

Performance Boosting and Workload Isolation

in Storage Area Networks with SANCache
Ismail Ari, Melanie Gottwals, Dick Henze

ismail.ari@hp.com, melanie.gottwals@hp.com, dick.henze@hp.com

Hewlett Packard Laboratories

Abstract
Consolidation of server and storage resources in data

centers results in interference of workloads with different
characteristics and different performance requirements. It
is difficult to isolate workloads and make performance
guarantees on demand.

SANCache automates hot data selection and migration
for selected logical units (volumes) on storage. It
automatically allocates a SAN-wide cache resource across
workloads in order to meet their performance goals. Our
goal is to eliminate some of the tedious tasks handled by
Storage Area Network (SAN) administrators for
performance tuning. SANCache can handle hot data
management at a finer granularity, faster response and
higher accuracy than what could be achieved manually.
This paper presents SANCache design features,
demonstrates benefits of online adaptation, and presents
performance results using industry standard SPC and
TPC-C benchmarks over two commercial disk arrays. We
also contribute a new data placement technique called
Most Recently Frequently Used (MRFU) to the literature.

1 Problem Statement
The competitive, fast and dynamic business environment

continuously demands higher performance and availability
from IT infrastructures at lower costs. Enterprises
consolidate their server and storage resources into data
centers to meet the performance demands while also
reducing management costs and increasing utilization.
However, consolidation of storage in SANs can create
performance problems due to workload interference, since
disk-based storage is sensitive to changes in I/O traffic
patterns (e.g. randomness, sequentiality and locality).
Unpredictable storage performance leads to unpredictable
application performance. Furthermore, due to increased
adoption of utility computing initiatives [11] these
applications can belong to different clients from different
organizations. It is challenging to isolate workload streams
or guarantee performance in SANs. For example, in a 24×7
enterprise the database storage can concurrently serve
Online Transaction Processing (OLTP), decision support,
and backup loads, which have different I/O characteristics.

Performance demands can also be quite bursty. While
CPUs can cope with relatively high data access rates, disk-
based storage is overwhelmed by I/O-intensive workloads.
To quantify the intensity of data accesses we use the

IOPS/GB metric, or access density, which measures I/Os per
second (IOPS) access rate over a fixed storage address region.
Note that this metric will have higher values for localized
access patterns and lower values for sequential and uniformly-
random accesses, since the latter span large address ranges.
Storage administrators use rules of thumbs such as “~250
IOPS/spindle” while architecting disk arrays based on
experience with common workload types to address the
throughput and access density limits of mechanical disks.
Therefore, disk capacity is usually over-provisioned to meet
IOPS goals. Architecting SANs out of disk arrays to meet
performance goals under mixed and dynamic sets of
workloads is simply a black art [1].

Our method called SANCache has two main goals: to make
networked storage fast on-demand and to provide isolation for
workloads consolidated in SANs. We will demonstrate results
with real systems and show improvements for both
performance and isolation dimensions. SANCache augments
disk array caches and automatically allocates a SAN-wide
cache resource across workloads in order to meet their quality
of service (QoS) requirements. For example, a client can
request “guaranteed 5000 IOPS from selected logical units
(LUNs) for the next 2 hours for a given OLTP load” .
SANCache automates “hot” (i.e. with high access density)
data selection and migration process for selected LUNs. We
call this process boosting. A software module at the SAN
fabric virtualization layer observes I/O and migrates
frequently accessed data chunks into a high-throughput, low-
latency Solid-State Disk (SSD) attached to the SAN. Hot data
is served from fast SSD after migration. Since policies are
implemented at the virtualization layer, existing hosts and
arrays remain unchanged. Boosting can be enabled and
disabled when the hosts and storage are online and clients are
accessing data.

2 Motivations and Challenges
Our biggest motivation is to automate some of the routine

and manual tedious tasks handled by SAN administrators.
These tasks include moving data around in the SAN for a
variety of reasons such as load balancing, resolving hot spots,
meeting reliability goals, upgrading systems, and archiving
data. Automation of these tasks will spare expert time, thus
reducing SAN management costs that are reported to be
several times the cost of hardware [1].

Information Lifecycle Management (ILM) addresses the
automation of data placement related to changing data access
needs over data lifetime. However, ILM does not address
migration for performance issues in I/O intensive commercial

applications and highly dynamic environments. It deals
with the migration of less frequently used reference or
archival data to less-expensive online, near-line, or offline
storage resources. SANCache addresses hot data
management issues in a SAN.

Today, SAN administrators will try to observe system
load and manually configure hot data onto a cache partition
such as a RAMDisk. This process has several drawbacks.
First, the number of software tools required for hot data
detection can increase exponentially by the number of
applications, operating systems (file systems, databases)
and device drivers (or storage management interfaces),
which can be formulated as [#Applications] × [#OS] × [#
H/W interfaces]. Beyond the expertise that needs to be
developed just for this task, the configuration process has
to be done continuously to become efficient and will
require quick response to changes for optimal performance.
Second, manual configurations are done at a coarse
granularity (i.e. entire LUNs, database tables, or files),
which are not equally hot at a finer granularity and
therefore don’ t justify the cost of using cache space. We
automate hot data detection and migration at a finer
granularity.

The first challenge is to design policies that will select
the hot data across varied workloads and storage
configurations. The next challenge is to adapt policy
parameters when workloads, storage configurations, or
client demands change to maximize cache access density
and justify price/performance. Another challenge is to
achieve exclusivity with existing disk array caches, so that
SAN resources are utilized effectively. This requires
understanding multi-level caching issues that we will
discuss in the next section. Other challenges are discussed
as future work. These include using SANCache with
decentralized storage systems [21] and providing dynamic
cache allocation among multiple LUNs.

There are also other design requirements, since
SANCache will integrate into an online enterprise SAN.
First, migration overheads should be minimized to prevent
adverse effects on foreground I/O process. By controlling
the migration rate we can avoid saturation of disks, array
controllers, and fabric resources. Second, all changes
should be done when the system is online, since there is
little or no maintenance window for 24×7 data centers.
SANCache does not modify client hosts or backend storage
and can work in a heterogeneous host-array environment.
Finally, we should be able to boost selectively for hosts,
LUNs or target storage devices, to facilitate workload
isolation and differentiation at different levels.

3 SANCache Design Features
SANCache design was driven by the above motivations

and goals, which we can summarize as automation of hot
data management tasks in SANs. The design is identified
by the following features:

• SANCache policies are implemented at a layer
above the disk arrays (e.g. virtualization layer) to
observe all SAN I/O traffic. An analogy can be made

between the SANCache resource shared by disk arrays
and the array controller cache shared by disks in that
array. However, array cache is shared by all LUNs in
the array, whereas only enabled LUNs are allowed to
use SANCache. The problem with array cache is that
the cache is allocated among the LUNs according to
their relative I/O rates. In addition, the SANCache SSD
resource is provisioned independently of servers and
disks. Therefore, expanding the resource itself and the
amount allocated for a LUN is relatively easy.

• Threshold-based hot data selection policy; note that
disk array and server caches use a demand-based
placement policy, i.e. they place an object (page, block,
etc.) into the cache as soon as it is requested or used
once. Our goal is to complement this recency-based
placement policy with a longer-term, more selective
frequency-based policy by delaying the migration until
an adaptive threshold value is reached.

• SANCache selects and caches relatively larger chunks
(128KB-1MB) compared to 1-16KB cache lines used by
disk array caches. Because chunks are relatively larger
than most I/O request sizes, migration results in
prefetching based on spatial locality. Larger chunks also
have less metadata overhead and they benefit from
higher disk bandwidths during transfers.

• Differentiating between sequential and non-sequential
streams to complement disk arrays. Disk arrays perform
better with sequential accesses as a result of seek-time
compensation and read-ahead policy. Therefore, we
direct longer sequential I/O streams to disks and streams
with high access density to SSD. Figure 1 shows how
we differentiate between access counts for random and
sequential streams.

• Periodic decrement of access counts, which we call
cooling, to increase access density. A detailed
discussion of this technique can be found in Section 3.3.

• Migration rate control. Currently, we throttle
migrations by reducing the number of threads allocated
for them. Doing strict bandwidth-control on migration
I/O after threads were scheduled caused client I/Os to
wait longer, since these threads held locks to chunks
being migrated. A better approach is simply to defer
some of the migrations if there isn’ t enough bandwidth.

LBN

TIME

LBN

TIME

RANDOM SEQUENTIAL

ChunkLBN

TIME

LBN

TIME

RANDOM SEQUENTIAL

Chunk

Figure 1: There are five accesses in both cases. We count
the sequential run as one access to prevent chunks of this
type to reach migration threshold and go to SSD.

3.1 Multi-Level Caching
Today, the focus of caching research is on replacement

policies. Improvements over Least Recently Used (LRU)
or Least Frequently Used (LFU) replacement algorithms
are continuously being made [4,5,6,12,16,18,20]. In this
body of work, the cache placement decision is usually
taken to be demand-based. We can generalize demand-
based placement policy by deferring the migration until a
threshold value (T) is reached. We call this type of
placement policy threshold-based or Most Frequently Used
(MFU) placement. Demand-based placement is a special
case of MFU where T=1. To keep most frequently used
items in the cache, we could also use a combination of
demand-based placements and LFU replacement.
However, the SANCache environment motivates a
combination of MFU-type placement and a low-overhead
replacement policy. Demand-based placement of large
chunks into SSD would be too aggressive.

Replacement algorithms are about managing one cache
space. However, in distributed systems multi-level caching
scenarios are very common. It is usually not easy to change
cache sizes or policies due to organizational and physical
boundaries between levels. Figure 2 illustrates such a
scenario in a SAN occurring with the SANCache design.
Disk arrays have fixed-capacity, LRU-managed, and
demand-based caches. It would be a hard, long process to
update policies inside these arrays to achieve our goals. A
SAN-level, memory-based cache that is shared by disk
arrays provides a solution, but this cache needs to
complement array caches for improved utilization of both
resources. Note that, this cooperative scenario has a similar
goal to that of novel two-list algorithms (ARC [18], LRU-2
[20], 2Q [12]), which is to combine recency and frequency
and make two lists exclusive. However, our lists reside on
different devices creating a multi-level caching scenario.

The physical boundary that separates multi-level caches
creates additional challenges. The first challenge is to
provide exclusivity of the two cache levels and second is to
minimize network overheads of data migration. There is no
easy way to track the contents of a disk array’s cache or
insure eviction once a data object has been migrated to the
SSD. The SANCache design features help address these
issues. In comparison, a two-list algorithm merely needs to
modify a memory pointer to emulate the effect of moving
the object from the first to the second list in a single
physical cache.

Figure 2: A multi-level caching scenario where the first
level is the disk-array cache and the second level is the
SAN-level cache implemented on a solid-state disk.

3.2 Operation for Boosted LUNs
Hot data migration operations can be categorized into three

stages: before, during, and after data migrations. Before the
migration begins, a module on the data path monitors clients’
access patterns and makes placement decisions. A placement
policy in the migration module determines candidates for
migration into the SSD and adds them to a queue. During
migrations, the module controls the migration rate and issues
locks to assure data consistency. After the migration, some
objects reside in the cache potentially providing reduced
access latency. The same module monitors cache accesses
(hits and misses) and makes eviction decisions based on a
replacement policy such as LRU or CLOCK [5].

Some I/O requests span multiple chunks. It is very unusual
for a request to span more than two chunks. If both chunks are
in the SSD (hit-hit), the result is a cache hit. The response may
still have to be constructed from two separate locations on
SSD. If one of them misses the cache (Hit-Miss), then the
missing chunk is fetched from disk immediately and the I/O
completes from SSD. Since the response was slow, the result
is considered a cache miss. If both chunks are missed but the
migration threshold is not reached, then access counts are
updated and the request is completed from disks. If a spanning
request also triggers migration, then both chunks are migrated.

3.3 MFU vs. MRFU
Figure 3 illustrates the effect of different filters on

workloads. This figure was inspired by a mix of TPC-C and
TPC-H (see Figure 1 in [7]) and workload characteristics. By
filtering workloads, we can obtain sub-streams with different
patterns. Each stream is then handled by the appropriate
storage system, either disk-based or solid-state storage. In our
architecture, we first apply a sequential filter to sift and direct
sequential streams to disks. Next, we pass non-sequential
streams from a cooling filter for additional improvement in
selection before migration into the cache.

Basic MFU placement has a cache pollution problem similar
to its replacement counterpart LFU algorithm, where
infrequently used objects occupy cache space and cannot be
evicted due to their long access history. Similarly, in MFU
relatively cooler (lower IOPS) chunks eventually collect as
many accesses as the threshold and get placed into the cache.
These chunks only achieve a few hits, which does not justify
the bandwidth and cache space costs associated with the
migration. Therefore, we “cool” the migration-candidates list
by periodically decrementing access counts of the listed
candidates. This preferentially selects candidate cache objects
with more recent access activity and clears the list from the
unwanted, cooler chunks. It retains only the “most-recently
frequently-used” chunks as candidates, so called MRFU. The
access count is not decremented below zero, since chunks with
no access count are not considered active.

Given the user I/O pattern, there are only two ways to
increase the access density metric, i.e. IOs/(GB×sec). The
sequential filter improves the spatial dimension by eliminating
sequentially accessed chunks and the cooling filter improves
the temporal dimension by selecting chunks with time-
clustered accesses for migration.

disk array

SSD

Figure 3: SANCache uses sequential and cooling filters
to select hot chunks for SSD migration.

Compared to MFU, MRFU does not diminish the overall
benefits (cache hits) obtained from cached objects, since
data objects that are allowed in the cache by MFU are
relatively cooler. MRFU objects achieve a higher
hits/migration (benefit/cost) ratio compared to those
achieved by MFU objects. Therefore, MRFU is not just a
cache space management technique, but a better hierarchy
resource management strategy. The importance of an
efficient placement algorithm increases with decreased
network bandwidth, decreased cache capacity and
increased migration rate. Our technique can also be used in
content distribution networks. The choice of replacement
strategy to complement MRFU is beyond the scope of this
paper, but we suggest usage of policies with low lock
overhead such as CLOCK.

MRFU has two tunable parameters: the cooling period
and the amount of cooling (reduction in access counts) per
period. For example, we can reduce counts by 1 every 30
seconds. One may conceive of combining these two
parameters by defining a new metric called cooling rate,
which is equal to CoolingAmount/Period. However, the
effects of the same cooling rate (e.g. 1/30, 20/600) with
different decrements or periods may not be the same.
Therefore, we are currently investigating the sensitivity of
results to the cooling period and the relation between the
period and the migration threshold via prototypes and
simulations. Too much cooling could clear all candidates
and stop migrations, while too little cooling would not be
able to filter cold chunks. We can increase cooling by
decreasing the period or by increasing the CoolingAmount.

Since the operation consists of a simple atomic decrement,
thousands of chunks can be cooled in microseconds. In our
implementation, cooling is applied by a separate thread and
doesn’ t stall the foreground operation. Cooling is done once
per a relatively-infrequent period (e.g. every 30 seconds).
Furthermore, it is only applied to active chunks that maintain
positive access counts under cooling. Increasing the cooling
rate reduces the number of active chunks, hence the
processing needs.

4 Evaluation
This section describes the SANCache prototype environment

and workloads used for system evaluation. It also compares
the static and adaptive threshold schemes and analyzes effects
of the cooling method. Results related to performance and
workload isolation are presented in the next section.

4.1 Prototype
We used two disk arrays in our prototype as disk-based

backend storage. The first is a relatively smaller scale HP
Modular SAN Array (MSA) 1000 with a 256MB cache and 8
18.2GB and 15,000 rpm disks. We used RAID0 (i.e. stripe-no-
mirror) to maximize throughput and meet capacity goals of the
benchmarks described below. The second array was a high-
end HP XP1024 disk array with 125 disks and 32 GB of
shared cache. We used an isolated disk group with 32 spindles
and configured 3 LUNs with ~100GB total usable capacity as
RAID1 (i.e. stripe-and-mirror).

To connect the backend to hosts and to implement
SANCache policies, we used HP’s Continuous Access Storage
Appliance (CASA) [10], which is an in-band fabric-based
SAN virtualization platform. SAN virtualization simplifies
SAN management by pooling storage resources from
heterogeneous backend devices and mapping partitions of
storage to heterogeneous hosts (e.g. Windows, Linux, HP-UX,
etc.). It was also easier to add our SANCache software module
into the virtualization layer as a new policy than alternatively
modifying the array firmware. Other tasks handled by
virtualizers include local and remote mirroring, snapshots, and
multi-path data availability. This appliance has 2 HP Proliant
ML370 servers with 2.8GHz Intel Xeon processors. We used
one of these servers to generate the benchmark traffic for
some experiments and used other similar Intel-based servers
for others. Most hosts have QLogic 2300 series dual-port
Fibre Channel (FC) Host Bus Adapter (HBA) cards. Fabric
virtualization can be in-band (on the data path) or out-of-band
(distributed and coordinated). An out-of-band implementation
of SANCache over decentralized disk arrays is currently in
progress. We used the LRU replacement policy for the SSD.

A Solid-State Disk (SSD) is a DRAM-based storage device
with a block interface and protection for non-volatility. For
our prototype, we attached a Texas Memory Systems’ (TMS)
RamSan-320 SSD with a 16GB capacity to the backend FC
SAN fabric and partitioned portions of it as a SANCache
resource. This device has 4 FC controllers and 2 FC ports per
controller. We measured ~130-150µs access latency with 512
byte random I/O on this SSD, whereas disks generally have
millisecond latencies. SSD presents similar performance for

random and sequential loads, since it is memory based.
TMS recently published impressive results for a similar
box demonstrating ~120,000 IOPS and 960MB/sec
bandwidth measured with the SPC storage benchmark
described next.

4.2 Workloads
The Storage Performance Council (SPC) [22] publishes

industry standard storage performance benchmarks. This
benchmark emulates On-Line Transaction Processing
(OLTP) style data access behavior. It is representative of
multi-user OLTP, database and email applications. It uses
3 LUNs: LUN1 called data store with the most I/O activity
(~60%) and mixed streams, LUN2 called user store with
less activity and a similar mixed I/O pattern and LUN3
called log store with long sequential streams. SPC-1
defines 100% utilization and maximum I/O rate to be at
30ms response time.

Transaction Processing Performance Council’ s (TPC)
[24] TPC-C benchmark is designed to simulate “a
complete computing environment where a population of
users executes transactions against a database” . TPC-C
involves a mix of five concurrent transactions of different
types and complexity. Warehouse is a basic unit of scaling
and the number of warehouses determines size of database
tables and load applied to the system. The database is
comprised of nine types of tables with a wide range of
record and population sizes. Most active tables are the
Customer and Stock tables. TPC-C results are measured in
number of new-order transactions completed per minute.
Conventional wisdom suggests that locality is captured in
database server buffers, array cache is only a write buffer
and storage sees a filtered random access pattern except for
the Log. We show that SANCache achieves performance
improvements even with this type of load.

4.3 Static vs. Adaptive Threshold
Chunks are migrated into SSD once their random access

count reaches the migration threshold. We discuss
implications of having a static threshold and motivate the
adaptive threshold scheme used in SANCache. We used a
128KB chunk size for the following experiments, since
128KB can be fetched by most HBAs at once without
fragmentation.

Figure 4 shows the effects of choosing low to high
threshold values (4-32) on hit rates and the number of
background migrations done to achieve these hit rates.
While lower thresholds generate higher hit rates, ~55%,
and reach the steady-state hit rate level quicker, they also
have a larger steady-state migration-replacement rate, ~250
IOPS. For example, threshold 4 moves chunks at 5 times
the speed of threshold 32 to achieve ~10% more hit rate.
Higher thresholds are more conservative in selecting data,
thus take longer to fill the cache (e.g. +10 minutes in
Fig.4). While its saves network bandwidth and cache
space, a conservative threshold also results in slower
response to workload changes. To combine pros and avoid
cons of different static thresholds, we resort to an adapting
threshold parameter.

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (minutes)

H
it

 R
at

e

4
8
16
32

benefit

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (minutes)

H
it

 R
at

e

4
8
16
32

4
8
16
32

benefitbenefit

0 10 20 30 40 50 60
0

50

100

150

200

250

300

IO
 C

o
u

n
t

(I
O

P
S

)

Time (minutes)

4
8
16
32

cost

0 10 20 30 40 50 60
0

50

100

150

200

250

300

IO
 C

o
u

n
t

(I
O

P
S

)

Time (minutes)

4
8
16
32

4
8
16
32

costcost

Figure 4: Effects of different static thresholds on cache hit
rates (upper) and migration overheads (lower).

0 10 20 30 40 50 60
0

10

20

30

40

50

60

A
ve

ra
g

e
R

es
p

o
n

se
 T

im
e

(m
se

c)

Time (minutes)

All LUNs

4
8
16
32

0 10 20 30 40 50 60
0

10

20

30

40

50

60

A
ve

ra
g

e
R

es
p

o
n

se
 T

im
e

(m
se

c)

Time (minutes)

All LUNs

4
8
16
32

4
8
16
32

Figure 5: Effect of a poor static threshold choice on
average client response time. (view in color)

Initialize:
BCRatio=0; JUSTIFY=0;

foreach period {
 Benefit = �hits; //new hits
 Cost = �migs; //new migrations
 BCRatio = �hits/�migs; //trade-off

 if(�migs > JUSTIFY) {
 if(BCRatio < JUSTIFY)

THRESHOLD++
 elseif (BCRatio >= JUSTIFY)
 JUSTIFY++
 } else {
 THRESHOLD--;
 JUSTIFY--;
 }
}

Figure 5 shows the adverse effects of a poor static
threshold choice on foreground I/O latency. In this
example, the lower threshold (4) moved more data in favor
of higher hit rates, but since most chunks were not hot
enough, costs of migration were not justified by the hit
rates and the overall response time of the system was
crippled. These results were generated with the SPC-1
benchmark over the XP1024 disk array and using 2GB of
SSD cache space.

4.3.1 Adaptation Rule
We provide an elementary threshold adaptation rule in

Figure 6. Threshold is adapted periodically, every 15
seconds in the following evaluations. More chunks are
migrated when the threshold is lowered and vice versa.
Since SSD hits are counted periodically and the chunk size
is fixed, the dimension of benefit to cost ratio (BCRatio) is
equivalent to IOPS/GB, previously defined as the access
density. Therefore, by tracking changes in workloads and
storage configurations and adapting the migration
threshold to these changes we maximize and maintain
cache access density meeting one of our design goals.

If the BCRatio does not justify the current heat levels
(i.e. < JUSTIFY), then the threshold is increased to slow
down migrations and be more selective. If the BCRatio
justifies, then we maintain the threshold, but also demand
higher hit rates for the next period by increasing JUSTIFY.
Finally, if there aren’ t enough migrations we lower the
threshold and justify parameters to get data moving into
the cache again.

There are no system or workload specific parameters in
this formula. The algorithm finds good threshold values
and the average heat of the working set in a workload by
blindly probing it. This method has worked with a wide
variety of workloads over different storage configurations.
For larger cache sizes (e.g. 8-16GB) the BCRatio was quite
high and it took JUSTIFY too long to reach and push the
BCRatio higher. Therefore, we modified JUSTIFY as the
running average of BCRatio. However, the running
average in turn caused migration-rate oscillations for very
dynamic workloads with high-threshold sensitivity, which
we report here as potential avenues for improvement.

Figure 7 shows the adaptation rule in action. It illustrates
that by adjusting THRESHOLD and JUSTIFY parameters
the adaptation rule is able to achieve high BCRatio around
110 hits per migrated chunk. The benchmarks used had
constant access rates and mixes of load, which caused the
adaptation algorithm to reach a steady-state heat level and
the threshold to stabilize around 18. This data was
collected by running the TPC-C benchmark on the XP1024
and boosting Customer/Stock tables to a 2GB SANCache.

4.3.2 Adapting to Cache Size
We provide no expert hints to the adaptation rule

including any hints about the amount of SSD cache space
available or the active data set size in the workload. Figure
8 shows how the adaptation algorithm stabilizes at
different steady-state values for different cache sizes
although the workload and disk array are unchanged (SPC-

1 over MSA).

Figure 6: Migration threshold adaptation algorithm.

0 10 20 30 40 50 600

20

40

60

80

100

120

140

160

Time (minutes)

BC Ratio
Justify
Threshold

P
ar

am
et

er
s

0 10 20 30 40 50 600

20

40

60

80

100

120

140

160

Time (minutes)

BC Ratio
Justify
Threshold

P
ar

am
et

er
s

Figure 7: Adaptation rule in action. Benefit-Cost Ratio is
improved by adapting the threshold to workload.

0 10 20 30 40 50 600

2

4

6

8

10

12

14

16

18

20

T
h

re
sh

o
ld

Time (minutes)

4GB
2GB
1GB
512MB

0 10 20 30 40 50 600

2

4

6

8

10

12

14

16

18

20

T
h

re
sh

o
ld

Time (minutes)

4GB
2GB
1GB
512MB

4GB
2GB
1GB
512MB

Figure 8: The algorithm stabilizes at different threshold
values for different cache sizes. With smaller caches it
increases the threshold to be more selective and
compensate for the lack of resource and vice versa.

 Initially the threshold is reset to 1 to indicate that a
chunk will be migrated into SSD on a second hit. The
results show that the adaptive algorithm is more selective
when there is less cache resource. The threshold is around
1-2 for 4GB and 13-15 for 512MB cache sizes. Basically,
due to the shorter residence times there will be more
capacity misses and BCRatio will be lower on average
pushing the threshold to higher values. The spikes in the
graph occur, since the threshold is a discrete value and the
BCRatio is a rational number.

4.4 Cooling
Figure 9 and Figure 10 compare MFU and MRFU based

on the total amount of migrated chunks (GB) and hit rates,
respectively. These results were obtained using the SPC
load on the XP1024 disk array. We decrement accesses to
active chunks by 1 every 15 seconds. Both placement
policies used the same adaptive threshold adaptation rule.

Figure 9 compares MRFU and MFU based on total
chunks migrated or their bandwidth usage. Savings
achieved by MRFU over MFU placement are clear. After 1
hour MRFU moved about 30% (9.5 GBà 6.5GB) fewer
chunks than MFU. Specifically, the cooler chunks were
eliminated by MRFU from the candidate list before they
used up any disk and network bandwidth for migration or
occupied cache space. Figure 10 compares hit rates
achieved by MRFU and MFU. MRFU achieved hit rates
comparable to MFU (even slightly higher), although it
migrated fewer chunks as evidenced by the data in Figure
9. Together, these two plots demonstrate that simple
periodic cooling can successfully discriminate among
chunks that reach a target access threshold and determine
those that are currently hot or “most-recently frequently-
used” .

5 Results
SANCache has two main goals: to make networked

storage fast on-demand and to provide isolation for
workloads consolidated in a SAN. This section
demonstrates results with real systems and shows
improvements for both performance and isolation
dimensions using SPC-1 and TPC-C benchmarks.

5.1 Performance Boosting
Storage performance is represented with IOPS-Response

Time curves. When a disk array reaches its throughput
limits the response time will shoot exponentially avoiding
further increase. We show the effects of boosting client
LUNs on throughput (IOPS) and average response time.

Figure 11 shows the operation of SANCache step-by-step
by running the SPC-1 benchmark on the XP1024 disk
array and plotting IOPS for LUN1. For 20 minutes SPC-1
runs with a constant rate of 2200 IOPS on LUN1 (total
3500 IOPS over 3 LUNs). After 20 minutes, LUN1 is
boosted and the migration of hot chunks to SSD occurs in
the background. The algorithm quickly moves chunks to
exploit available cache space causing a bump and then
reaches a steady-state rate.

0 10 20 30 40 50 60
0

2

4

6

8

10

T
o

ta
l M

ig
ra

te
d

 D
at

a
(G

B
)

Time (minutes)

MFU
MRFU

Figure 9: Comparison of MRFU (MFU + Cooling) and
MFU policies based on total amount (GB) of migrated
chunks, i.e. bandwidth overhead. After 60 minutes MRFU
eliminated about 3GB of unnecessary migrations.

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
H

it
 R

at
e

Time (minutes)

MFU
MRFU

Figure 10: Hit rate comparison of MRFU and MFU.
MRFU achieved even slightly higher hit rates with SPC-1
benchmark, while the goal was to perform just as good.

IO
PS

0 10 20 30 40 50 60
0

400

800

1200

1600

2000

2400

2800
LUN1 IOPS to the client

Migration + Replacement I/O

LUN1 IOPS
to disk arraySPC-1

baseline

filling
phase

1750 IOPS
Served by
SANCache

Time (minutes)

IO
PS

0 10 20 30 40 50 60
0

400

800

1200

1600

2000

2400

2800

0 10 20 30 40 50 60
0

400

800

1200

1600

2000

2400

2800
LUN1 IOPS to the client

Migration + Replacement I/O

LUN1 IOPS
to disk arraySPC-1

baseline

filling
phase

1750 IOPS
Served by
SANCache

Time (minutes)
Figure 11: IOPS performance results before and after
boosting most active LUN1 in SPC-1 benchmark.

0 10 20 30 40 50 60
0

5

10

15

20

25

30
Re

sp
on

se
 ti

m
e

(m
se

c)

All LUNs
LUN 1
LUN 2
LUN 3

Boost
invoked

Time (minutes)
0 10 20 30 40 50 60

0

5

10

15

20

25

30

0 10 20 30 40 50 60
0

5

10

15

20

25

30
Re

sp
on

se
 ti

m
e

(m
se

c)

All LUNs
LUN 1
LUN 2
LUN 3

All LUNs
LUN 1
LUN 2
LUN 3

Boost
invoked

Time (minutes)
Figure 12: Average client response time before and
after boosting most active LUN1 in SPC-1 benchmark.

After ~7 minutes I/O requests going to disk array are
reduced to 450 IOPS (or by ~80%) and 1750 IOPS are
served by the fast SANCache SSD resource. Overall disk
array I/O reduction is about 1750/3500=50%. In this case,
the client is not pushing for more IOPS and therefore the
benefit is seen in the reduction of average response times
from 15ms to 5ms by 3-fold as shown in Figure 12.
Although only LUN1 was boosted all LUNs benefited
significantly due to reduced utilization of the disk array
cache and spindles. The initial bump in response time at
boost time is expected as several table allocations and
initializations are done at this time.

Figure 13 shows the effect of SANCache on throughput
(IOPS) using SPC-1 and the HP MSA array. Maximum
IOPS increased from 2000 to 3000 IOPS or by 50%. We
do not show the disk IOPS curve for this experiment as it is
similar to Figure 11. To summarize, after the boost 60% of
LUN1 I/O traffic was being handled by the SSD at steady-
state, which maps to 35% of the total I/O traffic.

Figure 14 shows throughput results for the TPC-C
benchmark running at 800 warehouses with 20 users on a
HP XP1024 disk array. At the 10 minute mark the LUNs
that have the Customer and Stock tables are boosted. After
another 10 minutes “ total” IOPS increases from ~3900 to
~5000 IOPS (C&S+Misc+Log) and transaction per minute
increases from ~8000 to ~9500 (see right vertical axis). We
would like to emphasize that these improvements are being
achieved with workloads believed to be very random (so
caching would be useless) and only using a 2GB SSD
space for SANCache to complement an array that already
has 32 GB cache. The initial dip in performance is again
attributed to the initial migrations and initialization
routines that create the hash tables and set many
parameters.

5.2 Workload Isolation
This section demonstrates another dimension of

SANCache benefits, which is its potential use for workload
isolation. Figure 15 illustrates the scenario.

0 500 1000 1500 2000 2500 3000 3500
0

10

20

30

40

50

A
ve

ra
g

e
R

es
p

o
n

se
 T

im
e

(m
se

c)

IO Requests per Second (IOPS)

no boost
LUN 1 boost

increased throughput

decreased response time

0 500 1000 1500 2000 2500 3000 3500
0

10

20

30

40

50

A
ve

ra
g

e
R

es
p

o
n

se
 T

im
e

(m
se

c)

IO Requests per Second (IOPS)

no boost
LUN 1 boost

increased throughput

decreased response time

Figure 13: Effects of SANCache boosting on MSA storage
throughput. Migrating hot data to a 2GB SSD partition
resulted in 50% improvement of overall IOPS.

0 10 20 30 40 50 60
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

IO
P

S

Time (minutes)

T
ra

n
sa

ct
io

n
s/

/M
in

u
te

0

1200

2400

3600

4800

6000

7200

8400

9600

10800

12000

Cust & Stock
Misc
Log
tpm

19.2% throughput gain

baseline

0 10 20 30 40 50 60
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

IO
P

S

Time (minutes)

T
ra

n
sa

ct
io

n
s/

/M
in

u
te

0

1200

2400

3600

4800

6000

7200

8400

9600

10800

12000

Cust & Stock
Misc
Log
tpm

Cust & Stock
Misc
Log
tpm

Cust & Stock
Misc
Log
tpm

Cust & Stock
Misc
Log
tpm

19.2% throughput gain

baseline

Figure 14: Effect of boosting Customer-Stock database
tables to 2GB SSD on overall TPC-C performance.

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

A
ve

ra
g

e
R

es
p

o
n

se
 T

im
e

(m
se

c)

Time (minutes)

boost
8K random writes

LUN 1
LUN 2
LUN 3
8K rand writes

SPC-1
baseline

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

A
ve

ra
g

e
R

es
p

o
n

se
 T

im
e

(m
se

c)

Time (minutes)

boost
8K random writes

LUN 1
LUN 2
LUN 3
8K rand writes

LUN 1
LUN 2
LUN 3
8K rand writes

SPC-1
baseline
SPC-1

baseline

Figure 15: Alleviating cache interference and providing
workload isolation using SANCache.

While the SPC-1 workload is operating on the XP1024
array, a write-intensive workload is introduced at the 10
minute mark. The write workload is on a different LUN,
port, and set of disk groups, but it shares the array’s 32 GB
of cache with SPC-1. The cache quickly fills, causing the
array to flush to its disks with limited IOPS. This builds
queue length, adversely impacting response time seen in
the increase from 10 ms to 40 ms. Boosting the SPC-1
LUN1 with 4 GB of SANCache (at 30 minutes) absorbs
I/O load from the XP array, restoring acceptable response
time to SPC-1 and allowing the interfering load to continue
at its initial rate.

6 Related Work
The SANCache design has similarities to some novel and

emerging replacement algorithms [4,5,6,12,16,18,20]. For
example, the goal of two-list replacement algorithms such
as Adaptive Replacement Cache (ARC) [18] is to capture
both recency and frequency types of locality and this goal
is also reflected in the SANCache design, where the array
cache represents the recency component and the SSD
contents represent the longer-term frequency component.
However, the two lists of SANCache reside on different
devices. Another group of replacement algorithms
including Unified Buffer Management (UBM) [14] and
Program-Counter-based Classification (PCC) [7] split
workloads into sequential, looping and other types of
patterns and use sub-caches to handle each pattern
separately. Workload filters introduced in SANCache also
split workloads into sub-streams (sequential, high-access
density, others) and direct each stream to the storage
device that can handle that type of stream well.

Most replacement policies focus on making local caching
decisions and ignore multi-level or global performance
implications. Wong and Wilkes investigate exclusive
caching in a SAN context [25]. In a two-level cache
scenario, where the second level is a disk array cache, they
evaluate usage of heterogeneous replacement policies in
each level. They find that using different policies (e.g.
LRU and MRU) is better than using the same policy (e.g.
LRU-LRU) for different levels. They further improve
exclusivity of the two-level cache via demotions, which
refers to moving objects from first to second level so that
each level has unique set of objects. Demotions increase
network bandwidth usage and require modifying the cache
management routines in servers and disk arrays.

Our previous work also shows benefits of using
heterogeneous policies for multi-level caches and promotes
employing adaptive caching using multiple replacement
policies as experts [2,8] for collaboration among levels
without communication. In another related work [3], we
compare the SANCache style cache management with
replacement policies such as LRU and ARC [18] using
analysis and simulations.

Korupolu and Dahlin define a similar MFU placement
algorithm called MFUPlace ([15], page2) as follows: “The
distinction between this strategy (LFU replacement) and
the MFU placement strategy is that, while the MFU

placement strategy picks a set of objects to place in the cache
and leaves them undisturbed throughout that period, the LFU
replacement strategy can change the contents of the cache
after each request.” In our definition of MFU placement,
objects can enter the cache once they hit the access threshold,
i.e. caching can occur anytime irrespective of the placement
period. Therefore, our cooling strategy can be applied to their
MFUPlace algorithm as well, since this algorithm is
potentially prone to the cache pollution problem.

The relationship between MFU and MRFU is similar to the
relationship between LFU and LFU with Dynamic Aging
(LFUDA) [4]. The latter algorithms, MRFU and LFUDA,
avoid the cache pollution problem of the former. However, the
“aging” mechanism in LFUDA and the “cooling” mechanism
in MRFU operate in completely opposite ways: Cooling
decrements access counts of candidate objects to select the hot
objects for placement before the cache placement occurs.
Aging increments access counts of cached objects to select the
cold objects for replacement after the cache placement occurs.
LFUDA ages the cache to evict objects (pages, blocks), which
cause the cache pollution, whereas MRFU solves a similar
problem before the cache placement is made.

Hierarchical Storage Management (HSM) is also related to
our work, but the term usually refers to migration of cold data
from online to near-line or to offline storage in practice. Our
research focuses on moving data from disk-based storage to
faster, non-volatile and memory-based storage technologies
such as DRAM-based SSDs [23] or other emerging NVRAM
technologies [19].

Our work has Quality of Storage Service (QoSS)
implications and therefore relates to several projects in that
field. Triage [13] provides workload performance isolation
and differentiation. It uses control theory to throttle requests
from different clients to meet SLAs goals, but differentiation
can occur within the performance limits of the reserved
storage. Triage delays requests of less delay-sensitive
applications. SANCache can increase the performance of a
selected client beyond disk storage performance. Aqueduct
[17] also meets delay contracts by using control theory. It
controls migration of colder data for backups, failure recovery
and load balancing. CacheCOW [9], which is inspired by the
ARC replacement algorithm, differentiates classes of
workloads (COW) by dynamically allocating cache spaces for
LUNs in a SAN. It estimates required hit rates, derives new
cache allocations and either gives or claims space to meet QoS
goals. When all QoS goals are met, it allocates extra space to
maximize overall hit rate. It uses demand-based placement and
depends on building a hit rate history for accurate estimations
of cache space allocations. It is challenging to come up with
good workload estimates in todays SAN, where workloads
will interfere with each other.

In some high-end disk arrays including the HP XP series,
array cache can be partitioned by using the array’s
management tools. In one use case, this partition will serve as
a RAMDisk or a “Cache LUN”. In another use case, the
partitioned cache will be mapped to a selected set of disks in
the array in order to carve out smaller isolated disk arrays
from larger ones. While this feature is an improvement over
existing disk arrays, it has several disadvantages when

compared to the SANCache method. First, it requires
modifying existing disk arrays and would only be useful
for that array and not the whole SAN. Next, the cache
cannot be provisioned (expanded, protected, purchased)
independently from the disks as in network-attached SSD.
Finally, when loads are isolated using separate spindles the
workloads will not benefit from all available spindles and
disk capacity will be under-utilized.

7 Ongoing and Future Work
In this paper, SANCache hot data selection and

placement policies were shown to boost performance of
traditional disk arrays. However, it is challenging to
implement SANCache over decentralized storage systems
such as Federated Array of Bricks (FAB) [21]. SANCache
requires lots of fine-granularity data migrations and
stresses metadata management when the underlying
storage is distributed. We are currently designing and
implementing a light-weight, distributed metadata
management algorithm to run SANCache over FAB to
provide performance improvements.

In this paper, we only introduced the hot data
management mechanisms and showed preliminary
workload isolation results. We haven’ t fully addressed
QoSS issues related to the business aspects (e.g. different
quality metrics, contracts-SLAs, utility functions, etc.) of
this topic. In our current prototype, we implemented APIs
where users can enter their (minimum) target IOPS and
(maximum) latency goals. SANCache automatically
allocates cache space to client LUNs to meet their storage
performance goals and depends on maximizing global
utility when there is resource contention.

8 Conclusions
We addressed performance problems in SANs due to

workload interferences and throughput limitations of disk-
based storage. Our approach was to place a SAN-level
cache device that will complement array caches. All
operations were done when the system was online and the
disk arrays were not modified.

We prototyped SANCache and implemented its
techniques on the HP-CASA virtualization platform. We
demonstrated performance improvement and workload
isolation results with SANCache by running industry
standard SPC-1 and TPC-C benchmarks over two
commercial disk arrays. We are continuing our design with
guidance from measurement and simulation. We believe
that a balanced storage system design with the right
amounts of cache and disks for today’s complex, 24×7
SAN can only be achieved though automation of data
management tasks and adaptation of system parameters to
track changes in workloads and storage configurations.

References
[1] E. Anderson, M. Hobbs, K. Keeton, S. Spence, M.

Uysal, and A. Veitch. Hippodrome: running circles
around storage administration. In Proceedings of the

2002 Conference on File and Storage Technologies
(FAST), Monterey, CA, Jan. 2002.

[2] I. Ari, A. Amer, R. B. Gramacy, E. L. Miller, S. A.
Brandt, and D. D. E. Long. ACME: Adaptive Caching
Using Multiple Experts. Workshop on Distributed Data
and Structures, (WDAS) 2002 143-158.

[3] I. Ari, M. Gottwals, and D. Henze, SANBoost:
Automated SAN-Level Caching in Storage Area
Networks, In Proceedings of the 13th IEEE International
Conference on Autonomic Computing (ICAC) 2004 164-
171.

[4] M. Arlitt, L. Cherkasova, J. Dilley, R. Friedrich, and T.
Jin. Evaluating content management techniques for web
proxy caches. In Proceedings of the 2nd Workshop on
Internet Server Performance (WISP), Atlanta, Georgia,
May 1999.

[5] S. Bansal and D. S. Modha, CAR: Clock with Adaptive
Replacement. In Proceedings of the 2004 Conference on
File and Storage Technologies (FAST) 187-200.

[6] P. Cao and S. Irani. Cost-aware WWW proxy caching
algorithms. In Proceedings of the USENIX Symposium
on Internet Technologies and Systems (USITS) 193–206,
Dec. 1997.

[7] C. Gniady, A. R. Butt, and Y. C. Hu, Program-Counter-
Based Pattern Classification in Buffer Caching, In
Proceedings of OSDI 2004.

[8] R. B. Gramacy, M. K. Warmuth, S. A. Brandt, and I. Ari.
Adaptive caching by refetching. In Neural Information
Processing Systems (NIPS) 2002. 1465-1472

[9] P. Goyal, D. Jadav, D. Modha, R. Tewari, CacheCOW:
QoS for Storage System Caches, In Proceedings of 11th
International Workshop on Quality of Service (IWQoS),
Monterey, CA, 2003

[10] HP Continuous Access Storage Appliance (CASA),
http://www.hp.com/go/casa.

[11] HP Utility Computing Services, http://www.hp.com
[12] T. Johnson and D. Shasha. 2Q: A low overhead high

performance buffer management replacement algorithm.
In Proceedings of the 20th Conference on Very Large
Databases (VLDB) 439–450, Santiago, Chile, 1994.

[13] M. Karlsson, C. Karamanolis and X. Zhu. Triage:
Performance Isolation and Differentiation for Storage
Systems. In Proceedings of the 12th IEEE International
Workshop on Quality of Service (IWQoS). Montreal,
Canada, 2004

[14] J. M. Kim, J. Choi, J. Kim, S. H. Noh, S. L. Min, Y. Cho,
and C. S. Kim. A low-overhead, high-performance
unified buffer management scheme that exploits
sequential and looping references. In Proceedings of
OSDI 2000.

[15] M. R. Korupolu and M. Dahlin. Coordinated placement
and replacement for large-scale distributed caches. IEEE
Transactions on Knowledge and Data Engineering, Vol.
14, No 6, Nov/Dec 2002.

[16] D. Lee, J. Choi, J. H. Kim, S. H. Noh, S. L. Min, Y. Cho,
C. S. Kim. LRFU (Least Recently/Frequently Used)
Replacement Policy: A Spectrum of Block Replacement
Policies. In IEEE Transactions on Computers, Vol. 50,
No 12, 1352-1360, December 2001.

[17] C. Lu, G. A. Alvarez, and J. Wilkes. Aqueduct: Online
data migration with performance guarantees. In

Proceedings of the 2002 Conference on File and
Storage Technologies (FAST), Monterey, CA, Jan.
2002.

[18] N. Megiddo and D. S. Modha. ARC: A self-tuning,
low overhead replacement cache. In Proceedings of
the 2003 Conference on File and Storage
Technologies (FAST) 115–130.

[19] E. L. Miller, S. A. Brandt, and D. D. E. Long.
HeRMES: High-performance reliable MRAM-
enabled storage. In Proceedings of the 8th IEEE
Workshop on Hot Topics in Operating Systems
(HotOS-VIII), pages 83–87, Schloss Elmau,
Germany, May 2001

[20] E. J. O’Neil, P. E. O’Neil, and G. Weikum. The LRU-
K page replacement algorithm for database disk
buffering. In Proceedings of the ACM SIGMOD

International Conference on Management of Data, 297–
306, 1993.

[21] Y. Saito, S. Frølund , A. C. Veitch, A. Merchant, and S.
Spence: FAB: building distributed enterprise disk arrays
from commodity components. ASPLOS 2004.

[22] SPC benchmark-1 specification, http://www.storage
performance.org/specification.html

[23] Texas Memory Systems, RamSan Solid-State Disk,
http://www.texmemsys.com

[24] Transaction Processing Performance Council, TPC-C
benchmark, http://www.tpc.org

[25] T. M. Wong and J. Wilkes. My cache or yours? Making
storage more exclusive. In Proceedings of the 2002
USENIX Annual Technical Conference, 161–175,
Monterey, CA, June 2002. USENIX

