 3.2 under Linux to install Windows
2000 on an iSCSI target as well because we could not get
Windows booting directly off of a network attached iSCSI
target as its system disk.

3 Trace Description and Analysis

For our experiments we used 10 workstation machines con-
figured with between 128MB and 512MB of RAM, and ei-
ther Pentium III, IV or Athlon processors running between
500 Mhz and 2.4 Ghz (Disks 1-10 in Table 2). All worksta-
tions were configured with full-duplex switched 100base-T
Ethernet connections to the central server. We also used a
dual processor Pentium III with 512 MB of RAM running
Mandrake 8.0, VMWare 3.2, and Windows 2000 to trace
Windows disk usage (Disk “win2k” in Table 2).

We make a distinction between “disks” and “traces”. Each
workstation used an emulated disk. The activity in each
disk was divided into 24-hour intervals, and each of these
logs is a “trace”. Because of this we record the number of
repeated writes within a single trace (i.e. only for each 24
hour period). In reality, a system may run for months at a
time and one of our systems was left up and used for dura-
tion of trace collection. The Content-Based Buffer Cache
will track repeated content from one day to the next in a
real implementation, implying that the results shown in this
paper are under-estimates of the true degree of shared con-
tent.

To obtain the data in Table 2 each trace was scanned. A
read or write was counted whenever the operation per-

Average Operations Per Day (or Trace)
Disk # Writes Repeated Writes Zero Block Writes Reads # of Days
1 1,476,573 1,265,093 66,781 105,227 13
2 1,545,183 1,322,575 75,710 71,898 14
3 1,556,154 1,332,916 72,537 56,449 14
4 780,208 670,227 36,983 82,446 12
5 628,096 540,547 29,431 89,734 3
6 1,432,974 1,227,173 70,582 92,678 14
7 1,174,403 1,006,937 53,712 92,761 8
8 1,251,825 1,071,016 63,778 170,958 5
9 657,768 532,934 69,530 168,617 26
10 603,793 407,582 59,448 418,060 45
win2k 142,932 69,280 2,895 3,087 16

Table 2: Workloads used in evaluation of content buffer cache. Eachtrace is the activity from a specificdisk for a single
day. Reads and writes are in 512 Byte blocks. Zero Block Writes are the number of 512 byte writes where the content of
the block was all zeros, and is included in the repeated writes statistic. All accesses are averages over the number of days
given. Individual traces were used in simulations.

formed in the trace was a read or write respectively. Ad-
ditionally, whenever a block reappeared during a write, we
recorded a repeated write as well. Finally, because it was
the most numerous block in each trace by a significant frac-
tion, we recorded the number of times the block containing
all zeros was written out as Zero Block Writes.

4 Results and Analysis

A cache is a buffer for bursty writes, and keeps recently
accessed data available for read traffic. If there are a suf-
ficient number of clean cache entries, writes are processed
without slowing down clients, howeveranycache miss on
read results in a synchronous disk access. Thus, to a first
approximation, thecache read hit rateshould be a good
indication of the performance of one caching policyvs.an-
other. However, simply using the read hit rate ignores the
access costs of disk drives.

To give an upper bound on caching effectivness, we looked
at the 24 hour trace with the most read requests. That trace
has 2,388,744 reads. With no caching, and assuming that
each disk request would incur a random seek1, the user per-
ceptible stall time where every read request is serviced by
the disk is 6.63 hours; if we use a 64MB cache and offset
caching, the time is 6.10 hours. With the same sized cache
and content-based caching, the stall time is 4.98 hours. As a
lower bound, if all missed blocks were transferred sequen-
tially off the disk in one large transfer, disk transfer time

1Estimated as 10ms

is then equal to the size of the transfer times the maximum
sustained throughput. Assuming a maximum sustainable
throughput of 30 MB/s, then the transfer time will be 39
seconds if no cache is used. If a 64MB offset-base cache
is used, fewer reads would need to be done, and the re-
sulting transfer time would be 36 seconds. With a 64MB
cache and the CBBC policy, only 29 seconds are needed.
A real cache with real disk operations will lie somewhere
in between these two extremes.

To understand the design decisions in the CBBC and to
provide performance estimates for an actual implementa-
tion, we present a number of performance metrics. First,
we show the effect of varying the hash size on the num-
ber of collisions in the CBBC hash table. Using a small
hash table takes less memory, but results in more bit-by-bit
comparisons of colliding blocks.

Next, we show the change in read hit rates when a single
trace is used and then the change in read hit rate when mul-
tiple traces are combined to simulate simultaneous use of
the cache. The content buffer cache algorithm can improve
the utilization of the buffer cache by discovering content
reuse within a single access stream or across multiple ac-
cess streams. In our implementation, each LUN, or logi-
cal unit, is an independent access stream; we merge these
streams to simulate the interaction of multiple concurrent
users of the storage server. We first show that the content
buffer cache algorithm is useful even when used by a single
access stream, and then analyze the interaction of multiple
access streams.

As discussed, the read hit rate may not indicate the mag-
nitude of the performance improvement; it is possible that

offset based caching causes few seeks and thus has a lower
stall time than CBBC. Rather than use an abstract metric in-
dicating spatial locality in the set of blocks written to disk,
we implemented the CBBC algorithm in the DiskSim disk
simulator. This allows us to directly compare the stall time
induced by the different caching policies.

4.1 Effect of Hash Size On Comparisons

When an offset miss occurs in the cache, the block that
will be associated with that offset (i.e., either the block read
off disk for that offset, or the block to be written there)
must be compared to each block that has the same content
hash. We call these “full comparisons”. As discussed in
Section 2, there is a tradeoff between the size of the content
hash table and the number of full comparisons required to
insert a new block into the cache. This tradeoff is plotted
for a sample workload from disk 10 for several cache sizes
in Figure 4. While it appears there is some dependence
on cache size, the overwhelming factor for determining the
number of full comparisons required for a trace is how large
a hash is used, because this directly controls the number of
collisions to a single hash bucket. In Figure 5 the effect
of the changing hash table size versus the system-wide idle
time is plotted. The idle time for each simulation for each
hash table size is compared to a simulation with an ideal
content hash table that uses a separate dedicated space for
the content hash (i.e. has no hash table overhead). From
this graph, it seems that using the smallest hash table size
(1/128th of the cache size) yields the performance closest
to ideal (all of the cache sizes’ performance were within
10% of the ideal case). We chose 1/64th of the cache size
for hash table space to balance the tradeoff between full
comparisons and change in simulation idle time. But this
balance will be more fully explored in future work.

4.2 Read Hit Rate For Single LUN

We simulated workloads for all of our traces (See Table 2),
at cache sizes of 32, 64, 128, 256, 512, and 1024 MB. We
used 1/64th of this for a content hash table for all our sim-
ulations.

The results for a single logical unit are not uniform. Off-
set based caching had a higher read hit rate (i.e. better
performance) at very small cache sizes (32 and 64 MB)
where the overhead for the the CBBC datastructures sig-
nificantly reduced the number of data block entries. When
the cache size was large enough that the workload working
set fit in the cache and there were no evictions, both off-
set and content based caching achieved the same read hit

6

8

10

12

14

0 1/100 1/10 1
Content Hashtable Size (Fraction of Cache Size)

N
u

m
b

er
 o

f
F

u
ll

C
o

m
p

ar
is

o
n

s
P

er

C
ac

h
e

O
p

er
at

io
n

16 MB
32 MB
64 MB
128 MB
256 MB
512 MB
1024 MB
2048 MB

Figure 4: Number of full comparisons required due to col-
lisions in the hash tablevs.hash table size for a given cache
size.

0

10

20

30

40

50

60

70

80

90

100

0 1/100 1/10 1
Content Hashtable Size (Fraction of Cache Size)

Id
le

 T
im

e
R

el
at

iv
e

to
 Id

ea
l

16 MB

32 MB

64 MB

128 MB

256 MB

512 MB

1024 MB

Figure 5: Trace Idle time relative to content caching wi-
htout cost of hash table (an idealized case)vs. hash table
size for a given cache size. More idle time indicates better
performance and capacity for additional disk traffic.

Read Hit Rate
CacheSize Offset-Based Content-Based

32 3.4% 3.2%
64 1.8% 11.2%
128 8% 25%
256 33.5% 46.9%
512 56.0% 63.7%
1024 65% 65%

Table 3: 512 byte block reads hit rates, for several cache
sizes for a single trace. The Offset-Based Caching is the
traditional private LRU cache which uses no content in-
formation to determine what to evict and what to keep
around. The Content-Based Caching is our new algorithm
which uses a content hash table to keep only single copies
of blocks in memory. Both percentages are relative tono
caching at all.

rate. In this situation, content caching would incurr more
CPU overhead with no improvement in read hit rates. How-
ever, when the cache size was large enough that the CBBC
data structures were not a bottleneck, and the workload was
of sufficient size to cause evictions, Content-Based Buffer
Caching produced consistently better read hit rates.

For example, the statistics for workload for Disk 10, Day
14, are listed in Table 3, and follow the model outlined
above precisely. At 32MB, the offset cache has a higher
hit rate because it has significantly more cache entries than
the content based cache. However, between 64MB and
512MB, the content based cache outperforms the offset
based cache. Finally, when the cache space outstrips the
workload, both caches only miss on cold-start misses. This
particular example shows that the CBBC policy can in-
crease the read hit rate by≈80%; the change in read hit
rate for different traces ranges between≈-5% to≈100%.

4.3 Read Hit Rates For Multiple LUN’s

When a second LUN is added, Content-Based Block
Caching provides even better performance than the single
LUN case when compared to offset-based caching. We
chose a random subset of the pairs of traces, and ran the
same simulation as the single LUN case (i.e. cache sizes
of 32, 64, 128, 256, 512, and 1024 MB, 1/64th of this for
content tracking.)

Because the number of I/O operations was proportionally
larger with two traces, we more frequently encountered the
results described for the single LUN case. Figure 6 shows
this performance for a single two disk trace. Notice the bars

Cache Size (in MB)
32 64 128 256 512 1024

R
ea

d
H

it
R

at
e

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Offset Hit Rate
Content Hit Rate

Figure 6: 512 byte block reads hit rates, for several cache
sizes. The Offset-Based Caching is the traditional private
LRU cache which uses no content information to determine
what to evict and what to keep around. The Content-Based
Caching is our new algorithm which uses a content hash
table to keep only single copies of blocks in memory. Both
percentages are relative tonocaching at all.

at 256MB. Here, the content-based cache has extra cache
entries and does not evict any blocks, while the offset based
cache continues to evict content.

We also noticed that several traces which did not produce
interesting cache behavior individually produced good read
hit rate performance for content-caching when combined.
This is the case for Figure 6 as each trace individually does
not benefit from the content based cache.

We did not record how frequently blocks that were shared
across multiple LUN’s were accessed. This will be ex-
plored further in future work. However, by simply hav-
ing references in multiple LUNs, we know that sharing
between LUN’s was occuring, and that the percentage of
shared blocks at eviction time are significant.

4.4 Impact of Cache Policy on Disk Subsystem

Finally, for the same set of randomly chosen two disk sim-
ulations, we recorded the average response time, and the
total simulation idle time using the DiskSim cache imple-
mentation.

Figure 7 shows distributional data for difference in sys-

O−16 O−32 O−64 O−128 O−256 O−512 O−1024 O−2048

0
2

4
6

8
10

12

Global Offset Cache without Silent Write Detection Sizes (MB)

R
el

at
iv

e
S

ys
te

m
 A

ve
ra

ge
 R

es
po

ns
e

T
im

e

Figure 7: Boxplots showing the distribution of difference
in average system response times between the offset and
content based caching policies for a random sampling of
dual trace runs at specific sizes of caches. The simulations
using the different policies were run, and the results for av-
erage system response time (average time in milliseconds
for a read or write) for content based caching were sub-
tracted from results for offset based caching for that run.
For example, the boxplot labeled “O-256” shows the distri-
bution for the performance difference between content and
offset caching with a 256MB cache. The boxplot shows
the min, max, median and inter-quartile range of the data.
The circles above each plot are outliers that are more than
1.5 times the value of the interquartile range of the box.
For this metric, content based caching outperforms offset
caching at all cache sizes.

tem response time for many different combinations of two
traces for different cache sizes. For each simulation, the
offset cache average system response time (average time
for a read or write to complete) was subtracted from the
content cache average. The content cache average response
time performs an average of at least 1ms better across all
simulations, and in some cases has huge performance im-
provement.

Figure 8 shows distributional data for difference in simula-
tion idle time for the same set of two trace simulations as
the system response time results above. For each simula-
tion, the content cache simulation idle time was subtracted
from the offset cache idle time. Simulation idle time takes
into account the variance in individual requests, (which the
average system response time graph does not demonstrate),
showing how much additional traffic the cache could sup-
port before the cache becomes saturated. Again, for all
cache sizes, content based caching outperforms traditional
offset caching by a significant amount, having an average
of at least 10 seconds of additional idle time for simulations
that had between 400 and 700 seconds of disk activity over
a 24 hour period.

5 Related Work

There is a long history of work on caching. There is work
related to choosing the correct algorithm to achieve the best
caching performance [6, 7, 8, 9]. Most of this work is or-
thogonal to work presented in this paper. Because Content-
Based Block Caching aims toreduceevictions, it can take
advantage of improvements in replacement algorithms just
as a normal offset indexed cache can.

However, in [9], the issue of second level caching is
brought to light, and investigated. We believe the Content-
Based Block Cache may exhibit some of the qualities of a
second level cache since the size of the buffer caches we
are simulating are similar to the available memory in the
systems we measured when collecting our traces. We will
be exploring this further in future work, but we believe that
Content-based caching should helpall cache management
mechanisms.

Previous work, more closely related is the work done in-
vestigating using compression to increase available cache
space [10, 11, 12, 13]. In this work, the consistent theme
is trading compression cost for space. There is a severe
penalty if the working set of the application using the cache
outgrows the uncompressed area and must continuously
compress and uncompress data to get work done, however

O−16 O−32 O−64 O−128 O−256 O−512 O−1024 O−2048

0
10

00
0

20
00

0
30

00
0

Global Offset Cache without Silent Write Detection Sizes (MB)

R
el

at
iv

e
S

ys
te

m
−

W
id

e
Id

le
 T

im
e

Figure 8: Boxplots showing the distribution of difference
in simulation idle times between the content based and off-
set based caching policies for a random sampling of dual
trace runs at specific sizes of caches. The simulations us-
ing the different policies were run, and the results for total
simulation idle time (time in milliseconds that the disk sub-
system was completely idle) for offset based caching were
subtracted from results for content based caching for that
run. For example, the boxplot labeled “O-256” shows the
distribution for the performance difference between con-
tent and offset caching with a 256MB cache. The boxplot
shows the min, max, median and inter-quartile range of the
data. The circles above each plot are outliers that are more
than 1.5 times the value of the interquartile range of the
box. For this metric, content based caching outperforms
offset caching at all cache sizes.

if the working set is within the limits of the cache, com-
pression caching can increase apparent cache size. Com-
pressing is orthogonal to using content to increase available
cache size. We can take advantage of progress in this area
in our caching scheme.

5.1 Block Systems Relying on Hashing

Farsite [14] is a distributed serverless file system designed
to take advantage of growing workstation disk space in an
enterprise network. It uses a database of hashes of files to
locate and coalesce duplicate files in the system. Farsite
does this coalescing to reduce disk space in the presence
of replication for fault tolerance. In previous work [15],
Bolosky et al. recorded file system traces of 550 Windows
desktops and found that nearly 50% of space could be re-
covered by removing duplicatefiles. Content-Based Block
Caching is not intended to cache the content of 550 ma-
chines, but saving 50% of the consumed space while only
comparing data at the file granularity is further indication
there is likely to be repeated content to be coalesced when
caching multiple disks from similar systems.

Venti [1] is a system that uses hashes of blocks to coalesce
writes to the actual data store to save space. Venti uses a
block cache to store recently used hash to block transla-
tions. When a request comes in for a particular fingerprint,
it is looked up in this block cache first. The Content-Based
Block Cache maintains both a cache indexed by content
similar to Venti, and the mappings both to the LUN map,
and to the physical storage location. The Venti cache forces
the user of the system to manage name to fingerprint map-
pings, and stores the block archivally instead of at the loca-
tion indicated by the name. (For example, in Venti, to lo-
cate a file, the user must provide the hashes of the blocks of
that file to the server, and the blocks are returned. Whereas
in Content-Based Block Caching, all that is necessary is a
LUN and offset and the block is returned. The block is
stored at that LUN and offset on the physical disk, im-
proving spacial locality of reference for reading multiple
blocks not already in the cache.) Because of these map-
pings, Content-Based Block Caching could become a drop-
in replacement for a higher level cache such as the Linux
Buffer Cache, without sacrificing backwards compatibility.
We will be exploring this in the future.

LBFS [2] describes using “semantic block boundaries” to
collapse chunks of files which are the same to reduce write
bandwidth. Whenever a file is written, the server com-
putes block boundaries not based on offset in the file, but
rather by using a fingerprinting mechanism which has a rea-
sonably small output space. (They use Rabin Fingerprint-

ing [16] in the paper.) Eachbytein the file is incrementally
added to the potential block, and then the fingerprinting al-
gorithm is run on that block. If the fingerprint output is
some pre-chosen magical number, then that offset is out-
put as the block boundary, and a new block is begun. The
interesting property the author’s claim is that insertionsor
deletions in the middle of a file do not cause global changes
to the blocks after that block in the file. Instead, there is a
local change to that block, either producing two blocks, or
combining a previous block with that block, but otherwise
none of the other blocks in the file will change. This is im-
portant for the LBFS implementation because they are us-
ing the MD5 hash of the resultant “semantic block” to save
bandwidth between client and server by not sending blocks
which haven’t been altered when a file is written out.

Farsite, Venti, and LBFS are examples of “Compare By
Hash” [17]. By addressing blocks using a hash of the
block’s contents these systems are relying on the even dis-
tribution of block to hash translations in the hash space to
ensure that there are no hash collisions. Content-Based
Block Caching does not rely on collision-free hash algo-
rithms for correctness. Blocks are compared byte-wise to
determine if they are the same or not when they hash to
the same hash value. The hash table is used as a hint that
there is something else already in the cache which might
be the same. Because of this, the system can get by with a
much smaller hash table than would otherwise be required,
further reducing the space overhead of coalescing.

6 Conclusions and Future Work

For single logical disks, content-based block caching can
reduce disk accesses by as much as 80% over traditional
offset-based caching mechanisms, with manageable space
and time overheads in the form of the content hash table
size and full comparison costs. Additionally, for multiple
logical disks, content-based block caching has improved
read hit rates, significantly improved average system re-
sponse times and more simulation idle time relative to off-
set caching. The Content-Based Block Cache has the ad-
ditional savings of silent writes which traditional caching
mechanisms do not provide.

Our current set of disk traces has very light workload
characteristics (400-600 seconds of disk activity over 24
hours). Our next disk tracing infrastructure will be based
on the Xen Virtual Machine Monitor in order to more scal-
ably trace large numbers of workstations. We plan to in-
clude large transactional workloads such as webserver or
database workloads in our test suite to more fully exert the

cache at higher loads.

We would like to explore other cache replacement poli-
cies besides LRU. In particular, the Multi-Queue algorithm
proposed in [9] may perform well. We are also plan-
ning to implement the Content-Based Block Caching al-
gorithm in a real system, to evaluate speedup due to im-
proved cache hit rate, and better tune parameters such as
content hash bitsize, and LUN Map data structure choice.
Finally, we have a disk-related projectPeabody[18] for
which Content-Based Block Caching forms a complemen-
tary caching front-end, and we hope to integrate the two
and evaluate the performance of the complete system.

References

[1] S. Quinlan and S. Dorward. Venti: a new approach to
archival storage. InFirst USENIX conference on File and
Storage Technologies, Monterey, CA, 2002.

[2] Athicha Muthitacharoen, Benjie Chen, and David Mazieres.
A low-bandwidth network file system. InSymposium on
Operating Systems Principles, pages 174–187, 2001.

[3] John Kubiatowicz, David Bindel, Yan Chen, Patrick Eaton,
Dennis Geels, Ramakrishna Gummadi, Sean Rhea, Hakim
Weatherspoon, Westly Weimer, Christopher Wells, and Ben
Zhao. Oceanstore: An architecture for global-scale per-
sistent storage. InProceedings of ACM ASPLOS. ACM,
November 2000.

[4] Parallel Data Lab CMU. Disksim simulation environment
v3.0. http://www.pdl.cmu.edu/DiskSim.

[5] Michael Mesnier. Intel iscsi reference implementation.
http://sourceforge.net/projects/intel-iscsi/,
Dec 2001.

[6] L. A. Belady. A study of replacement algorithms for a vir-
tual storage computer.IBM Systems Journal, 5(2), 1966.

[7] Theodore Johnson and Dennis Shasha. 2Q: a low over-
head high performance buffer management replacement al-
gorithm. InProceedings of the Twentieth International Con-
ference on Very Large Databases, pages 439–450, Santiago,
Chile, 1994.

[8] Donghee Lee, Jongmoo Choi, Jong-Hun Kim, Sam H. Noh,
Sang Lyul Min, Yookun Cho, and Chong-Sang Kim. On the
existence of a spectrum of policies that subsumes the least
recently used (LRU) and least frequently used (LFU) poli-
cies. InMeasurement and Modeling of Computer Systems,
pages 134–143, 1999.

[9] Yuanyuan Zhou and James F. Philbin. The multi-queue re-
placement algorithm for second level buffer caches. InPro-
ceedings of the 2001 USENIX Annual Technical Conference,
Boston, MA, June 2001.

[10] Fred Douglis. The compression cache: Using on-line com-
pression to extend physical memory. InUSENIX Winter,
pages 519–529, 1993.

[11] Paul R. Wilson, Scott F. Kaplan, and Yannis Smaragdakis.
The case for compressed caching in virtual memory sys-
tems. In USENIX Summer Conference, pages 101–116,
Monterey, CA, June 1999.

[12] S. Kaplan. Compressed caching and modern virtual memory
simulation, 1999.

[13] Toni Cortes, Yolanda Becerra, and Raúl Cervera. Swap
compression: resurrecting old ideas.Software Practice and
Experience, 30(5):567–587, 2000.

[14] A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken,
J. R. Douceur, J. Howell, J. R. Lorch, M. Theimer, and R. P.
Wattenhofer. Farsite: Federated, available, and reliablestor-
age for an incompletely trusted environment. InProceedings
of the 5th OSDI, Boston, MA, December 2002.

[15] W. J. Bolosky, J. R. Douceur, D. Ely, and M. Theimer. Fea-
sibility of a serverless distributed file system deployed on
an existing set of desktop pcs. InSIGMETRICS 2000, pages
34–43, Santa Clara, CA, June 2000.

[16] Andrei Z. Broder. Some applications of rabin’s fingerprint-
ing method.Sequences II: Methods in Communications, Se-
curity, and Computer Science, pages 143–152, 1993.

[17] Val Henson Sun Microsystems. An analysis of compare-by-
hash. InHot Topics in Operating Systems IX, Lihue, Hawaii,
May 2003.

[18] Charles B. Morrey III and Dirk Grunwald. Peabody: The
time travelling disk. InProceedings of the 20th IEEE/11th
NSASA Goddard Conference on Mass Storage Systems and
Technologies, MSST2003, San Diego, CA, April 2003.

