SMARTMIG: Risk-Modulated Proactive Data Migration for Maximizing Storage

System Utility
Li Yin Sandeep Uttamchandani Randy Katz
Univ. of California, Berkeley IBM Almaden Research Center Univ. of California, Berkeley
yinli @eecs.berkeley.edu sandeepu@us.ibm.com randy@eecs.ber keley.edu

Abstract

The goal of storage management is to maximize the
overall utility of the storage system by continuously tuning
the amount of resources allocated to multiple independent
competing applications. Due to variations in access char-
acteristics, service level objectives, and exception events
such as failures and load surges, there is a need to invoke
corrective actions such as data migration to modify the re-
sources allocated to a given application. There is a signifi-
cant body of research on automated data migration — their
focus has primarily been on optimizing for the current sys-
tem load without considering load forecasts; the schedul-
ing of the migration operation today is currently heuristic
and coarse-grained; finally, there is a need to factor in pre-
diction inaccuracies and migration data-size (referred to
as risks) in the decision-making.

This paper proposes SMARTMIG: a framework for op-
timizing the storage utility by proactively scheduling data
migration using time-series forecasts. SMARTMIG gener-
ates several plans for what data to migrate, where to mi-
grate, how to migrate (i.e., the migration speed), and when
to migrate. These plans are generated using constraint op-
timization, and their selection is modulated by risk analy-
sis of the prediction accuracy and the migration overheads.
For the experimental evaluation of SMARTMIG, we devel-
oped a detailed storage system simulator, and analyzed the
quality of migration decisions made in different scenarios.
Our results show that for a significant percentage of sce-
narios, SMARTMIG in a automated fashion minimizes the
utility loss by 80% compared to no action invocation.

1. Introduction

Growing consolidation of storage systems necessitates
resource sharing among multiple competing applications
with different access characteristics and Service Level Ob-
jectives(SLOs). The goal of storage management is to
maximize the overall utility, by intelligently allocating the

available storage resources among the applications based
on their priorities and usage characteristics — the resource
allocation decision is not a one-time task but rather needs to
be continuously optimized for changes in the application’s
10 characteristics, changes in SLOs, occurrence of excep-
tion events (such as failures and load surges). Changing the
resource allocation at run-time is accomplished by invok-
ing corrective actions such as throttling, migration, replica-
tion and hardware provisioning. The domain of this paper
is using data migration as a corrective storage management
action.

Automated invocation of data migration is an area of
ongoing research — it requires deciding what data-set to
migrate, where to migrate, when to migrate, and how to
migrate (the migration speed). There are several research
projects [6, 18, 12] and commercial tools [2] that assist in
deciding what data-set to migrate, where to migrate and
the migration speed. However, existing techniques have
the following limitations. First, decision-making is typi-
cally optimized for improving only the current system state
rather than taking into account the forecasted trends in sys-
tem load and workload usage. This limits the invocation
of migration until after the SLOs are violated, rather than
proactively preventing the violation from happening. Sec-
ond, migration has been traditionally treated as a back-
ground task that is invoked at night when the system is
lightly loaded. However, in utility-based computing, mi-
gration can be scheduled as a foreground task to correct re-
source bottlenecks for high priority applications. This ne-
cessitates techniques to decide when to schedule migration.
Third, migration incurs the cost of moving Tera-bytes of
data that might take several days in the real-world. This de-
cision should be made carefully while taking into account
the inaccuracies in load forecasts and component models
(referred to as risks). In contrast to existing techniques, the
goal of a migration planner is not to select a migration op-
tion that maximizes the overall utility, but rather maximizes
utility with minimal risk.

This paper proposes SMARTMIG: a framework that
makes decisions on what data-set to migrate, where to mi-

grate, how to migrate, and when to migrate such that the
overall system utility is maximized. SMARTMIG uses a
combination of optimization, planning, and risk evalua-
tion schemes — the optimization phase decides the what
and where by formulating it as a constraint optimization
problem with the objective to maximize the overall sys-
tem utility for a given provisioning window. The output of
the optimization is not just a single solution but rather the
top — K options. For each of these options, the planning
phase decides the when and how — it may be possible that
there may not be a feasible when-how combination for all
the top-K options. Finally, the short-listed migration plans
(what, where, when, how) are analyzed for the level of risk
involved versus the expected benefit. The plan with maxi-
mum utility and minimum risk is selected for invocation.
The key contributions of this paper are:

1. A migration scheme that takes into account not just the
current system state but also the forecasted workload
trends.

2. A constraint-based formulation of migration that is
based on maximizing storage system utility for a con-
figurable lookahead window.

3. A scheme for risk analysis that considers the migra-
tion overheads and the accuracy of future forecasting
and selects the low risk, high benefit migration option.

We validate SMARTMIG by implementing it as a part
of a file-system simulator — the models used in the sim-
ulator are derived from an actual enterprise class storage
controller. Decisions in different scenarios are evaluated
by comparing them with the “ideal” migration option (as-
suming perfect future knowledge), as well as when no cor-
rective action is invoked.

The rest of the paper is organized as follows: Section 2
gives details of the related work. Section 3 describes the in-
put modules of SMARTMIG. Section 4 gives details of the
migration algorithm, followed by the experimental section
in Section 5. The paper concludes and enumerates future
work in Section 6.

2. Redated Work

Several schemes have been proposed to determine the
new data placement configuration (what and where deci-
sions) or the migration speed (how). This section briefly
reviews the existing techniques to automate data migra-
tion. The term workload refers to the streams of 10 requests
from the applications.

The traditional approach of selecting what to migrate
(referred to as migration candidates) is based on data tem-
perature defined as the quotient of the load (heat) and data

size. Migration candidates are ranked in the descending or-
der of temperature and the one with the highest temperature
will be migrated to the least loaded component. The pro-
cedure is repeated till the system converges to a balanced
state [11, 29]. Another scheme [23] for deciding migration
candidates takes into account the periodic load pattern and
performs an elaborate cost/benefit analysis before migra-
tion is invoked.

Recently, several migration techniques have been pro-
posed as a part of the iterative observe-analyze-act loop.
These algorithms use models to determine the component’s
ability to support workloads, and selects migration candi-
dates and targets such that workload requirements can be
satisfied. Hippodrome [6] is a storage system configura-
tion tool that automatically adapts to changing workload
demands without human intervention. It is structured as
an iterative loop of analyzing workloads to determine their
requirements, and creating a better storage system config-
uration to meet those goals. Based on the new storage sys-
tem design, Hippodrome triggers migration to move data
accordingly. Hippodrome uses a greedy approach to cre-
ate a sequential plan for the migration such that the amount
of scratch space (which is used to reduce the amount of
data that needs to be moved) required is minimized. As a
follow-on work, Anderson et. al. [5] performed an exper-
imental study on offline migration algorithms which can
create the migration plan for Hippodrome. They proposed
migration algorithms with and without space and perfor-
mance constraints. These were tested using different types
of multi-graphs. Their results show that all algorithms ac-
tually perform much better in practice than the theoreti-
cal boundary. However, in schemes described above, mi-
gration is invoked either for load-balancing purposes or
for initial system configuration. In this paper, our frame-
work SMARTMIG is designed to take advantage of the
well-known time-series forecasting techniques and maxi-
mize storage utility in a proactive fashion.

There is an interesting body of research on choosing the
migration speed. Aqueduct [18] is an on-line migration al-
gorithm based on control-theory. It adjusts the migration
speed such that the front-end users (applications) receive
a guarantee on the upper-bound of the latency. The la-
tency bound is also estimated based on performance mod-
els. QoSMig[12] proposes an adaptive rate-control scheme
for migration. It leverages the traffic shaping ability from
Sleds [10] and proposes an on-line admission control algo-
rithm. In order to enable a unified framework for migration
and 1/0 requests, QoSMig assigns a “reward value” to each
regular and migration request. Particularly, the reward for
migration requests is based on the migration utility analysis
and the expected distribution of arrival time of 1/O requests.
The rate control is enforced through an admission control
algorithm that admits requests with maximum system re-

Input Modules

Workload
Forecasting

Predicted !
Demands

Plan Generator

Estimated
Performance |

Monitor

) i | Performance
Information —

Prediction

Optimization [Planning = |Risk Modulation

;(Migration]

'k Executor

Performance

Utility ! Liﬁ:{;a‘ed

Evaluation

,,,,,,,,,,,,,,,,,,,,,,,,,,

Estimated | .

Figure 1. Architecture of SMARTMIG

ward. Both Aqueduct and QoSMig operate in an on-line
manner - feedback loops and scheduling mechanisms are
only useful when the migration is underway and they can
not determine the migration speed before the migration is
invoked. The ability to predict possible impact of various
migration speeds is very useful for planning a migration be-
forehand. For this purpose, SMARTMIG applies a model-
based approach to explore the design space and choose the
“optimal” migration speed. However, models can never be
accurate. A more practical scheme is to use a model-based
approach to estimate the possible impact on the system and
decide a rough range of migration speeds. Once the migra-
tion is invoked, on-line schemes like Aqueduct or QoSMig
can be plugged in to provide safer and more precise speed
control.

As mentioned earlier, since migration today is invoked
reactively, the problem of when has been ignored by most
schemes: they either assume migration will be invoked
when the system is lightly loaded or manually invoked
by the administrator whenever appropriate. SMARTMIG
proposes a complete migration planning algorithm which
will decide migration candidates and targets and migration
speed as well as the best migration start time.

SMARTMIG applies several techniques ranging from
time-series forecasting [27] and performance modeling
[28, 4, 3, 8, 26] to constraint optimization [22, 19, 1] to
generate a migration plan. Extensive research has been
done in each individual area. SMARTMIG leverages these
well-studied techniques in the domain of storage systems.

3. SMARTMIG Input Modules

The architecture of SMARTMIG is shown in figure 1.
It takes forecasted workload demands, predicted compo-
nent performance and utility value as input and generates
a migration plan accordingly. The decision making is trig-

gered both reactively (after SLOs are violated) or proac-
tively (based on forecasted growth in workloads).

The rest of this section describes details of time-series
forecasting, performance prediction and metrics for storage
system utility. The details of decision making are covered
in Section 4.

3.1. Time-series Forecasting

The forecasting of future workload demands is based on
extracting patterns and trends from historical data. There
are several well-known techniques for time series analysis
such as ARIMA [27, 9], Neural Network [7], etc. The gen-
eral form of a time-series function is as follows:

Yi+h = 0(Xt,0) + &4n 1)

where: y; is the variable(s) vector to be forecasted. t is the
time when the forecast is made. X; is the predictor variable,
which usually includes the observed and lagged values of
y; until time t. © is the vector of parameter of the function
g and &, is the prediction error.

In our experiments, we use the ARIMA time-series al-
gorithm to perform time-series analysis on HP’s Cello99
trace [20] and the results are shown in Section 5.

3.2. Performance Prediction

The goal of performance prediction is to estimate stor-
age component performance for any given workload de-
mands and system settings. SMARTMIG uses the most
commonly used performance metrics: throughput (T hru)
and latency (Lat) as examples in the rest of the discussion.

There are several techniques for making performance
predictions; these range along the spectrum of white-
box and black-box approaches. White-box approaches

[26, 15, 21] establish equations using device specific in-
formation based on expert knowledge. Simulation based
approaches [13, 30, 24] measure the performance of a con-
figuration using a storage system simulator. Black-box ap-
proaches [14, 4, 28] require minimum expert input and de-
vice specific information and predict performance based on
past historical information.

Because SMARTMIG needs to explore a large candidate
space in a short time, simulation based approaches are not
feasible due to their long prediction overhead. Both white-
box and black-box approaches can be used in SMARTMIG.
In the real-world, since the device specific information
and expert input is often difficult to get, black-box tech-
niques like table-based solutions[4] and regression models
[28, 14] are more desirable for SMARTMIG. Specifically,
in our experiments, we use models generated using regres-
sion techniques (results in Section 5).

3.3. Utility Evaluation

The concept of “utility” is introduced to evaluate the
user’s perception of ‘satisfaction’. There are different ways
to define the utility functions. In SMARTMIG, utility func-
tion associates workload performance with a utility value,
which quantifies the user’s degree of satisfaction. There are
several techniques to define a utility function — we enumer-
ate a few of them:

e Provided by the administrators. In some cases, the
administrators may not have enough knowledge to de-
fine a good utility function. They typically use trial-
and-error, trying multiple versions of the utility func-
tion to get the desired level of service.

e Defined based on the SLOs and priorities. Equation 2
gives one way of defining.

0 if Lat > SLOjy
UF(Thru,Lat)—{ Pri=min(ThruSL0mu) iherwi
SHo otherwise
)

e Defined based on price and SLOs. The dollar amount
is associated with the level of service received, e.g.,
$1000/GB if the latency is less than 10ms, otherwise,
$100/GB.

Based on utility functions for each workload, the overall
storage system utility value is defined as:

Ugys =

Uj
(

N
2
N
= UF;(Thruj, lat;) ?3)
2

Where N is the number of workloads in the system, Uj,
UF;, Thruj and Lat; are the utility value, utility function,
throughput and latency for workload j respectively.

4. Migration Plan Generator

The decision making procedure consists of three phases:
Optimization phase, Planning phase and Risk Modulation
phase. This section covers the details of each of these
phases.

4.1. Overview of the Decision-making algorithm

SMARTMIG’s design goal is to maximize user’s sat-
isfaction for the given optimization window T, which is
equivalent to minimizing system Utility Loss ULgs, de-
fined as follows:

N N
&
N

= Z UFj(Dj,SLOjIm)
=1
N
—ZUFJ(Thruj,Latj) 4)
=1

Where Dj is the demand of workload j and (T hruj, Lat;)
is the achieved performance of workload j. Uma; is the
”ideal” utility value if all of workload j’s requests can
meet the SLO goal and Uy is the maximum system utility
value.

Before Ongoing After
Region | Region : Region

Location
Component Datal
Y Data2
E pass

Component 2|

Start Finish Time

Figure 2. Migration Regions

The migration operation is partitioned into three re-
gions: Before migration happens, when the migration pro-
cess is Ongoing and After migration finishes (shown in Fig-
ure 2). The motivation of the partition is because each re-
gion behaves differently and is affected by different migra-
tion parameters. For a given optimization time window T,
SMARTMIG aims to choose what, where, how, when that

can minimize the overall system utility loss over three re-
gions, shown in Equation 5.

UL(T) = ULgefore + U Longoing + U Lafter)

In order to achieve minimum overall utility loss, each
parameter has to be carefully selected. For example: what
and where will affect the After utility, how will change the
Ongoing behavior and when will affect the region bound-
ary. In addition, these parameters are not independent and
will affect each other. For example, solutions leading to
maximum After utility may not lead to optimal Ongoing
utility because the best placement configuration may in-
volve larger data movement, and introduce more utility loss
during the migration operation. Therefore, the ideal opti-
mal solution should consider the interaction among four pa-
rameters and examine all possible combinations. However,
full combination scanning introduces a very high complex-
ity: even a simple version of the sub-problem what and
where is an NP-complete bin-packing problem. SMART-
MG trades the optimality to reduce the complexity. It
breaks the decision procedure into three phases and uses
the final goal of optimizing the system utility to guide the
design of each phase. The three phases are:

e Optimization Phase: Finds the top-K answers for what
to migrate and where to migrate.

e Planning Phase: Finds the best when and how options
for each of the top-K < what,where > pairs.

e Risk Modulation Phase: Evaluates the risk associated
with each migration plan and selects the one leading
to maximum utility and minimum risk.

In each phase, with the assistance of time series predic-
tion, performance models and utility evaluation, SMART-
MIG can estimate the decision impact on the system and
explore the design space very quickly. In the rest of the
section, we will discuss the design details for each phase.

4.2. The Optimization Phase: What and Where

The what and where decide how the migration operation
wants to alternate the resource allocation such that the sys-
tem can operate in a better state (higher utility value). It re-
flects the “permanent” effect of migration and the final goal
of finding the best data placement plan that minimizes sys-
tem utility loss. This problem is a data placement problem
and can be formulated as a classical constraint optimization
problem (shown in Table 1).

A traditional data placement problem can be reduced
to an NP-complete bin-packing problem by mapping the
components as bins and workload resource requirements
as objects. For SMARTMIG, the objective function of op-
timizing the system utility makes the problem even more

Variable Sij

Minimize Zi’\':"f_'j:lsjUFi(Perfij)

Subject to z'}”:isj =1forali=lton
§j = 1if datai isplaced on component j
Sj = O otherwise

Where 5 is the optimization variable and re-
fects if datai will be placed on component j

or not. UF; isthe utility function of workload
i and Per fjj is the predicted performance of
workload i on component j. Please notice that
the Per fj; isrelated to the data placement con-
fi guration.

Table 1. Constraint optimization of what and
where

complicated because: (1) “Size of bin” is not fixed because
workloads are interleaved and affect each other’s perfor-
mance. As a result, the capability of each component (bin
size) is not static and is changing as the set of workloads
running on it changed. (2) “Size of object” (utility value) is
not static. The utility value is a function of received per-
formance and varies with the change of data placement.
To reduce the complexity, SMARTMIG applies the classic
greedy technique to find the approximated optimal solution
(shown in the flow chart 3).

‘ Calculate UL fromtimelto T ‘

|

‘ Find time tk with maximum UL ‘

‘ Set Migration Candidate Set Sto EMPTY ‘

Calculate utility gain UGij of moving
workload j to component i

Find the pair with maximum utility gain
(UGMNn = Max(UGij))

If UGmn
> Threshold

K lterations !

Add (Workload n, Component m) to

I) ‘ Output Migration Candidate Set S
Migration Candidate Set S

4‘ Updatedatapla:ementconfiguration‘

,,,

Figure 3. Flow Chart of Optimization Phase

In the flow chart, ty is the time when maximum utility
loss happens in the given optimization window T . For a dif-
ferent T value, maximum utility loss may happen at a dif-
ferent time (tx) and therefore, the what and where decisions
are optimized for different system settings. In each step of
the greedy operation, for every (workload;j, component;)
pair, the utility gain UG;j; of moving workload j to compo-
nent i is estimated. Here utility gain UG is defined as the
utility difference of the new data placement from the old
one. The pair leading to the maximum utility gain (shown
as (workload,,, componenty,) in the figure) is put into the
migration candidate set. The greedy procedure repeats un-
til the utility gain of moving any workload is marginal—less
than some threshold, where the threshold reflects the trade-
off between the convergence speed and the quality of the
solution.

The Optimization phase does not return a single solu-
tion, but rather the top — K options — the greedy procedure
is repeated K times, such that after each iteration, the work-
load (dataset) with the minimum U G /SIZE ratio is blocked
from being considered in the remaining iterations. Intuition
is to eliminate the low benefit (UG) and high cost (SIZE)
candidates.

4.3. The Planning Phase: How and When

For each solution returned by the Optimization phase,
the Planning phase generates the detailed plan for when
to start migration and the corresponding migration speed.
The how decision is relatively straight-forward as the
migration speed at time t; is only affected by the workload
demands and the system setting at t;. However, the when
decision is more complicated and decisions on what, where
and how will all affect the final decision on when. For
example, if the utility value of the new data placement
is much higher than the old one, it is desirable to start
migration as early as possible. On the other hand, if the
data takes very long to migrate and introduces high utility
loss in the procedure, a more preferred solution is to wait
until the system is lightly loaded. Therefore, the migration
start time can only be determined after other decisions
have been made. In the rest of this section, we describe the
how aspect first and then the algorithm for when.

how: Finding Migration Speed

The objective of migration speed is also to minimize sys-
tem utility loss. Specifically, the migration process will (1)
introduce extra utility loss because it will compete with ap-
plication workloads for the already limited resources. But
at the same time (2) it will benefit the system once the mi-
gration process is finished. Because of the bi-directional
impact of the migration process, it is very difficult to quan-
tify the exact impact on the utility loss for different migra-

tion speeds. SMARTMIG settles for the approximated so-
lution based on the intuition of migrating more data when
the system is lightly loaded and less when the system is
busy; it chooses a migration speed that is proportional to
the system’s spare resource. In addition, SMARTMIG also
makes suggestions on the resource allocation plan for other
workloads using a greedy approach such that the limited
resources are allocated to higher priority workloads, result-
ing in a better utility value. By correlating migration speed
with system utilization status, and throttling low priority
workloads, SMARTMIG minimizes the extra utility loss due
to the migration procedure. The how decision procedure is
summarized as follows:

1. Estimate system utilization:
Total Load
MaximumLoad *

Sys_Utilization =

2. Set migration speed as MigSpeed = (1 —
Sys_Utilization) x p * MAX_SPEED, where p is
a number between 0 to 1 and is changing according to
which spectrum of utilization the system is operating
in. The heavier the system is loaded, the smaller the
p is. The MAX_SPEED is the maximum migration
sending rate allowed by the system and it reflects how
aggressively the migration can perform.

3. Search the optimal resource allocation plan (sending
rate) for other workloads with the goal of maximizing
system utility. The greedy procedure stops when no
utility benefit can be gained by increasing the sending
rate of any workload, or all workloads have all their
requests satisfied.

Using the algorithm described, the migration speed for
time 0 to T can be determined, represented as MigSpeed,.
We are now ready to determine the migration start time t*

when: Choosing Migration Start Time t*

The decision on when is not always straight-forward and
needs to consider several parameters. For example, for the
same system state, the migration should be invoked imme-
diately if the system load has an expected growth trend, but
should be delayed if very soon the system will be lightly
loaded. Similarly, if the migration dataset can finish very
quickly and if the new configuration can introduce a high
utility gain, the migration operation should start immedi-
ately, but on the other hand, if it takes longer to finish,
it may be preferable to delay it until the system is lightly
loaded. As we will show in the experimental section, for
the same system settings and for different migration data
sets, the best start time changes accordingly. In general,
the when decision is related to the answers to what, where
and how and also to the future state of the system. SMART-
MG selects the best start time t* by considering the details

of the migration option, the performance and utility infor-
mation of the system, and the future workload trend.

Utility Loss}

Before Region Utility Loss

£

Ongoing Region Utility Loss

After Region Utility Loss

Overall Solution Utility Loss

Start Done Time

Figure 4. Overall Solution Utility Loss

Figure 4 illustrates how to derive the overall system util-
ity loss. The x axis is the time and y axis is the utility
loss. The Before Region Utility Loss curve plots the “ex-
pected” utility loss under the old data placement configu-
ration at each time in the optimization window. The Ongo-
ing Region Utility Loss gives information on the expected
utility loss if migration is going on and the After Region
Utility Loss shows the utility loss under the new data place-
ment setting. The overall utility loss for a migration option
can be derived by using the Before curve before migration
starts, the Ongoing curve during migration and the After
when it is done (shown in the Overall Solution Utility Loss
curve in the figure). For example, for a given migration
solution starting from t; and ending at tj + m;, where my;
is the lead-time if migration starts at t;, the overall utility
loss is to use Before utility loss for [0,t; — 1], Ongoing for
[ti,ti +myi] and After for [t +my +1,T] (shown in Equation
6).

u L(T;ti) = ULgefore+U I-Ongoing +ULAafter
i—1 i+m;

.
- ZULHSYSJFZUL&lsstr S UL§6)
=1 =l i+m+1

where UL, UL and UL? are utility loss for the Before,
Ongoing and After region respectively.

Knowing parameters of what, where and how, the UL,
UL and UL? can all be easily calculated: for each time
point I, ULy, can be calculated by estimating workloads
performance for the old data location settings and the utility
value can be derived based on the performance. Similarly,

for ULtllsys, we can estimate the performance by consider-
ing workload demands and migration speed at time t; and
calculate the utility value accordingly. U Lt2|sys is calculated
under the new data location setting. In addition, the migra-
tion lead-time my; can be estimated based on MigSpeed,
and migration size TotalMigSize:

mi = min(k such that le(:ti MigSizej > TotalMigSize) (7)

where TotalMigSize is the total size of the migration candi-
dates and MigSizetj = MigSpeed;; * Lent; is the data moved
in interval t; with Leny; as the interval duration.

Clearly, the best start time t* is the t; that leads to min-
imum UL(T,t;) and can be found by scanning the whole
optimization window.

In summary, the Planning phase determines the migra-
tion speed along with the best start time t* for each of the
K what, where options from the Optimization phase. The
K (what, where, how, when) solutions with the correspond-
ing overall system utility loss ULy, are then analyzed in
the Risk Modulation Phase to select a low risk, high benefit
option.

4.4, Risk Modulation Phase

The goal of SMARTMIG is to assist the administrator in
finding a good migration option. The Optimization phase
and Planning phase aim to find options leading to lower
utility loss (higher utility). But because time series forecast
can have errors and migration operations are not cost-free
(they will consume system resources to move data around),
there is a risk associated with each migration option. The
goal of the Risk Modulation phase is to modulate the risk
of each migration option and return the one with low risk
and high benefit.

Risk captures the probability that the utility improve-
ment of action invocation will be lost (in the future system-
states) as a result of volatility in the workload time-series
functions e.g., the demand for W1 was expected to be 10K
IOPS after 1 month, but it turns out to be 5K. Additionally,
the formulation of risk should take into account the loss in
utility as a result of making the wrong decision e.g., mov-
ing data at 11am in a weekday morning (during high system
utilization) has a higher risk compared to moving it at 9pm
on a weekend (during low system utilization) — the utility
lost due to a wrong decision is higher in the former case
than the latter. Similarly, the impact of the wrong decision
is dependent on the amount of data moved.

There are several techniques for measuring risk — ac-
tions for assigning storage resources among workloads are
analogous to portfolio management in which funds are al-
located to various company stocks. In economics and fi-
nance, the Value at risk, or VaR [16], is a popular technique
used to estimate the probability of portfolio losses based on

the statistical analysis of historical price trends and volatili-
ties in trend prediction. In the context of SMARTMIG, VaR
represents the probability, with a 95% confidence, that the
workload system will not grow in the future (optimization
window T), making the migration invocation unnecessary.

VaR(95% con fidence) = —1.650 x v/T (8)

where:
o = Standard deviation of the time-series request-rate
predictions.

The risk value RF (M) of migration solution k is calcu-
lated as follows:

RF(My) = —(1+aMk)*VaR 9)

where a reflects the risk factor of a migration option and is
defined as follows:

bytes_movedy,
total _bytes_on_source

* Sys_Utilizationy,

(10)

(XMk =

where Sys_Utilization is the system utilization when the
action is invoked and is estimated similarly as in Section 4.
Intuitively, a higher system utilization or larger migration
data set will lead to a larger o, and therefore, a larger
RF (M) value, which reflects the fact that the migration
operation has higher risk and is less preferred.

For the K solution output by the Planning phase, the
Risk modulation phase will calculate the risk value RF (M)
for each of them and scale the overall utility loss (shown in
Equation 11). The goal of the scaling is to balance the ben-
efit (ULwm,) and the risk (RF (M)) of a migration option.

UL}y, = (L+RF(My)) x UL, (11)

After the scaling, only the option with minimum ULy,
remains. Lastly, because migration always involves cost
to move data around, the Risk Modulation phase uses a
threshold to filter migration operations with marginal bene-
fit(U LK,,k > ULthreshold) and returns a zero solution if the re-
maining migration option cannot bring the system enough
benefit to justify the risk.

5. Experimental Results

The goal of the experimental evaluation is to evaluate
SMARTMIG’s ability to generate feasible and efficient mi-
gration plans. The experimental evaluation is divided into
three parts: First, understanding the accuracy of time-series
forecasting and component performance models — the anal-
ysis uses data collected from real-world systems. Second,
a sanity check of SMARTMIG by testing its ability to make

decisions for different combinations of input parameter val-
ues — this evaluation uses storage system simulator. Third,
an efficiency test of SMARTMIG i.e., evaluating the run-
time complexity by stressing SMARTMIG with different
numbers of workloads and components. We also evaluate
the sensitivity of the migration plans to model-errors.

5.1. Input Information Quality Examination

SMARTMIG gets as input the time-series forecast and
component performance models — this information is used
for decision making, and affects the accuracy of the migra-
tion plans.

250 ‘
Predicted
200 l ; H ' i A . . : Qbserved ------- .

150

1OPs

100

it

1 A i I A 1 T -
1000 1050 1100 1150 1200 1250 1300 1350 1400
Time (hour)

T T
Prediction Residual

10Ps

.150 1 1 1 1 1 1 1
1000 1050 1100 1150 1200 1250 1300 1350 1400
Time (hour)

Figure 5. Results of ARIMA based forecasting of the
Cell099 traces- the models are trained with the historical
information of 1000 hours a) Forecasting workload pat-
terns for the next 400 hours (b) Prediction residua for 400
hour forecasting

For the time-series forecasting, we choose a random 2-
month interval (Nov.1 to Dec.30) in HP’s Cello99 trace
[20] — the average system load is sampled on a per-hour
basis - the first 41 days are treated as training data and the
remaining days as testing data. The best-fit ARIMA model
for the data is ARMA(4,3) and SARMA(4,3). As seen in
the forecasting results in Figure 5, more than 60% of the
residuals are less than 30 I0OPS off the real value and more
than 80% are within a 50 IOPS difference.

For the component model, we apply the regression tree
based algorithm GUIDE [17] and model the latency as a
function of workload features that include 10 sending rate,
read-write ratio, random-sequential ratio, request size and
footprint size. Training data is generated by varying the
features of individual workloads. The quality of the la-
tency model derived using 200 training points with 5 in-
terleaving file-system flows is shown in Figure 6. The ob-
served latency has a mean of 0.26 seconds; the correspond-

Estimated

Observed

1 T T T T T T
‘cdf_residual_lat_5’ using 1:3 ———

CDF
o
o

T

0 N . I L L L L
-025 -0.2 -015 -0.1 -0.05 0 005 01 015 02 025
Residual

Figure 6. Results of GUIDE based component model
— the models are trained with 200 sampling points with 5
fows interleaving in the system a). Observed latency vs.

Predicted latency. The x=y lineis plotted together b). CDF
of performance prediction residual

ing residual has a mean of 0.04 seconds with nearly 90%
of the residual less than 0.1 seconds.

Although these results are by no means complete, they
show that the techniques for time-series forecasting and
machine learning lead to reasonable workload forecasting
and component model results respectively.

5.2. Sanity Check and Efficiency Test

We implemented SMARTMIG as a part of a file-system
system simulator. The simulator takes as input the orig-
inal system state (i.e., old data placement configuration),
workload forecast, component performance models, utility
functions and SLOs, and generates as output the migration
decisions. The scenarios for testing were generated using
permutations of the following configuration parameters:

o Initial data placement: we intentionally create an un-
balanced system (60% of the workloads will go to one
component and the other half are distributed to the rest
of the components randomly). The rationale behind
this design is to make the migration operation neces-
sary.

e Workload features: The sending rate and footprintsize
of each workload are generated using a Gaussian mix-
ture distribution — with a high probability, the send-
ing rate (or footprint-size) is generated using a normal
distribution with a lower mean value and with a low
probability, it is generated using another normal dis-
tribution with a larger mean value. The reason for us-
ing the Gaussian mixture distribution is to mimic the
real-world system behavior: a small number of appli-
cations contribute a majority of the system load and
access the majority of data.

e Workload trending: To mimic workload changes in
real systems, we changed the access rates of the
workloads over time. In our experiments, 30% of
workloads were increased, and another 30% were de-
creased. In particular, the increasing step size is gen-
erated using a random distribution with a mean of 1/10
of the original load and the decreasing step size is ran-
domly distributed with mean of 1/20 of the original
load.

We vary the number of workloads in the system from
10 to 100 and generate 10 scenarios automatically for each
of them. Out of the 100 scenarios, 14 of them did not call
SMARTMIG because the initial setting did not cause any
utility loss. The remaining 86 scenarios experienced util-
ity loss to various degrees, ranging from 0.7% to 55% of
the maximum system utility. We did not generate scenar-
ios with more serious utility loss because migration may
not be the correct solution in that situation (for example,
new hardware should be requested). Figure 7 plots the Cu-
mulative Distribution Function (CDF) of the percentage of
utility loss (defined as the MU Nof& onUUIL) - A
shown in the figure, more than 55% of the scenarios experi-
enced more than 10% utility loss, out of which around 30%
had a higher than 20% utility loss.

CDF

! ! !
0 0.2 0.4 0.6 0.8 1

Percentage of Utility Loss (No Action)

Figure 7. CDF of percentage of overall utility
loss without migration operation

5.2.1. Sanity Check Test 1: Working of Individual
Piece

We randomly pick one scenario from the 86 cases and ex-
amine the working of each phase. The selected scenario
had 20 workloads distributed on 4 components. The ini-
tial data placement caused a 7.8% utility loss. SMARTMIG
was called with a 14 day optimization window. The top 5
solutions returned are summarized in Table 2.

T
140 migration speed 7 2800
overall system load -------
wr = [174 2400
B ’ i ' N 2000
— 1600
4 1200
- 800
- 400

Migration Speed
Overall System Load (IOPS)

time (hour)
Figure 8. Migration Speed Vs. Overall System
Load. X axesisthetimeindex with the left Y axes asthe
migration speed and theright Y axes as the overall system
load

overall system utility loss

L L L L
0 10 20 30 40 50
starting time

Figure 9. Overdl utility loss for various migration start
times

The table shows the Optimization phase found five sets
of (what, where) decisions. For each of them, the Planning
phase selected different start times, and the Risk Modula-
tion phase assigned a risk value accordingly. Solution 1
is finally selected because it leads to minimum utility loss.
The risk analysis assumes the standard deviation (o) for a
one day forecast is 10% of the real value. In addition, Fig-
ure 8 shows the detailed decision on the migration speed
— it changes according to the load in the system. The start
time selection is shown in Figure 9 (only the first the 50
hours are plotted for better visibility). The x axis is the
start time and the y axis shows the corresponding overall
system utility if migration starts at time x. As shown in
the figure, the minimum overall system utility is achieved
if migration starts at 5 (when the system is lightly-loaded
for the first time).

Test 2: Impact of Optimization Window T

SMARTMIG is designed to find the “best” migration
option for a given optimization window T. For different
Ts, SMARTMIG may return different migration parameters
which fits better for the given T. Using the same settings

as in the previous test, we changed the optimization win-
dow from 14 days to 7 days. SMARTMIG returned differ-
ent what and where answers. The five solutions returned
are shown in Table 3.

| Migration Candi- | Size| Scaled Util-
dates and Targets (GB) ity Loss
(1: 0—-2) 14 | 11308
(6: 0—1) 12 | 87850

(3:0—2) (5:0—2) | 17 | 11501
(4. 0-2) (5:0—2) | 140 | 42282
(5:0—2) (13.0-3) | 16 | 11436

A W N -

Table 3. Solutions Returned By SMARTMIG witha7 Day
Optimization Window

After risk modulation, solution 1 will be selected and
workload 1 will be migrated from 0 to 2, which is different
from the decision in the previous test.

Test 3: Impact of Utility Configuration

SMARTMIG aims to optimize system utility and the util-
ity functions for each workload will affect the solution re-
turned by SMARTMIG. In this test, we stay with the same
settings as in Test 1 and change the utility functions of three
workloads. The results returned by SMARTMIG are given
in Table 4:

| Migration Candidates and | Size| Scaled

Targets (GB) Utility
Loss

(17: 0—2) (3: 0—2) (1: 0—2) 30 | 2949

(17: 0—=2) (3: 0—2) 16 | 23700

(17:0—2) (4: 0—2) (5: 0—3) | 144 | 15813

(17:0—2) (5: 0—2) (13: 0—3) | 20 | 2796

O B WIN| -

(5: 0—2) (17:0—2) 9 | 16200

Table 4. Five Solutions Returned By SMART-
MiG With Different Utility Configuration

After risk modulation, solution 4 is selected, which is
different from the one selected for the original system set-
tings and optimization window. These tests demonstrate
SMARTMIG’s ability to optimize the migration decisions
for different values of input parameters and system config-
uration.

5.2.2. Efficiency Test Test 1: Percentage of Utility
Loss Elimination

| Migration Candidates and Tar- | Size| Utility Start Time | Scaled Utility
gets (GB) Loss (hour) Loss
1| (5:0—2)(1: 0—2) 19 | 10408 5 11629
2| (5:0—2)(3: 0—3) (4: 0—1) 152 | 22552 4 43715
3| (5: 0—2) (3: 0—3) (13: 0—3) 28 | 10408 1 12208
41 (5: 0—2) (13:0—3) (14: 0—2) 118 | 22552 5 38981
5] (5: 0—2) (13:0—3) (17: 0—2) 20 | 10408 4 11694
Table 2. Solutions Returned By SMARTMIG with a 14 Day Optimization Window
1 & 140
g 120
08 |]
£ 100 |-
L 06F E 80 |-
o o
© oal _‘% 60 |-
E 4
0.2 2
g 20
00 0‘.2 0.4 0‘.6 0‘.8 1 ° 010 20 30 40 50 60 70 80 90 100

Percentage of Utility Loss (After Migration)

Figure 10. CDF of percentage of overal utility loss
savings with SMARTMIG

0.8 1

0.6 1

CDF

0.4 | 1

02 f 1

0 Il Il Il Il
0 0.2 0.4 0.6 0.8 1
Percentage of Utility Loss (With Migration)

Figure 11. CDF of percentage of overal utility loss
with SMARTMIG

For each of the 86 scenarios, SMARTMIG makes de-
cisions in three phases and returns the one with the min-
imum scaled utility loss. In order to understand how
much the system is saving by invoking the migration op-
eration returned by SMARTMIG, we measure the percent-

age of loss in utiIiE}/ saved by SMARTMIG, defined as
No_Action_Utility_Loss—Utility_Loss_With_Migration

_ No_Action_Utility_Loss - From the CDF
curve (Figure 10), we observe that SMARTMIG success-

fully eliminates 80% of the utility loss in more than 80%
of the cases and for the rest, it saves about 60% in another
12% of the cases. The final percentage of utility loss is
plotted in Figure 11. For more than 90% of the cases, the
storage system exhibits less than 0.7% utiltiy loss, which is
a big improvement compared to Figure 7.

Test 2: Computational Overhead of SMARTMIG

Figure 12 plots the computational overhead (time taken)
of SMARTMIG. We ran the simulator on a Linux machine

number of workloads

Figure 12. Computation Overhead of SMART-
MiG

with a Pentium 4, 2.66GHZ CPU and 512MB of mem-
ory. We varied the number of workloads in the system
and recorded the time SMARTMIG took to generate a mi-
gration plan. Ten cases are generated for each workload
number setting and the average time overhead is plotted in
the figure. The curve grows exponentially with the num-
ber of workloads. The majority of the overhead is from
the migration speed determination phase, where SMART-
MG greedily searches for the optimal resource allocation
for each workload. If SMARTMIG does not try to optimize
the other workload’s sending rate, the exponential effect
will be gone. However, the system may experience a higher
utility loss due to un-regulated resource competition.

Test 3: Sensitivity Test of Performance Model Errors

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3

02 ‘ ‘ ‘
0 02 04 06

Model Errors (%)

Predicted Value/Real Value

0.8 1

Figure 13. Impact of Model Errors on the accuracy of
predicted utility loss

Our sanity check experiments were based on the as-
sumption that perfect component models are available.
However, in reality, this is not always true. To measure

the sensitivity of the migration decisions to the model er-
rors, we generated a set of synthetic component models that
SMARTMIG uses for decision-making. The latency calcu-
lated using these models is labeled as the “predicted la-
tency” and the corresponding utility loss as the “predicted
utility loss™. For the exact same settings, the “real latency”
is simulated using the synthetic model and offset by a ran-
dom error following a normal distribution. Because the
residual normally grows with the real value, we generated
a random scaling factor rather than the absolute error. For
example, if the latency is 10ms and the random error is 0.2,
the real latency is 10*(1+0.2) = 12ms. After this, the re-
turned “real latency” is used to calculate the “real utility
loss” for the decision. By doing this, we have full control
of the model error rate and the sensitivity test is possible.

45
4
35 | 1
3| i
25 | 1
2k i
15 | B
1|k i
05 | 1
0 L L
0 0.2 0.4 0.6 0.8 1
Model Errors (%)

Loss of Predicted Improvement

Figure 14. Impact of model errors on the per-
centage of predicted utility saving

0.7

0.6 1
05 1
04 1
03 1
02 1

Loss of Real Improvement

01 | i

0] ! ! !
0 0.2 0.4 0.6 0.8 1

Model Errors (%)

Figure 15. Impact of model errors on the per-
centage of real utility saving

Figure 13 is the ratio of the Predict_Utility_Loss and
Real _Utility_Loss; it captures the accuracy of the pre-
dicted results. As shown in the figure, the accuracy of
the predicted value drops quickly with a higher error rate.
With an error rate of 0.2, the predicted value only cap-
tures about 60% of the real value. In addition, Figure 14
plots the loss of saving percentage, which is defined as
Ren Ul Prea U Losimifrly, we found for a
model error rate of 0.2, nearly 37% of the savings is gone.

However, if we measure the loss of the real saving percent-

: : - Real _Utility_Loss—Predict _Utility_Loss
age, which is defined as Reaj_K,o_Adion_Umity_LOé ,

the mismatch percentage is much smaller (shown in Fig-
ure 15). The reason is that the real system’s utility loss
can never be correctly predicted and therefore, the under-
estimation of the utility loss without any migration in the
real system balances out part of the under-estimation of the
utility loss with any migration.

These three figures suggest that if the model error rate
is less than 20%, decisions made based on them have rea-
sonable accuracy and can provide useful information. Oth-
erwise, decisions returned by SMARTMIG need to be care-
fully considered before the action is invoked. Fortunately,
as shown in Figure 6, the performance model derived using
the real system has a 0.04 second average residual for the
real latency with a mean of 0.26 seconds. That is about a
15% relative error. Many previous studies also demonstrate
a well-constructed model can predict system performance
with reasonable accuracy [28]. Therefore, it is very possi-
ble that we can derive a model with less than a 20% error
rate.

6. Conclusion and Future Work

This paper describes SMARTMIG — a proactive data mi-
gration framework that uses both the current and forecasted
system states for making migration decisions. Addition-
ally, SMARTMIG selects migration options where the im-
provement in system utility is proportional to the risk in-
volved. A proof-of-concept implementation for SMART-
MiG demonstrates the feasibility of the formulation and
its sensitivity to model accuracy. As ongoing and future
work, we are working on the following: First, implement-
ing SMARTMIG as a part of GPFS [25]: a commercial
high-performance file-system. Second, as the experimental
results show a strong correlation between model accuracy
and precision of the migration decisions, we are explor-
ing a two-pronged approach to better model accuracy and
less sensitive migration formulation. Third, we are devel-
oping pruning techniques to reduce the computation over-
heads of the optimization, making SMARTMIG scalable in
large data-center and scientific deployments.

Acknowledgment

We want to thank the reviewers for their comments.

References

[1] Glpk (gnu) linear programming kit.
http://www.gnu.org/software/gl pk/gl pk.html.

[2] IBM TotalStorage. http://www-1.ibm.com/servers/storage.

[3] G. Alvarez, K. Keeton, E. Riedel, and M. Uysal. Char-
acterizing data-intensive workloads on modern disk arrays.

(4]

(5]

(6]

(7]
(8]

(9]

(10]

(11]

(12]

(13]

(14]

(19]

(16]

(17]

(18]

(19]

(20]

(21]

4th. Workshop on Computer Architecture Evaluation using
Commercial Workloads, Jan. 2001.

E. Anderson. Simple table-based modeling of storage de-
vices. Technical Report HPL-SSP-2001-4, HP Laborato-
ries, July 2001.

E. Anderson, J. Hall, J. D. Hartline, M. Hobbs, A. R. Kar-
lin, J. Saia, R. Swaminathan, and J. Wilkes. An experimen-
tal study of data migration algorithms. In WAE'01: Pro-
ceedings of the 5th International Workshop on Algorithm
Engineering, pages 145-158, London, UK, 2001.

E. Anderson, M. Hobbs, K. Keeton, S. Spence, M. Uysal,
and A. Veitch. Hippodrome: Running circles around stor-
age administration. Proceedings of Conference on File and
Sorage Technologies (FAST), pages 175-188, Jan. 2002.
M. E. Azoff. Neural network time series forecasting of fi -
nancial markets. 1994.

E. Borowsky, R. Golding, P. Jacobson, A. Merchant,
L. Schreier, M. Spasojevic, and J. Wilkes. Capacity plan-
ning with phased workloads. Proceedings of the first in-
ternational workshop on Software and performance, pages
199-207, 1998.

P. J. Brockwell and R. A. Davis. Introduction to Time Series
and Forecasting. Springer, 2002.

D. Chambliss, G. A. Alvarez, P. Pandey, D. Jadav, J. Xu,
R. Menon, and T. Lee. Performance virtualization for large-
scale storage systems. Proceedings of the 22nd Symposium
on Reliable Distributed Systems, pages 109-118, Oct. 2003.
G. Copeland, W. Alexander, E. Boughter, and T.W.Kéeller.
Data placement in budda. 1988.

K. Dasgupta, S. Ghosal, R. Jain, U. Sharma, and A. Verma.
QoSMig: Adaptive rate-controlled migration of bulk data
in storage systems. In Proceedings of IEEE International
Conference on Data Engineering 2005, Apr. 2005.

G. R. Ganger, Y. N. Worthington, and B. L. A. Patt.
The DiskSim simulation environment version 1.0 reference
manual. Technical Report CSE-TR-358-98, 27 1998.

F. Hidrobo and T. Cortes. Towards azero-knowledge model
for disk drives. In AMS'03: Proceedings of the fi fth an-
nual international workshop on Action Middleware Ser-
vices, pages 122-130, June 2003.

E. K. Leeand R. H. Katz. An analytic performance model
of disk arrays. SGMETRICSPerform. Eval. Rev., 21(1):98—
109, 1993.

T. J. Linsmeler and N. D. Pearson. Risk measurement: An
introduction to value at risk. 1996.

W.-Y. Loh. Regression trees with unbiased variable selec-
tion and interaction detection. 12:361-386, 2002.

C. Lu, G. A. Alvarez, and J. Wilkes. Aqueduct: online
data migration with performance guarantees. Proceedings
of Conference on File and Storage Technologies (FAST),
pages 175-188, Jan. 2002.

Z. Michalewicz and D. B. Fogel. How to Solve it: Modern
Heuristics. Springer, 2004.

C. Ruemmler and J. Wilkes. A trace-driven analysis of
disk working set sizes. Technica Report HPL—OSR—93—
23, Palo Alto, CA, USA, May 1993.

C. Ruemmler and J. Wilkes. An introduction to disk drive
modeling. Computer, 27(3):17—28, 1994.

[22]
(23]
[24]
[29]

[26]

[27]

(28]

[29]

(30]

S. Russell and P. Norvig. Artifi cial Intelligence A Modern
Approach. Prentice Hall, 2003.

P. Scheduermann, G. Weikum, and P.Zabback. Adaptive
load balancing in disk arrays. 1993.

J. Schindler and G. Ganger. Automated disk drive charac-
terization, 1999.

F. Schmuck and R. Haskin. Gpfs: A shared disk fi le system
for large computing clusters, 2002.

E. Shriver, A. Merchant, and J. Wilkes. An analytic behav-
ior model for disk drives with readahead caches and request
reordering. In Proceedings of the 1998 ACM SGMETRICS
joint international conference on Measurement and model-
ing of computer systems, pages 182-191, New York, NY,
USA, 1998. ACM Press.

N. Tran and D. A. Reed. ARIMA time series modeling
and forecasting for adaptive i/o prefetching. Proceedings
of the 15th international conference on Supercomputing,
pages 473-485, 2001.

M. Wang, K. Au, A. Ailamaki, A. Brockwell, C. Faout-
sos, and G. R. Ganger. Storage device performance pre-
diction with CART models. SSGMETRICS Perform. Eval.
Rev., 32(1):412-413, 2004.

G. Weikum, A. Moenkeberg, C. Hasse, and P. Zabback.
Self-tuning database technology and information services:
From wishful thinking to viable engineering. Aug. 2002.

J. Wilkes. The pantheon storage-system simulator. Tech-
nical Report HPL-SSP-95-14, HP Laboratories, december
19095.

