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Abstract 
Consolidation of server and storage resources in data 

centers results in interference of workloads with different 
characteristics and different performance requirements. It 
is difficult to isolate workloads and make performance 
guarantees on demand. 

SANCache automates hot data selection and migration 
for selected logical units (volumes) on storage. It 
automatically allocates a SAN-wide cache resource across 
workloads in order to meet their performance goals. Our 
goal is to eliminate some of the tedious tasks handled by 
Storage Area Network (SAN) administrators for 
performance tuning. SANCache can handle hot data 
management at a finer granularity, faster response and 
higher accuracy than what could be achieved manually. 
This paper presents SANCache design features, 
demonstrates benefits of online adaptation, and presents 
performance results using industry standard SPC and 
TPC-C benchmarks over two commercial disk arrays. We 
also contribute a new data placement technique called 
Most Recently Frequently Used (MRFU) to the literature. 

1 Problem Statement 
The competitive, fast and dynamic business environment 

continuously demands higher performance and availability 
from IT infrastructures at lower costs. Enterprises 
consolidate their server and storage resources into data 
centers to meet the performance demands while also 
reducing management costs and increasing utilization. 
However, consolidation of storage in SANs can create 
performance problems due to workload interference, since 
disk-based storage is sensitive to changes in I/O traffic 
patterns (e.g. randomness, sequentiality and locality). 
Unpredictable storage performance leads to unpredictable 
application performance. Furthermore, due to increased 
adoption of utility computing initiatives [11] these 
applications can belong to different clients from different 
organizations. It is challenging to isolate workload streams 
or guarantee performance in SANs. For example, in a 24×7 
enterprise the database storage can concurrently serve 
Online Transaction Processing (OLTP), decision support, 
and backup loads, which have different I/O characteristics. 

Performance demands can also be quite bursty. While 
CPUs can cope with relatively high data access rates, disk-
based storage is overwhelmed by I/O-intensive workloads. 
To quantify the intensity of data accesses we use the 

IOPS/GB metric, or access density, which measures I/Os per 
second (IOPS) access rate over a fixed storage address region. 
Note that this metric will have higher values for localized 
access patterns and lower values for sequential and uniformly-
random accesses, since the latter span large address ranges. 
Storage administrators use rules of thumbs such as “~250 
IOPS/spindle”  while architecting disk arrays based on 
experience with common workload types to address the 
throughput and access density limits of mechanical disks. 
Therefore, disk capacity is usually over-provisioned to meet 
IOPS goals. Architecting SANs out of disk arrays to meet 
performance goals under mixed and dynamic sets of 
workloads is simply a black art [1]. 

Our method called SANCache has two main goals: to make 
networked storage fast on-demand and to provide isolation for 
workloads consolidated in SANs. We will demonstrate results 
with real systems and show improvements for both 
performance and isolation dimensions. SANCache augments 
disk array caches and automatically allocates a SAN-wide 
cache resource across workloads in order to meet their quality 
of service (QoS) requirements. For example, a client can 
request “guaranteed 5000 IOPS from selected logical units 
(LUNs) for the next 2 hours for a given OLTP load” . 
SANCache automates “hot”  (i.e. with high access density) 
data selection and migration process for selected LUNs. We 
call this process boosting. A software module at the SAN 
fabric virtualization layer observes I/O and migrates 
frequently accessed data chunks into a high-throughput, low-
latency Solid-State Disk (SSD) attached to the SAN. Hot data 
is served from fast SSD after migration. Since policies are 
implemented at the virtualization layer, existing hosts and 
arrays remain unchanged. Boosting can be enabled and 
disabled when the hosts and storage are online and clients are 
accessing data.  

2 Motivations and Challenges 
Our biggest motivation is to automate some of the routine 

and manual tedious tasks handled by SAN administrators. 
These tasks include moving data around in the SAN for a 
variety of reasons such as load balancing, resolving hot spots, 
meeting reliability goals, upgrading systems, and archiving 
data. Automation of these tasks will spare expert time, thus 
reducing SAN management costs that are reported to be 
several times the cost of hardware [1]. 

Information Lifecycle Management (ILM) addresses the 
automation of data placement related to changing data access 
needs over data lifetime. However, ILM does not address 
migration for performance issues in I/O intensive commercial 



  

applications and highly dynamic environments. It deals 
with the migration of less frequently used reference or 
archival data to less-expensive online, near-line, or offline 
storage resources. SANCache addresses hot data 
management issues in a SAN. 

Today, SAN administrators will try to observe system 
load and manually configure hot data onto a cache partition 
such as a RAMDisk. This process has several drawbacks. 
First, the number of software tools required for hot data 
detection can increase exponentially by the number of 
applications, operating systems (file systems, databases) 
and device drivers (or storage management interfaces), 
which can be formulated as [#Applications] × [#OS] × [# 
H/W interfaces]. Beyond the expertise that needs to be 
developed just for this task, the configuration process has 
to be done continuously to become efficient and will 
require quick response to changes for optimal performance. 
Second, manual configurations are done at a coarse 
granularity (i.e. entire LUNs, database tables, or files), 
which are not equally hot at a finer granularity and 
therefore don’ t justify the cost of using cache space. We 
automate hot data detection and migration at a finer 
granularity. 

The first challenge is to design policies that will select 
the hot data across varied workloads and storage 
configurations. The next challenge is to adapt policy 
parameters when workloads, storage configurations, or 
client demands change to maximize cache access density 
and justify price/performance. Another challenge is to 
achieve exclusivity with existing disk array caches, so that 
SAN resources are utilized effectively. This requires 
understanding multi-level caching issues that we will 
discuss in the next section. Other challenges are discussed 
as future work. These include using SANCache with 
decentralized storage systems [21] and providing dynamic 
cache allocation among multiple LUNs. 

There are also other design requirements, since 
SANCache will integrate into an online enterprise SAN. 
First, migration overheads should be minimized to prevent 
adverse effects on foreground I/O process. By controlling 
the migration rate we can avoid saturation of disks, array 
controllers, and fabric resources. Second, all changes 
should be done when the system is online, since there is 
little or no maintenance window for 24×7 data centers. 
SANCache does not modify client hosts or backend storage 
and can work in a heterogeneous host-array environment. 
Finally, we should be able to boost selectively for hosts, 
LUNs or target storage devices, to facilitate workload 
isolation and differentiation at different levels. 

3 SANCache Design Features 
SANCache design was driven by the above motivations 

and goals, which we can summarize as automation of hot 
data management tasks in SANs. The design is identified 
by the following features:  

• SANCache policies are implemented at a layer 
above the disk arrays (e.g. virtualization layer) to 
observe all SAN I/O traffic. An analogy can be made 

between the SANCache resource shared by disk arrays 
and the array controller cache shared by disks in that 
array. However, array cache is shared by all LUNs in 
the array, whereas only enabled LUNs are allowed to 
use SANCache. The problem with array cache is that 
the cache is allocated among the LUNs according to 
their relative I/O rates. In addition, the SANCache SSD 
resource is provisioned independently of servers and 
disks. Therefore, expanding the resource itself and the 
amount allocated for a LUN is relatively easy. 

• Threshold-based hot data selection policy; note that 
disk array and server caches use a demand-based 
placement policy, i.e. they place an object (page, block, 
etc.) into the cache as soon as it is requested or used 
once. Our goal is to complement this recency-based 
placement policy with a longer-term, more selective 
frequency-based policy by delaying the migration until 
an adaptive threshold value is reached. 

• SANCache selects and caches relatively larger chunks 
(128KB-1MB) compared to 1-16KB cache lines used by 
disk array caches. Because chunks are relatively larger 
than most I/O request sizes, migration results in 
prefetching based on spatial locality. Larger chunks also 
have less metadata overhead and they benefit from 
higher disk bandwidths during transfers. 

• Differentiating between sequential and non-sequential 
streams to complement disk arrays. Disk arrays perform 
better with sequential accesses as a result of seek-time 
compensation and read-ahead policy. Therefore, we 
direct longer sequential I/O streams to disks and streams 
with high access density to SSD. Figure 1 shows how 
we differentiate between access counts for random and 
sequential streams.  

• Periodic decrement of access counts, which we call 
cooling, to increase access density. A detailed 
discussion of this technique can be found in Section 3.3. 

• Migration rate control. Currently, we throttle 
migrations by reducing the number of threads allocated 
for them. Doing strict bandwidth-control on migration 
I/O after threads were scheduled caused client I/Os to 
wait longer, since these threads held locks to chunks 
being migrated. A better approach is simply to defer 
some of the migrations if there isn’ t enough bandwidth. 
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Figure 1: There are five accesses in both cases. We count 
the sequential run as one access to prevent chunks of this 
type to reach migration threshold and go to SSD. 



  

3.1 Multi-Level Caching 
Today, the focus of caching research is on replacement 

policies. Improvements over Least Recently Used (LRU) 
or Least Frequently Used (LFU) replacement algorithms 
are continuously being made [4,5,6,12,16,18,20]. In this 
body of work, the cache placement decision is usually 
taken to be demand-based. We can generalize demand-
based placement policy by deferring the migration until a 
threshold value (T) is reached. We call this type of 
placement policy threshold-based or Most Frequently Used 
(MFU) placement. Demand-based placement is a special 
case of MFU where T=1. To keep most frequently used 
items in the cache, we could also use a combination of 
demand-based placements and LFU replacement. 
However, the SANCache environment motivates  a 
combination of MFU-type placement and a low-overhead 
replacement policy. Demand-based placement of large 
chunks into SSD would be too aggressive. 

Replacement algorithms are about managing one cache 
space. However, in distributed systems multi-level caching 
scenarios are very common. It is usually not easy to change 
cache sizes or policies due to organizational and physical 
boundaries between levels. Figure 2 illustrates such a 
scenario in a SAN occurring with the SANCache design. 
Disk arrays have fixed-capacity, LRU-managed, and 
demand-based caches. It would be a hard, long process to 
update policies inside these arrays to achieve our goals. A 
SAN-level, memory-based cache that is shared by disk 
arrays provides a solution, but this cache needs to 
complement array caches for improved utilization of both 
resources. Note that, this cooperative scenario has a similar 
goal to that of novel two-list algorithms (ARC [18], LRU-2 
[20], 2Q [12]), which is to combine recency and frequency 
and make two lists exclusive. However, our lists reside on 
different devices creating a multi-level caching scenario. 

The physical boundary that separates multi-level caches 
creates additional challenges. The first challenge is to 
provide exclusivity of the two cache levels and second is to 
minimize network overheads of data migration. There is no 
easy way to track the contents of a disk array’s cache or 
insure eviction once a data object has been migrated to the 
SSD. The SANCache design features help address these 
issues. In comparison, a two-list algorithm merely needs to 
modify a memory pointer to emulate the effect of moving 
the object from the first to the second list in a single 
physical cache.  

 
Figure 2: A multi-level caching scenario where the first 
level is the disk-array cache and the second level is the 
SAN-level cache implemented on a solid-state disk.  

3.2 Operation for Boosted LUNs 
Hot data migration operations can be categorized into three 

stages: before, during, and after data migrations. Before the 
migration begins, a module on the data path monitors clients’  
access patterns and makes placement decisions. A placement 
policy in the migration module determines candidates for 
migration into the SSD and adds them to a queue. During 
migrations, the module controls the migration rate and issues 
locks to assure data consistency. After the migration, some 
objects reside in the cache potentially providing reduced 
access latency. The same module monitors cache accesses 
(hits and misses) and makes eviction decisions based on a 
replacement policy such as LRU or CLOCK [5]. 

Some I/O requests span multiple chunks. It is very unusual 
for a request to span more than two chunks. If both chunks are 
in the SSD (hit-hit), the result is a cache hit. The response may 
still have to be constructed from two separate locations on 
SSD. If one of them misses the cache (Hit-Miss), then the 
missing chunk is fetched from disk immediately and the I/O 
completes from SSD. Since the response was slow, the result 
is considered a cache miss. If both chunks are missed but the 
migration threshold is not reached, then access counts are 
updated and the request is completed from disks. If a spanning 
request also triggers migration, then both chunks are migrated. 

3.3 MFU vs. MRFU 
Figure 3 illustrates the effect of different filters on 

workloads. This figure was inspired by a mix of TPC-C and 
TPC-H (see Figure 1 in [7]) and workload characteristics. By 
filtering workloads, we can obtain sub-streams with different 
patterns. Each stream is then handled by the appropriate 
storage system, either disk-based or solid-state storage. In our 
architecture, we first apply a sequential filter to sift and direct 
sequential streams to disks. Next, we pass non-sequential 
streams from a cooling filter for additional improvement in 
selection before migration into the cache. 

Basic MFU placement has a cache pollution problem similar 
to its replacement counterpart LFU algorithm, where 
infrequently used objects occupy cache space and cannot be 
evicted due to their long access history. Similarly, in MFU 
relatively cooler (lower IOPS) chunks eventually collect as 
many accesses as the threshold and get placed into the cache. 
These chunks only achieve a few hits, which does not justify 
the bandwidth and cache space costs associated with the 
migration. Therefore, we “cool”  the migration-candidates list 
by periodically decrementing access counts of the listed 
candidates. This preferentially selects candidate cache objects 
with more recent access activity and clears the list from the 
unwanted, cooler chunks. It retains only the “most-recently 
frequently-used”  chunks as candidates, so called MRFU. The 
access count is not decremented below zero, since chunks with 
no access count are not considered active. 

Given the user I/O pattern, there are only two ways to 
increase the access density metric, i.e. IOs/(GB×sec). The 
sequential filter improves the spatial dimension by eliminating 
sequentially accessed chunks and the cooling filter improves 
the temporal dimension by selecting chunks with time-
clustered accesses for migration. 

disk array 

SSD 



 

 
Figure 3: SANCache uses sequential and cooling filters 
to select hot chunks for SSD migration. 

Compared to MFU, MRFU does not diminish the overall 
benefits (cache hits) obtained from cached objects, since 
data objects that are allowed in the cache by MFU are 
relatively cooler. MRFU objects achieve a higher 
hits/migration (benefit/cost) ratio compared to those 
achieved by MFU objects. Therefore, MRFU is not just a 
cache space management technique, but a better hierarchy 
resource management strategy. The importance of an 
efficient placement algorithm increases with decreased 
network bandwidth, decreased cache capacity and 
increased migration rate. Our technique can also be used in 
content distribution networks. The choice of replacement 
strategy to complement MRFU is beyond the scope of this 
paper, but we suggest usage of policies with low lock 
overhead such as CLOCK.  

MRFU has two tunable parameters: the cooling period 
and the amount of cooling (reduction in access counts) per 
period. For example, we can reduce counts by 1 every 30 
seconds. One may conceive of combining these two 
parameters by defining a new metric called cooling rate, 
which is equal to CoolingAmount/Period. However, the 
effects of the same cooling rate (e.g. 1/30, 20/600) with 
different decrements or periods may not be the same. 
Therefore, we are currently investigating the sensitivity of 
results to the cooling period and the relation between the 
period and the migration threshold via prototypes and 
simulations. Too much cooling could clear all candidates 
and stop migrations, while too little cooling would not be 
able to filter cold chunks. We can increase cooling by 
decreasing the period or by increasing the CoolingAmount. 

Since the operation consists of a simple atomic decrement, 
thousands of chunks can be cooled in microseconds. In our 
implementation, cooling is applied by a separate thread and 
doesn’ t stall the foreground operation. Cooling is done once 
per a relatively-infrequent period (e.g. every 30 seconds). 
Furthermore, it is only applied to active chunks that maintain 
positive access counts under cooling. Increasing the cooling 
rate reduces the number of active chunks, hence the 
processing needs. 

4 Evaluation 
This section describes the SANCache prototype environment 

and workloads used for system evaluation. It also compares 
the static and adaptive threshold schemes and analyzes effects 
of the cooling method. Results related to performance and 
workload isolation are presented in the next section.  

4.1 Prototype 
We used two disk arrays in our prototype as disk-based 

backend storage. The first is a relatively smaller scale HP 
Modular SAN Array (MSA) 1000 with a 256MB cache and 8 
18.2GB and 15,000 rpm disks. We used RAID0 (i.e. stripe-no-
mirror) to maximize throughput and meet capacity goals of the  
benchmarks described below.  The second array was a high-
end HP XP1024 disk array with 125 disks and 32 GB of 
shared cache. We used an isolated disk group with 32 spindles 
and configured 3 LUNs with ~100GB total usable capacity as 
RAID1 (i.e. stripe-and-mirror). 

To connect the backend to hosts and to implement 
SANCache policies, we used HP’s Continuous Access Storage 
Appliance (CASA) [10], which is an in-band fabric-based 
SAN virtualization platform. SAN virtualization simplifies 
SAN management by pooling storage resources from 
heterogeneous backend devices and mapping partitions of 
storage to heterogeneous hosts (e.g. Windows, Linux, HP-UX, 
etc.). It was also easier to add our SANCache software module 
into the virtualization layer as a new policy than alternatively 
modifying the array firmware. Other tasks handled by 
virtualizers include local and remote mirroring, snapshots, and 
multi-path data availability. This appliance has 2 HP Proliant 
ML370 servers with 2.8GHz Intel Xeon processors. We used 
one of these servers to generate the benchmark traffic for 
some experiments and used other similar Intel-based servers 
for others. Most hosts have QLogic 2300 series dual-port 
Fibre Channel (FC) Host Bus Adapter (HBA) cards. Fabric 
virtualization can be in-band (on the data path) or out-of-band 
(distributed and coordinated). An out-of-band implementation 
of SANCache over decentralized disk arrays is currently in 
progress. We used the LRU replacement policy for the SSD. 

A Solid-State Disk (SSD) is  a DRAM-based storage device 
with a block interface and protection for non-volatility. For 
our prototype, we attached a Texas Memory Systems’  (TMS) 
RamSan-320 SSD with a 16GB capacity to the backend FC 
SAN fabric and partitioned portions of it as a SANCache 
resource. This device has 4 FC controllers and 2 FC ports per 
controller. We measured ~130-150µs access latency with 512 
byte random I/O on this SSD, whereas disks generally have 
millisecond latencies. SSD presents similar performance for 



  

random and sequential loads, since it is memory based. 
TMS recently published impressive results for a similar 
box demonstrating ~120,000 IOPS and 960MB/sec 
bandwidth measured with the SPC storage benchmark 
described next.  

4.2 Workloads 
The Storage Performance Council (SPC) [22] publishes 

industry standard storage performance benchmarks. This 
benchmark emulates On-Line Transaction Processing 
(OLTP) style data access behavior. It is representative of 
multi-user OLTP, database and email applications. It uses 
3 LUNs: LUN1 called data store with the most I/O activity 
(~60%) and mixed streams, LUN2 called user store with 
less activity and a similar mixed I/O pattern and LUN3 
called log store with long sequential streams. SPC-1 
defines 100% utilization and maximum I/O rate to be at 
30ms response time.  

Transaction Processing Performance Council’ s (TPC) 
[24] TPC-C benchmark is designed to simulate “a 
complete computing environment where a population of 
users executes transactions against a database” . TPC-C 
involves a mix of five concurrent transactions of different 
types and complexity. Warehouse is a basic unit of scaling 
and the number of warehouses determines size of database 
tables and load applied to the system. The database is 
comprised of nine types of tables with a wide range of 
record and population sizes. Most active tables are the 
Customer and Stock tables. TPC-C results are measured in 
number of new-order transactions completed per minute. 
Conventional wisdom suggests that locality is captured in 
database server buffers, array cache is only a write buffer 
and storage sees a filtered random access pattern except for 
the Log. We show that SANCache achieves performance 
improvements even with this type of load. 

4.3 Static vs. Adaptive Threshold 
Chunks are migrated into SSD once their random access 

count reaches the migration threshold. We discuss 
implications of having a static threshold and motivate the 
adaptive threshold scheme used in SANCache. We used a 
128KB chunk size for the following experiments, since 
128KB can be fetched by most HBAs at once without 
fragmentation. 

Figure 4 shows the effects of choosing low to high 
threshold values (4-32) on hit rates and the number of 
background migrations done to achieve these hit rates. 
While lower thresholds generate higher hit rates, ~55%, 
and reach the steady-state hit rate level quicker, they also 
have a larger steady-state migration-replacement rate, ~250 
IOPS. For example, threshold 4 moves chunks at 5 times 
the speed of threshold 32 to achieve ~10% more hit rate. 
Higher thresholds are more conservative in selecting data, 
thus take longer to fill the cache (e.g. +10 minutes in 
Fig.4). While its saves network bandwidth and cache 
space, a conservative threshold also results in slower 
response to workload changes. To combine pros and avoid 
cons of different static thresholds, we resort to an adapting 
threshold parameter.  
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Figure 4: Effects of different static thresholds on cache hit 
rates (upper) and migration overheads (lower). 
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Figure 5: Effect of a poor static threshold choice on 
average client response time.  (view in color) 

 



 

Initialize: 
BCRatio=0; JUSTIFY=0; 
 
foreach period { 
  Benefit = �hits; //new hits 
  Cost = �migs;  //new migrations 
  BCRatio = �hits/�migs; //trade-off 
 
  if(�migs > JUSTIFY) { 
    if(BCRatio < JUSTIFY) 

THRESHOLD++ 
    elseif (BCRatio >= JUSTIFY)  
 JUSTIFY++ 
  } else { 
 THRESHOLD--;  
 JUSTIFY--;  
  } 
} 

Figure 5 shows the adverse effects of a poor static 
threshold choice on foreground I/O latency. In this 
example, the lower threshold (4) moved more data in favor 
of higher hit rates, but since most chunks were not hot 
enough, costs of migration were not justified by the hit 
rates and the overall response time of the system was 
crippled. These results were generated with the SPC-1 
benchmark over the XP1024 disk array and using 2GB of 
SSD cache space.  

4.3.1 Adaptation Rule 
We provide an elementary threshold adaptation rule in 

Figure 6. Threshold is adapted periodically, every 15 
seconds in the following evaluations. More chunks are 
migrated when the threshold is lowered and vice versa. 
Since SSD hits are counted periodically and the chunk size 
is fixed, the dimension of benefit to cost ratio (BCRatio) is 
equivalent to IOPS/GB, previously defined as the access 
density. Therefore, by tracking changes in workloads and 
storage configurations and adapting the migration 
threshold to these changes we maximize and maintain 
cache access density meeting one of our design goals.  

If the BCRatio does not justify the current heat levels 
(i.e. < JUSTIFY), then the threshold is increased to slow 
down migrations and be more selective. If the BCRatio 
justifies, then we maintain the threshold, but also demand 
higher hit rates for the next period by increasing JUSTIFY. 
Finally, if there aren’ t enough migrations we lower the 
threshold and justify parameters to get data moving into 
the cache again. 

There are no system or workload specific parameters in 
this formula. The algorithm finds good threshold values 
and the average heat of the working set in a workload by 
blindly probing it. This method has worked with a wide 
variety of workloads over different storage configurations. 
For larger cache sizes (e.g. 8-16GB) the BCRatio was quite 
high and it took JUSTIFY too long to reach and push the 
BCRatio higher. Therefore, we modified JUSTIFY as the 
running average of BCRatio. However, the running 
average in turn caused migration-rate oscillations for very 
dynamic workloads with high-threshold sensitivity, which 
we report here as potential avenues for improvement.  

Figure 7 shows the adaptation rule in action. It illustrates 
that by adjusting THRESHOLD and JUSTIFY parameters 
the adaptation rule is able to achieve high BCRatio around 
110 hits per migrated chunk. The benchmarks used had 
constant access rates and mixes of load, which caused the 
adaptation algorithm to reach a steady-state heat level and 
the threshold to stabilize around 18. This data was 
collected by running the TPC-C benchmark on the XP1024 
and boosting Customer/Stock tables to a 2GB SANCache.  

4.3.2 Adapting to Cache Size  
We provide no expert hints to the adaptation rule 

including any hints about the amount of SSD cache space 
available or the active data set size in the workload. Figure 
8 shows how the adaptation algorithm stabilizes at 
different steady-state values for different cache sizes 
although the workload and disk array are unchanged (SPC-

1 over MSA). 

 

Figure 6: Migration threshold adaptation algorithm. 
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Figure 7: Adaptation rule in action. Benefit-Cost Ratio is 
improved by adapting the threshold to workload.  
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Figure 8: The algorithm stabilizes at different threshold 
values for different cache sizes. With smaller caches it 
increases the threshold to be more selective and 
compensate for the lack of resource and vice versa. 



  

 Initially the threshold is reset to 1 to indicate that a 
chunk will be migrated into SSD on a second hit. The 
results show that the adaptive algorithm is more selective 
when there is less cache resource. The threshold is around 
1-2 for 4GB and 13-15 for 512MB cache sizes. Basically, 
due to the shorter residence times there will be more 
capacity misses and BCRatio will be lower on average 
pushing the threshold to higher values. The spikes in the 
graph occur, since the threshold is a discrete value and the 
BCRatio is a rational number. 

4.4 Cooling 
Figure 9 and Figure 10 compare MFU and MRFU based 

on the total amount of migrated chunks (GB) and hit rates, 
respectively. These results were obtained using the SPC 
load on the XP1024 disk array. We decrement accesses to 
active chunks by 1 every 15 seconds. Both placement 
policies used the same adaptive threshold adaptation rule.  

Figure 9 compares MRFU and MFU based on total 
chunks migrated or their bandwidth usage. Savings 
achieved by MRFU over MFU placement are clear. After 1 
hour MRFU moved about 30% (9.5 GBà 6.5GB) fewer 
chunks than MFU. Specifically, the cooler chunks were 
eliminated by MRFU from the candidate list before they 
used up any disk and network bandwidth for migration or 
occupied cache space. Figure 10 compares hit rates 
achieved by MRFU and MFU. MRFU achieved hit rates 
comparable to MFU (even slightly higher), although it 
migrated fewer chunks as evidenced by the data in Figure 
9. Together, these two plots demonstrate that simple 
periodic cooling can successfully discriminate among 
chunks that reach a target access threshold and determine 
those that are currently hot or “most-recently frequently-
used” . 

5 Results 
SANCache has two main goals: to make networked 

storage fast on-demand and to provide isolation for 
workloads consolidated in a SAN. This section 
demonstrates results with real systems and shows 
improvements for both performance and isolation 
dimensions using SPC-1 and TPC-C benchmarks. 

5.1 Performance Boosting 
Storage performance is represented with IOPS-Response 

Time curves. When a disk array reaches its throughput 
limits the response time will shoot exponentially avoiding 
further increase. We show the effects of boosting client 
LUNs on throughput (IOPS) and average response time.  

Figure 11 shows the operation of SANCache step-by-step 
by running the SPC-1 benchmark on the XP1024 disk 
array and plotting IOPS for LUN1. For 20 minutes SPC-1 
runs with a constant rate of 2200 IOPS on LUN1 (total 
3500 IOPS over 3 LUNs). After 20 minutes, LUN1 is 
boosted and the migration of hot chunks to SSD occurs in 
the background. The algorithm quickly moves chunks to 
exploit available cache space causing a bump and then 
reaches a steady-state rate.  
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Figure 9: Comparison of MRFU (MFU + Cooling) and 
MFU policies based on total amount (GB) of migrated 
chunks, i.e. bandwidth overhead. After 60 minutes MRFU 
eliminated about 3GB of unnecessary migrations. 
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Figure 10: Hit rate comparison of MRFU and MFU. 
MRFU achieved even slightly higher hit rates with SPC-1 
benchmark, while the goal was to perform just as good. 
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Figure 11: IOPS performance results before and after 
boosting most active LUN1 in SPC-1 benchmark.  
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Figure 12: Average client response time before and 
after boosting most active LUN1 in SPC-1 benchmark. 

 

After ~7 minutes I/O requests going to disk array are 
reduced to 450 IOPS (or by ~80%) and 1750 IOPS are 
served by the fast SANCache SSD resource. Overall disk 
array I/O reduction is about 1750/3500=50%. In this case, 
the client is not pushing for more IOPS and therefore the 
benefit is seen in the reduction of average response times 
from 15ms to 5ms by 3-fold as shown in Figure 12. 
Although only LUN1 was boosted all LUNs benefited 
significantly due to reduced utilization of the disk array 
cache and spindles. The initial bump in response time at 
boost time is expected as several table allocations and 
initializations are done at this time. 

Figure 13 shows the effect of SANCache on throughput 
(IOPS) using SPC-1 and the HP MSA array. Maximum 
IOPS increased from 2000 to 3000 IOPS or by 50%. We 
do not show the disk IOPS curve for this experiment as it is 
similar to Figure 11. To summarize, after the boost 60% of 
LUN1 I/O traffic was being handled by the SSD at steady-
state, which maps to 35% of the total I/O traffic. 

Figure 14 shows throughput results for the TPC-C 
benchmark running at 800 warehouses with 20 users on a 
HP XP1024 disk array. At the 10 minute mark the LUNs 
that have the Customer and Stock tables are boosted. After 
another 10 minutes “ total”  IOPS increases from ~3900 to 
~5000 IOPS (C&S+Misc+Log) and transaction per minute 
increases from ~8000 to ~9500 (see right vertical axis). We 
would like to emphasize that these improvements are being 
achieved with workloads believed to be very random (so 
caching would be useless) and only using a 2GB SSD 
space for SANCache to complement an array that already 
has 32 GB cache. The initial dip in performance is again 
attributed to the initial migrations and initialization 
routines that create the hash tables and set many 
parameters. 

5.2 Workload Isolation 
This section demonstrates another dimension of 

SANCache benefits, which is its potential use for workload 
isolation. Figure 15 illustrates the scenario.  
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Figure 13: Effects of SANCache boosting on MSA storage 
throughput. Migrating hot data to a 2GB SSD partition 
resulted in 50% improvement of overall IOPS. 
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Figure 14: Effect of boosting Customer-Stock database 
tables to 2GB SSD on overall TPC-C performance.  
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Figure 15: Alleviating cache interference and providing 
workload isolation using SANCache. 

 



 

While the SPC-1 workload is operating on the XP1024 
array, a write-intensive workload is introduced at the 10 
minute mark. The write workload is on a different LUN, 
port, and set of disk groups, but it shares the array’s 32 GB 
of cache with SPC-1. The cache quickly fills, causing the 
array to flush to its disks with limited IOPS.  This builds 
queue length, adversely impacting response time seen in 
the increase from 10 ms to 40 ms. Boosting the SPC-1 
LUN1 with 4 GB of SANCache (at 30 minutes) absorbs 
I/O load from the XP array, restoring acceptable response 
time to SPC-1 and allowing the interfering load to continue 
at its initial rate.  

6 Related Work 
The SANCache design has similarities to some novel and 

emerging replacement algorithms [4,5,6,12,16,18,20]. For 
example, the goal of two-list replacement algorithms such 
as Adaptive Replacement Cache (ARC) [18] is to capture 
both recency and frequency types of locality and this goal 
is also reflected in the SANCache design, where the array 
cache represents the recency component and the SSD 
contents represent the longer-term frequency component. 
However, the two lists of SANCache reside on different 
devices. Another group of replacement algorithms 
including Unified Buffer Management (UBM) [14] and 
Program-Counter-based Classification (PCC) [7] split 
workloads into sequential, looping and other types of 
patterns and use sub-caches to handle each pattern 
separately. Workload filters introduced in SANCache also 
split workloads into sub-streams (sequential, high-access 
density, others) and direct each stream to the storage 
device that can handle that type of stream well. 

Most replacement policies focus on making local caching 
decisions and ignore multi-level or global performance 
implications. Wong and Wilkes investigate exclusive 
caching in a SAN context [25]. In a two-level cache 
scenario, where the second level is a disk array cache, they 
evaluate usage of heterogeneous replacement policies in 
each level. They find that using different policies (e.g. 
LRU and MRU) is better than using the same policy (e.g. 
LRU-LRU) for different levels. They further improve 
exclusivity of the two-level cache via demotions, which 
refers to moving objects from first to second level so that 
each level has unique set of objects. Demotions increase 
network bandwidth usage and require modifying the cache 
management routines in servers and disk arrays. 

Our previous work also shows benefits of using 
heterogeneous policies for multi-level caches and promotes 
employing adaptive caching using multiple replacement 
policies as experts [2,8] for collaboration among levels 
without communication. In another related work [3], we 
compare the SANCache style cache management with 
replacement policies such as LRU and ARC [18] using  
analysis and simulations. 

Korupolu and Dahlin define a similar MFU placement 
algorithm called MFUPlace ([15], page2) as follows: “The 
distinction between this strategy (LFU replacement) and 
the MFU placement strategy is that, while the MFU 

placement strategy picks a set of objects to place in the cache 
and leaves them undisturbed throughout that period, the LFU 
replacement strategy can change the contents of the cache 
after each request.”  In our definition of MFU placement, 
objects can enter the cache once they hit the access threshold, 
i.e. caching can occur anytime irrespective of the placement 
period. Therefore, our cooling strategy can be applied to their 
MFUPlace algorithm as well, since this algorithm is 
potentially prone to the cache pollution problem. 

The relationship between MFU and MRFU is similar to the 
relationship between LFU and LFU with Dynamic Aging 
(LFUDA) [4]. The latter algorithms, MRFU and LFUDA, 
avoid the cache pollution problem of the former. However, the 
“aging”  mechanism in LFUDA and the “cooling”  mechanism 
in MRFU operate in completely opposite ways: Cooling 
decrements access counts of candidate objects to select the hot 
objects for placement before the cache placement occurs. 
Aging increments access counts of cached objects to select the 
cold objects for replacement after the cache placement occurs. 
LFUDA ages the cache to evict objects (pages, blocks), which 
cause the cache pollution, whereas MRFU solves a similar 
problem before the cache placement is made.  

Hierarchical Storage Management (HSM) is also related to 
our work, but the term usually refers to migration of cold data 
from online to near-line or to offline storage in practice. Our 
research focuses on moving data from disk-based storage to 
faster, non-volatile and memory-based storage technologies 
such as DRAM-based SSDs [23] or other emerging NVRAM 
technologies [19].  

Our work has Quality of Storage Service (QoSS) 
implications and therefore relates to several projects in that 
field. Triage [13] provides workload performance isolation 
and differentiation. It uses control theory to throttle requests 
from different clients to meet SLAs goals, but differentiation 
can occur within the performance limits of the reserved 
storage. Triage delays requests of less delay-sensitive 
applications. SANCache can increase the performance of a 
selected client beyond disk storage performance. Aqueduct 
[17] also meets delay contracts by using control theory. It 
controls migration of colder data for backups, failure recovery 
and load balancing. CacheCOW [9], which is inspired by the 
ARC replacement algorithm, differentiates classes of 
workloads (COW) by dynamically allocating cache spaces for 
LUNs in a SAN. It estimates required hit rates, derives new 
cache allocations and either gives or claims space to meet QoS 
goals. When all QoS goals are met, it allocates extra space to 
maximize overall hit rate. It uses demand-based placement and 
depends on building a hit rate history for accurate estimations 
of cache space allocations. It is challenging to come up with 
good workload estimates in todays SAN, where workloads 
will interfere with each other.  

In some high-end disk arrays including the HP XP series, 
array cache can be partitioned by using the array’s 
management tools. In one use case, this partition will serve as 
a RAMDisk or a “Cache LUN”. In another use case, the 
partitioned cache will be mapped to a selected set of disks in 
the array in order to carve out smaller isolated disk arrays 
from larger ones. While this feature is an improvement over 
existing disk arrays, it has several disadvantages when 



 

compared to the SANCache method. First, it requires 
modifying existing disk arrays and would only be useful 
for that array and not the whole SAN. Next, the cache 
cannot be provisioned (expanded, protected, purchased) 
independently from the disks as in network-attached SSD. 
Finally, when loads are isolated using separate spindles the 
workloads will not benefit from all available spindles and 
disk capacity will be under-utilized.  

7 Ongoing and Future Work 
In this paper, SANCache hot data selection and 

placement policies were shown to boost performance of 
traditional disk arrays. However, it is challenging to 
implement SANCache over decentralized storage systems 
such as Federated Array of Bricks (FAB) [21]. SANCache 
requires lots of fine-granularity data migrations and 
stresses metadata management when the underlying 
storage is distributed. We are currently designing and 
implementing a light-weight, distributed metadata 
management algorithm to run SANCache over FAB to 
provide performance improvements.  

In this paper, we only introduced the hot data 
management mechanisms and showed preliminary 
workload isolation results. We haven’ t fully addressed 
QoSS issues related to the business aspects (e.g. different 
quality metrics, contracts-SLAs, utility functions, etc.) of 
this topic. In our current prototype, we implemented APIs 
where users can enter their (minimum) target IOPS and 
(maximum) latency goals. SANCache automatically 
allocates cache space to client LUNs to meet their storage 
performance goals and depends on maximizing global 
utility when there is resource contention.  

8 Conclusions 
We addressed performance problems in SANs due to 

workload interferences and throughput limitations of disk-
based storage. Our approach was to place a SAN-level 
cache device that will complement array caches. All 
operations were done when the system was online and the 
disk arrays were not modified. 

We prototyped SANCache and implemented its 
techniques on the HP-CASA virtualization platform. We 
demonstrated performance improvement and workload 
isolation results with SANCache by running industry 
standard SPC-1 and TPC-C benchmarks over two 
commercial disk arrays. We are continuing our design with 
guidance from measurement and simulation. We believe 
that a balanced storage system design with the right 
amounts of cache and disks for today’s complex, 24×7 
SAN can only be achieved though automation of data 
management tasks and adaptation of system parameters to 
track changes in workloads and storage configurations. 
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