
HPTFS: A High Performance Tape File System

Xianbo Zhang, David Du
Digital Technology Center Intelligent

Storage Consortium (DISC)
University of Minnesota, MN, USA

{xzhang,du}@cs.umn.edu

Jim Hughes, Ravi Kavuri
Sun Microsystems

One StorageTek Drive
Louisville, CO, USA

{James.Hughes, Ravi.Kavuri}@Sun.COM

Abstract

The exponential data growth and new data retention reg-
ulations have created a higher demand for tape storage
systems since the tape technology provides long lifetime
archival with low cost per storage unit [1, 2, 3]. However,
tape storage is hard to use due to its SCSI interface and
sequential access nature. The purpose of this project is to
provide programmers and end users an easy to use inter-
face while taking the full advantage of high capacity and
high streaming speed from modern tape technologies. We
have built a software, called HPTFS (High Performance
Tape File System), that mounts a tape as a file system and
enables tape write sharing among multiple users by trans-
parently interleaving user data streams to tape. This sys-
tems is simple enough that it could be directly built into a
tape drive thus completely changing the paradigm on how
tape is accessed for the fist time since tape itself was in-
troduced. As a secondary feature, the software can also
support the concept of continuous data protection by si-
multaneously writing data to both disk and tape providing
a seamless support of data mirroring for any user applica-
tion. We have evaluated the basic system performance of
HPTFS and presented some ideas of further improvements.

1. Introduction

The demand for data storage has been dramatically in-
creased due to the explosive growth of data [11, 12], espe-
cially the growth of fixed-content data [13] driven by busi-
nesses of all sizes along with government mandates for data
retention [7, 8, 9, 10]. Fixed-content data such as check im-
ages, CAT scans, video/audio files and email messages, do
not change over time and have to be retained for a long
period of time. These data may not be actively accessed,
but should be available when needed. How to protect these
data along with other mission-critical data for a long pe-

riod of time is vital for the enterprise business continuance
and may even be required by regulations [7, 8, 9, 10]. The
main concerns for this explosive amount of data are storage
cost and data protection. With current data storage technol-
ogy, tape is still a good candidate or even the only choice
for storing such huge amount of data with economy and
proven long lifetime in mind [14, 21, 22]. Tape media pro-
vides long lifetime archival and convenient portability for
offsite protection. Valuable backup data is required to be
sent offsite for certain distances by regulations depending
on the classification of the data.

Modern tape technology featuring growing storage ca-
pacity and growing streaming rate makes data backup and
long-term data archival economical as well as efficient.
Tape capacity is doubling every two years [14]. One S-AIT
tape from Sony can store 500 GB native data [4]. With con-
servative compression rate of 2:1, today one tape can hold 1
TB data already. It is projected that tape media holding 15
TB native data is just several years away [14]. Tape drive
native transfer speed has been increased from several MB
per second to even 80MB per second [5] or 100MB per sec-
ond [6] during last several years. With compression turned
on, the tape drive write speed can outperform the hard disk
write speed. As power and floor space becoming more of
a premium, we must appreciate that a tape cartridge sitting
in a tape library not being accessed consumes no energy
and occupies less space than a disk in a RAID (Redundant
Array of Independent Disks) or a MAID (Massive Arrays
of Idle Disks) [24].

However, tape technology faces its own problems. The
tape drive can be slower than expected if it is not fed with
enough data due to the overhead of tape drive reposition-
ing. A tape drive cannot be easily shared among users. The
tape drive is not programmer-friendly due to its SCSI inter-
face. Currently tapes are accessed by backup software that
is commonly managed by system administrators with spe-
cial knowledge of tapes and backup/restore/archive tech-
niques. Application programmers are scared away from



tapes due to their totally different user interfaces from the
traditional file systems.

Making the use of tape as easy as possible while tak-
ing the full advantage of its high speed and high capacity
is the main goal of this tape file system project initiated by
Sun Microsystems and DTC (Digital Technology Center)
Intelligent Storage Consortium (DISC) at the University of
Minnesota. We believe a generic file system interface to
tape storage would be a significant improvement to the us-
ability of tape as a shared media. A file system paradigm
will be valuable for the broader use of tape storage since
more users are familiar with file systems and many applica-
tions write and read data through standard file system APIs.
Such a file system can hide the difference between access-
ing a tape and accessing a disk. With the same convenience,
users/user applications can easily put data on disk or tape
based on data access patterns without knowing tape SCSI
interfaces. This provides conveniences to achieve a bet-
ter usage of tape storage and disk storage. This new tape
file system paradigm brings convenience to personal users,
simplifies data backup software development, and enables
new features for tape-resident data: indexing, content based
searching, data sharing with better request scheduling, easy
remote access, file system based data protection, and faster
disaster recovery.

For the rest of the paper, the related work is presented in
Section 2. The system design and implementation are in-
troduced in Section 3. Section 4 presents the tape data lay-
out that was chosen for the system. Other design issues are
further discussed in Section 5. System performance evalu-
ation and some conclusions are presented in Section 6 and
Section 7 respectively.

2. Related work

Robotic tape libraries are commonly used by applica-
tions like data warehousing, digital library, digital image,
multimedia and scientific computing due to their require-
ment of huge storage capacity. The rapidly growing de-
mand for storing fixed-content data opens a greater op-
portunity window for high capacity and high performance
tape drives. The issue of how to federate tertiary storage
(mainly tape storage) into a complete storage system at-
tracts many researchers. Cost-effectiveness, performance-
efficiency and storage usability are the main goals for this
federation. In this section, we present a number of existing
ways of using tape library that include data backup soft-
ware, Hierarchical Storage Management system (HSM),
Virtual Tape Library (VTL), log-structured organization,
and data buffering and interleaving.

2.1. Data backup software

There are many backup software programs that exist
in the world [15, 30]. Designed and used properly a
backup software can move data back and forth between
disk and tape providing the functionality of data backup,
archive and restore. There exist a set of basic software
for data backup. With basic software, users need to write
scripts to automate the backup process based on desired
backup/restore policy. There are also a set of commer-
cially available software for data backup. With commercial
software, many backup functions are available with license
and support fees. Commercial software usually provides
automatic device discovery, volume configuration and au-
tomated backup/archive/restore for handling a number of
complex situations. The following sub-sections give a brief
introduction to both basic and commercial backup soft-
ware. The main purpose is to give the user an idea how
things are working in the backup application.

2.1.1. Basic software The most frequently used free
software to manipulate tapes ismt, dd, tar/gnutar,
cpio/gnucpio[30] andKDat [36]. mt is used to move tape
forward or backward so that a tape drive can be positioned
to a specific location. The others are used to transfer data
from disks to tapes or tapes to disks with limited data man-
agement.dd reads/writes a single file from/to tapes, strip-
ping the file of its name, directory location, date of cre-
ation, etc, and the user is required to maintain documenta-
tion describing how files are written to a tape.tar/gnutar
reads/writes multiple files and directories while preserv-
ing the directory structure, file names, etc.tar can eas-
ily archive files across machines.cpio/gnucpiois similar
to tar/gnutar and reads/writes multiple files and directo-
ries and it also preserves the directory structure.cpio can
handle backing up and restoring device files (those in/dev)
which tar usually can not.dd and cpio/gnucpioprovide
error recovery in the event of tape failure whiletar/gnutar
does not.dumpandrestoreare two commands that provide
user a simple backup/restore solution.dumpexamines files
in a file system, determines which need to be backed up,
and copies those files to a specific storage medium. Sub-
sequent incremental backups can then be layered on top
of the full backup. Therestorecommand performs the in-
verse function ofdump. It can restore a full backup of a
file system, single files and directory subtrees.KDat is
a tar based tape archiver which is designed to work with
multiple archives on a single tape with a graphical user in-
terface. With a complex index on disk,KDat can quickly
locate an individual file in the archive without reading the
whole archive. Based on this basic software, the system
administrator can create complex scripts to perform many
backup jobs but this requires a good understanding of vari-



ous options of the software and the corresponding scripting
languages.

2.1.2. Commercial software With a special software
component, backup software can copy data from disks to
tapes. If the data source is kept at the original location,
the operation is called backup, otherwise the operation is
called archive. The special component instructs the robot
for tape switching and writes/reads data to/from tape using
SCSI commands. Backup software from Symantec, CA,
EMC, Microsoft, etc. manages resources such as tapes,
tape drives and robots, and schedules backup jobs accord-
ing to user predefined policies and resource availability.
A backup operation is scheduled to run within a certain
backup window in a 24×7 time frame. The backup system
usually maintains a catalog to track the data location on
tape media and disaster recovery information. Full backup
together with incremental backup is the way to handle ex-
ploding data capacity requirements along with a shrinking
backup window. The complex backup process is managed
by system administrators with special training. Within such
a system, users and applications do not have direct access
to tape storage, and tape is treated as a second-class-citizen
storage. User data are written to disks and copied from
disks to tapes for protection.

2.2. Hierarchical storage management system

Hierarchical Storage Management system (HSM) is
a policy-based management system for file backup and
archiving that transparently moves data back and forth be-
tween storage hierarchies to meet user data requests while
keeping down the storage cost. Typically a storage hier-
archy is composed of primary memory, high performance
hard disks, low performance hard disks and tape storage.
Within such a hierarchical storage system, more frequently
or recently accessed data or data requiring low latency
are maintained at high performance media while less fre-
quently accessed or less critical data are stored at tape me-
dia. By leveraging the composition of the storage hier-
archy, a specific cost range and performance requirement
can be met with proper data migration/duplication policies.
A proper data classification, placement and transfer model
across the hierarchical media can help achieve the desired
performance. When user data is moved from disk to tape,
a stub is left at the disk pointing to the location of the real
data on lower level storage media (tape). With the data
stub, migrated data still appears to be on disk. When an ap-
plication accesses a file, which actually resides on a lower
tier storage, the HSM system fetches the real file from the
lower tier storage and caches it on the higher tier storage,
and then the cached data is accessed by the application. The
application does not see any semantic difference between

accessing data from the lower tier storage and accessing
data from the higher tier storage except for experiencing
slower response when the requested data resides on a lower
tier storage. However, the resulted longer response time
may disappoint certain applications causing access failure
when the access cannot be met within a specific time frame.
HSM products are offered by Symantec, CA, IBM, and Sun
Microsystems, etc. They are providing the same set of ba-
sic functionalities with different features and various per-
formances.

2.3. Virtual tape libraries (VTL)

Due to the explosive data growth and economy
globalization requiring 24×7 hours business, traditional
backup/restore operations do not work very well any more
[19]. To respond to the exploding data with shrinking
backup/restore window size, disk based virtual tape library
(VTL) is introduced during the last several years [20]. VTL
technology transforms disk into virtual tape to improve
backup/restore times. Data is backed up to VTL and then
migrated to physical tape library for offsite protection or
off-shelf archival. Our implementation offers advantage
over the VTL solution in that we neither require the cost
of disk for capturing the data nor the complexity of migrat-
ing and managing virtual and real tape cartridges.

2.4. Log-structured organization for tertiary
storage

The append-only nature of tape data writing encourages
people to apply log-structured file system (LFS) to man-
age tape data [16, 17, 18]. The Highlight and LTS projects
apply log-structured file system techniques to manage data
blocks on tertiary storage. By integrating LFS with ter-
tiary storage and treating tertiary storage as a backing store,
Highlight allows automatic migration of LFS file segments
(containing user data, index nodes, and directory files) be-
tween storage hierarchies. LTS provides a uniform, ran-
dom access, block-oriented interface to hide the details of
tertiary storage. Using the techniques from LTS, Paradise
[23] implements a scalable database system capable of stor-
ing and querying raster image data sets residing on tape.
Without fetching data to disk, the query operation can be
served directly by tertiary storage. Our approach distin-
guishes from these projects by providing a generic file sys-
tem interface for data access instead of an application spe-
cific interface and by performing transparent data buffering
and interleaving for maximum write performance.

2.5. Data buffering and interleaving

Slow data transfer rate to tape makes a tape drive head
reposition frequently and the corresponding back and forth



operations for repositioning, usually called “shoe-shining”,
increases the stress on the tape drive and wears the tape me-
dia. Among all the techniques for matching the speed dis-
crepancy between a host and a tape drive, volume buffering
and data interleaving are the two most effective ways to re-
duce tape drive repositioning operations and achieve maxi-
mum write performance. When physical memory is expen-
sive, data is buffered at staging disks and moved to tape af-
terwards. Virtual Tape Appliances buffer data which is later
moved from local disks to a local tape drive so that the tape
drive can operate at full speed. The other method, data in-
terleaving or data multiplexing, is also used to stream mul-
tiple users to a single tape drive. Multiple slow transfer
rates can be interleaved to be a high aggregate transfer rate
to match the tape drive speed making the tape drive work in
a streaming mode. Streaming occurs when the aggregated
data transfer rate to or from the hosts closely matches the
tape drive’s data transfer rate, allowing the drive to read
or write data in a continuous stream with full speed. The
effect of data interleaving comes in two ways: during writ-
ing, it helps to maximize tape write speed and during read-
ing, it reduces the effective read speed for a particular host
which is beneficial when the consumption rate of the host is
slower than the tape drive. Backup software such as Bright-
Stor ARCserve Backup and Symantec NetBackup has data
interleaving capability. A user may suffer from data inter-
leaving due to its lengthened read pass for a specific read
request. However, this drawback may be mitigated by in-
telligent data interleaving and parallel data retrieval. With
proper scheduling, a tape drive may shorten its read pass
and also serves multiple read requests with one pass. The
effectiveness of request scheduling depends on the actual
data requests pattern.

3. Design and implementation

We have designed a High Performance Tape File Sys-
tem (HPTFS) which seamlessly integrates tape storage to
the client operating system with a traditional file system
access interface. Based on the design, we have built a pro-
totype file system. HPTFS has a series of desired features
as described below and opens a new paradigm for the use
of tape storage.

3.1. System features

We are exploring a new way to federate tape storage into
the current hierarchical storage system. The designed sys-
tem bears the following features:

• Providing a generic file system interface. Applications
based on file system interface can write and read tape
data without any modification. Various file transfer-
ring protocols such as cp, scp, sftp and http will be

automatically supported. However, good performance
for random access is not a target for such a sequen-
tial storage media. This limitation does not hurt fixed-
content data or data archive too much. For these types
of data, it is important to make sure that they are stored
correctly with high speed and safety.

• Containing user data and corresponding metadata (in-
cluding directory data) on the same tape. Individ-
ual tapes can be transported to another location and
read without any additional pre-existing information
being needed. These tapes can be considered com-
pletely self-describing. When backup software is built
over such software, the catalog can be easily recovered
from individual tapes as needed.

• Sharing tape media among multiple users. The system
supports concurrent writes for maximum write perfor-
mance. As shown in Section 6, our tape storage sys-
tem can provide a consistent concurrent write perfor-
mance.

• Supporting read while write. If data is configured to
write to tape and disk simultaneously, read request
would be served by disk instead of by tape. Read
while write is an expensive operation for tape since it
requires the tape drive to move back and forth result-
ing longer time delay. This feature can easily be used
to achieve the concept of continuous data protection
(CDP).

• Writing to or reading from tape directly without in-
volving disks along the data path. The implemented
system buffers read/write data using a small amount
of main memory instead of disks. Using main mem-
ory as a data buffer not only improves tape I/O perfor-
mance, but also reduces system cost and complexity.

3.2. System implementation

HPTFS, built over FUSE [29], mounts a tape as nor-
mal file system based data storage and provides file system
interfaces directly to the application. It interprets a filesys-
tem call as proper tape operations and returns results to the
calling process. FUSE is a user-space file system frame-
work that traps file system calls and upcalls user-space dae-
mon process to perform actual file operations.

3.2.1. System architecture The system architecture of
HPTFS, which is composed of fuse kernel module and
hptfs user daemon process, is shown in Figure 1. In
essence, every file system call is translated to tape opera-
tion calls and data/metadata is written to or read from tape
media. Thus, user applications have a direct access to tape
media using the same file API’s as to disk.



As shown in Figure 1, VFS (Virtual File System) is a
kernel software layer providing a common interface to all
different file systems. It receives file system call requests
from user level applications (e.g., open, stat, read, write)
and interacts with fuse module if file operations are for
FUSE mount point. Via fuse kernel module, system call
requests are passed from kernel space to user space daemon
process hptfs. hptfs calls user mode functions registered
with struct fuseoperationsto access data and metadata
from SCSI tape media through an SCSI subsystem. The
SCSI subsystem has a 3-level architecture with the “upper”
level (st.o) being the closest to the user/kernel interface
while the “lowest” level (hba) is closest to the hardware as
shown in the right bottom part in Figure 1. The requested
data and operation status are passed back to calling process
through hptfs, fuse and VFS.

VFS

ext3

nfs

fuse

op

glibc
glibc

libfuse

hptfs /mnt/tape

st.o

scsi_mod.o

hba

user mode

kernel mode
System call interface

system call interface

memory buffer 
management

Figure 1. Architecture of HPTFS

In the following subsections, we briefly introduce the
user mode system calls, tape device function calls, and
data buffering and interleaving techniques implemented in
HPTFS.

3.2.2. User mode file system callsEach user file on
tape has a corresponding user data and metadata (will be
discussed in Section 4) and operations on the user file
data and metadata are completed by user mode file sys-
tem calls. These user mode file system calls are transpar-
ent to user applications. As described in Section 3.2.1, a
file system call made by a user application, such as open,
read, write and close, is decomposed into a series of file
system operations which are transferred to user mode and
are completed by user mode file system calls. For exam-
ple, anopenoperation call from a user application could
be translated intoLOOKUP, MKNOD and OPEN oper-
ations, of whichMKNOD and OPEN are actually com-

pleted bylayer t f s mknodandlayer t f s openuser mode
system calls. Part of the implemented user mode system
calls are listed in Table 1 for a better understanding of how
the system works. The combination of these user mode
system calls supports tape data read/write/append and cor-
responding metadata operations.

3.2.3. Tape device function calls Tape is a sequential
access media and the data of a file is stored as blocks on
tape. Block marks exist between blocks and file marks
exist between files. At the end of the tape, there is an
end mark and data cannot be written beyond the end mark.
Data location information in terms of file number and block
number has to be managed for data store and retrieve.
Tape drive can be positioned to a specified block within
a specified file through magnetic tape I/O interface. Tape
drive can start to write or read from where it is positioned.
The Tape interface under Linux environment is defined in
/usr/src/linux/include/linux/mtio.h. Tape drive can be con-
trolled to move forward or backward, read/write a data
block, write block marks and file marks, set block size,
lock/unlock tape drive, etc. Based on tape interface de-
fined in mtio.h, the following function calls are developed
for convenience.

• block size: bool tdsetblocksize(int blksize), int
td getblocksize()

• status query: bool tdistapepresent(), bool
td pastEOF(), int tdgetfile(), int tdgetblock()

• tape positioning: bool tdseek(int file, int block) which
intelligently moves tape drive to the right block based
on the information of tape drive current position and
destination position.

• data operations: int tdread(char* buf, int size), int
td write( const char* buf, int size), void tdflush().

To maximize the performance of tape data operations,
data buffers are maintained for read and write respectively.
Read buffer is used to facilitate large read while write
buffer is used to facilitate large write. These data buffers
can effectively reduce tape repositioning overhead and im-
prove tape I/O performance.

3.2.4. Data buffering and interleaving for write op-
erations To improve tape file system performance, it is
crucial to reduce tape drive repositioning. The techniques
of data buffering and interleaving are used to reduce the
number of tape drive repositioning operations by stream-
ing tape drive as long as possible with the same amount
of data. Data for a write operation is buffered at main
memory before committing to tape media. Once data is



Table 1. Main user mode system calls
System call Note
int layer tfs getattr
(const char *path,
struct stat *stbuf)

Get tape file attributes.

int layer tfs getdir
(const char *path,
fusedirh t h,
fusedirfil t filler)

Read the contents of a di-
rectory. This operation is
the opendir(), readdir(), ...,
closedir() sequence in one
call. For each directory entry
the filldir function should be
called.

int layer tfs mknod
(const char *path,
modet mode, devt
rdev)

Create a file node. There is no
create() operation, mknod()
will be called for creation
of all non-directory, non-
symlink nodes.

int layer tfs chmod
(const char *path,
modet mode)

Change the permission bits of
a file.

int layer tfs chown
(const char *path,
uid t uid, gid t gid)

Change the owner and group
of a file.

int layer tfs truncate
(const char *path,
off t size)

Change the size of a file.

int layer tfs utime
(const char *path,
struct utimbuf *buf)

Change the access and/or
modification times of a file.

int layer tfs open
(const char *path,
struct fusefile info
*fi)

File open operation.

int layer tfs read
(const char *path,
char *buf, sizet size,
off t offset, struct
fusefile info *fi)

Read data from an open file.
Read returns exactly the num-
ber of bytes requested except
on EOF or error.

int layer tfs write
(const char *path,
const char *buf, sizet
size, off t offset,
struct fusefile info
*fi)

Write data to an open file.
Write should return exactly
the number of bytes requested
except on error.

int layer tfs release
(const char *path,
struct fusefile info
*fi)

Release an open file. For ev-
ery open() call there will be
exactly one release() call with
the same flags and file de-
scriptor.

successfully buffered at main memory, HPTFS acknowl-
edges the user application with a write success status thus
speeding up the system write speed. The system has multi-
ple worker threads receiving and buffering transmitted data
from each individual data streams resulting in multiple data
write buffers, which is essential for maximum tape write

performance. When the buffered data from a file reaches
a preset size or a release request is received, the buffered
data is committed to tape as tape data blocks. A data block
is filled with additional zeros if it does not have the size of
a tape data block. To reduce the required memory size and
have a better write concurrent support, data from different
applications are interleaved at block level on tape media. It
is possible that blocks belonging to a user file may not be
contagious on the tape. ObjectIDs, composed of volume
ID and object start position, are used to distinguish blocks.
Each tape block carries an ObjectID as its block header.
ObjectID uniquely identifies the owning object of a block.
Multiple writes through multiple threads may cause data
corruption and have to be serialized.

3.2.5. Data buffering and de-interleaving for read op-
erations For a read operation, tape drive is positioned
to the beginning of a requested object with fast for-
ward/backward operation. Data blocks are read from tape,
filtered with the requested ObjectID and the requested data
offset, and finally assembled with block header removed.
Filtering and assembling operations happen in the mem-
ory. To fill a given large read buffer, variable tape passes
may occur due to changing interleaving status. The imple-
mented read strategy is used to reduce the number of tape
read operations and make tape work in streaming mode as
often as possible. Depending on the requested data offset
and size, a read request may not trigger a new tape read
operation. The policy of First In and First Out (FIFO) is
used for data buffer replacement. With the current imple-
mentation, read requests are serialized to be served one at a
time. In the near future we plan to serve multiple requests
concurrently if required data happen to be interleaved on
tape. This will improve the aggregate read performance,
and data can be read from tape as fast as they are written to
tape.

4. Tape data layout

Slow data transfer rate to tape causes a lot of tape drive
repositioning. Due to inadequate buffer or repositioning
time the tape drive could write slower than the data trans-
fer speed even the transfer speed is slower than the tape
drive rated speed [25, 26, 27].To make tape drive work in
streaming mode as frequently as possible and support con-
current writes on a sequential access media, multiple data
streams are interleaved to tape at block level (more details
in Section 5.3). Block level data interleaving help make
tape drive work in streaming mode as often as possible
when each individual data transfer rate to the tape drive
is slow. Block level interleaving also help share expensive
tape drive among users with good performance.



To make tape data self-describing, each tape needs to
maintain its own user data and metadata. Whenever user
data is appended to tape, tape metadata has to be changed
accordingly. Since tape is a one-dimentional storage, there
are only three potential places to store metadata informa-
tion: the beginning of user data, within user data, and the
end of user data. To store data at the beginning, tape meta-
data has to be stored as a separate partition. With a par-
titioned tape, data update in one partition will not affect
data in other partitions. When a tape is not partitioned, the
entire tape is dedicated to a single data set. If data is over-
written at some place, any previously written data past the
new end of data (EOD) mark on the tape becomes inacces-
sible. However, not all tape drives support tape partitioning
(It is easier to support partitions with helical recording than
linear recording.) Another difficulty of tape partitioningis
that it is hard to decide how much space needs to be re-
served for the metadata partition in advance. If metadata is
mixed with user data, tape scanning is required to collect
metadata information when the tape is first accessed. Scan-
ning a high capacity tape takes a long time. In our designed
system, metadata is stored at the end of user data. During
write operation, metadata is maintained in main memory
and written onto tape when tape is unmounted. After tape
is re-mounted and metadata is read into main memory, user
data can be appended to the end of last user data write.

For data compatibility and potential conversion, a tape
header is needed at the beginning of user data. Thus each
tape in our system has three segments maintaining tape
header, user data and metadata. For easy location, there is
a file mark at the end of each segment. Logically speak-
ing, tape header, user data and tape metadata are stored
at fixed locations respectively: at the tape beginning, after
the first file mark and after the second file mark. The tape
data layout is illustrated in Figure 2. The first segment con-
tains just one-kilobyte data block recording the tape header
which consists of HPTFS version number, used tape data
block size, tape identifier, and other tape media informa-
tion. Within the user data segment, data blocks from multi-
ple user files are interleaved together. Data blocks of a user
file may not be next to each other, which are affected by
the degree of write concurrency and the relative speed of
each individual data stream. With a higher data stream rate
for a write, the total length of the object scattered over the
tape will be shorter with data blocks closer to each other. A
block header, which is composed of objectID and shown in
Figure 3(a), is required to distinguish a block of file A from
a block of file B since we can not have a file mark to sepa-
rate file A from file B. The last segment on the tape main-
tains the metadata describing all the user files on the tape.
Each user file on tape has one metadata entry stored as an
element of an array. In addition to what a UNIX filestruct
stat contains, a metadata entry, as shown in Figure 3(b),

1st Segment

Block header Block payload

3rd Segment2nd Segment

Tape header Tape metadata

User data block

File marker

Figure 2. Tape data layout

struct ob jid struct tapemeta
{ {

int vol; char name[1024];
int f no; int f no;
int b sp; int b sp;
int seq; int b ep;

}; struct ob jid id;
struct stat stbu f;
struct tapemeta∗next;

};

(a) Object id (b) Metadata entry

Figure 3. Data structure

also bears the object ID and the start position of the object.
For the purpose of redundancy, intelligent read scheduling
and read backward, the ending position of the object and
the segment number are also stored in the metadata entry.
Segment number starting with 0. In the near future, meta-
data can be move to the memory chip embedded with tape
cartridge or cassette for improved performance. Even if the
metadata is too large to fit in the chip, pointers to the meta-
data in the chip will also enhance performance.

In our current implementation, after a tape is mounted
tape header is read and examined according to the expected
format. If the tape is blank, a proper header can be created
and the tape is marked by the system with empty metadata.
For a non-empty tape, a data request will incur a read oper-
ation for the metadata segment. Once the metadata segment
is read into memory, it is converted into a double linked list
with each entry corresponding to one user file. In the future
implementation the file directory in memory will be rep-
resented as a rooted tree with unbounded branching [28]
and still be physically stored as an array on tape. All the
data and metadata are managed by the user daemon process
hptfs. hptfs is also responsible for data format translation
between data on tape and data in VFS format.

5. Other design issues

There are some other design issues worth mentioning.
We will discuss them in this section.



5.1. Kernel space versus user space

While implementing the HPTFS, the first major decision
that we have to make was whether this file system should be
implemented in the kernel or the user space. The trade-offs
lie in file system speed, ease of implementation and cost
of future maintenance. Normally a file system is imple-
mented in operating system kernel for faster speed. A file
system implemented in user space has the advantages of
user-friendly debug environment, shortened development
cycle, and lower maintenance cost. If we think deep about
tape operation, the millisecond difference of file access be-
tween kernel space implementation and user space imple-
mentation is nothing comparing to the tape data seek la-
tency in terms of seconds or even minutes. With this ob-
servation, our system is built upon FUSE, a user space file
system under Linux environment. Inheriting security fea-
tures from FUSE, HPTFS ensures a secure, non-privileged
mount. That is, the mount user cannot get elevated privi-
leges with the help of the mounted file system. The mount
user cannot illegitimately access information from and in-
duce undesired behavior in other users’ and the super user’s
processes [29].

5.2. Write buffer management

For concurrent writing, how to buffer write data affects
the system write performance. Among all possibilities, we
chose to have a separate receiving memory buffer for each
user file opened for write. When it receives the first write
request of a data stream, HPTFS dynamically allocates a
fixed size memory for the data stream and stick it with
struct fusefile info associated with each opened file. This
allocated buffer is released when the file is closed. For the
maximum memory usage, we should dynamically change
each receiving buffer size according to total system mem-
ory usage and individual file write speed. However, this
buffering strategy is complex and error-prone. We chose
simplicity over efficiency at this moment to use fixed buffer
size for each file. Whenever a buffer is filled or a file close
signal is received, the buffered is divided into blocks and
sent to tape with block header added if the thread handling
the write can get the exclusive lock to the open handle for
tape drive. Multiple threads writing to the same tape natu-
rally creates data interleaving on tape.

5.3. Choice of data interleaving

Data interleaving best suits the requirement of concur-
rent writes on a sequentially accessed tape which requires
streaming mode for maximum I/O performance. Data can
be interleaved at file level or block level as shown in Figure
4. File level interleaving puts blocks of a file continuously

Block of file a from data source 1

Block of file b from data source 2

Block of file c from data source 3

(a) File level interleaving

(b) Block level interleaving

Figure 4. Interleaving comparison

on the tape while block level interleaving does not guaran-
tee that. File level interleaving benefits the retrieval of any
individual file if read data can be buffered or sent to clients
fast enough since file level interleaving requires minimum
tape drive read pass for each individual file, but it requires
the data write buffer big enough to hold the whole file be-
fore it is committed to tape, which is prohibited for big
files. We chose block level interleaving to achieve maxi-
mum write performance with less memory requirement.

5.4. Continuous data protection(CDP)

To effectively protect data from various data losses, it
is important to have multiple data replicas, especially with
replicas stored on disk and tape simultaneously. Keeping a
replica on tape would be beneficiary to fight against possi-
ble data losses since tape is append-only media and easy to
be sent to offsite for better data protection. Writing to disk
and tape simultaneously fulfills the concept of continuous
data protection [37]. Any newly created or modified data
goes to disk and tape at the same time. The corresponding
system architecture is shown in Figure 5.

With minor modification, our system can support writ-
ing to disk and tape simultaneously. This implementation
has the side effect of supporting Read While Write. When
tape drive is writing, read operation requires tape drive
repositioning which may result in long latency due to costly
data seek. When our system is configured to write to disk
and tape simultaneously, read request could be served by
disk instead of tape. Within our system, a user has two op-
tions: write to tape or write to disk and tape. If the data has
the characteristic of write once read rare, data can be di-
rectly stored on tape without involving any disk operation.
If the data has the characteristic of write once read many,
data can be stored at tape storage and disk storage concur-
rently such that any read request will be served by the disk.
For both situations, data is stored at tape at the first place
completely eliminating data backup window.
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6. Performance evaluation

A variety of performance tests were run on HPTFS to
evaluate its performance under different workloads. For a
tape file system, it is important to test its I/O performance
to make sure the tape drive can work in streaming mode;
for our designed file system (HPTFS), we test its concur-
rent write feature to make sure it can support write sharing
among applications. These tests are carried out by writing
big chunk of data to tape through HPTFS using applica-
tion dd. As mentioned in 2.1.1,dd is a commonly used
application which can be used to transfer data to tape with
a changeable I/O block size.

We are not expecting that HPTFS will be good at ran-
dom read due to the sequential nature of tape media,
but for the sole purpose of functionality test, we used
PostMark[31] to test the sequential write and random read
performances of HPTFS under a given range of file sizes
since the main targeted operations for HPTFS are file cre-
ate, write and read. PostMark is a file system benchmark
which simulates the operation of electronic mail and news
servers by performing a series of file operations on short-
lived files with changing sizes within a given range.

And finally we test the correctness of HPTFS write/read
operations. We test if data can be correctly written to and
read from tape using an operating system commandcp.
This also tests if HPTFS really provides a general file sys-
tem interface for existing applications to write to/read from
tape without any modification.

6.1. System settings

To evaluate if HPTFS scales with hardware upgrades,
we have two test systems set up as follows:

• Setting A: Linux kernel 2.6.9; A PC with one In-
tel CPU (600MHz), 256MB memory and Maxtor
IDE hard drive (54098H8, 7,200RPM); A StorageTek

T9840A tape drive with 10MB/s native data transfer
rate.

• Setting B: Linux kernel 2.4.26; A PC with
four Intel(R) XEON(TM) CPU (2.40GHz),
3GB memory and Hitachi Deskstar IDE hard
drive(IC35L090AVV207-0, 7,200RPM); A Stor-
ageTek T9940A tape drive with 10MB/s native data
transfer rate.

Depending on the configuration, data is written to tape
and disk simultaneously or write to tape only. With com-
pression turned on we can get higher tape data transfer rate.
The actual data compression rate mainly depends on the
compressibility of the data. To emulate high performance
tape drive, data with high compressibility, such as zeros, is
sent to tape drive. Tables in the following subsection show
the mean performance value and the corresponding stan-
dard deviation of each test case under 20 runs.

6.2. System performance results fromdd

Commanddd is used to rate system performances with
different configurations. A series of commands similar
to the following are used to rate the tape write performance.

time dd if=/dev/zero of=/dev/nst0 bs=256k count=8000

Where the special file/dev/zerois a source of zeroed
memory with infinite length. Reads from it always return
a buffer full of zeros; Under Setting A, the write speed of
tape drive STk9940A is rated as 29.759MB/s with standard
deviation of 0.020MB/s. Under Setting B, the write speed
of tape drive STK9940A is rated as 37.604MB/s with stan-
dard deviation of 0.087MB/s.

The commands similar to the following are used to rate
tape read performance.

time dd if=/dev/nst0 of=/dev/null bs=256k count=8000

Where the special file/dev/null is a file to which any
data written gets discarded and file/dev/null always re-
mains empty. Under Setting A, the read speed of tape drive
STk9940A is rated as 26.562MB/s with standard deviation
of 0.007MB/s. Under Setting B, the read speed of tape
drive STK9940A is rated as 35.126MB/s with standard de-
viation of 0.005MB/s.

To test the concurrent write performance of HPTFS,
n commands similar to the following are issued under
different settings. The transfer size is the aggregate data
size of all issued commands and the transfer time is
counted as the longest write completion time.



time dd if=/dev/zero of=/mnt/tape/1 bs=blocksize
count=blocks & time dd if=/dev/zero of=/mnt/tape/2
bs=blocksize count=blocks &... time dd if=/dev/zero
of=/mnt/tape/n bs=blocksize count=blocks &

6.2.1. Concurrent write performance evaluation We
test if the tape file system (HPTFS) can handle concurrent
writes and if HPTFS can stream the tape drive accordingly.
The major file system calls of HPTFS are executed in user
space, any data requested by application has to be passed
to kernel mode by system call first, and then passed back
to user mode by fuse kernel module, and finally results be-
ing passed back to kernel space and written to tape by user
mode daemon. Without the HPTFS file system, data from
application such asdd or tar is directly passed to kernel
mode and written to tape.

Table 2 shows the concurrent write performance of
HPTFS. As shown,under Setting B HPTFS streams the
tape drive with concurrent data writes. Under Setting A,
HPTFS achieves more than 80% of the rated tape drive
write speed. It seems like a 600MHz CPU does not pro-
vide adequate processing power to achieve maximum write
performance. Under Setting B, the changing degrees of
concurrent writes do not significantly change the write per-
formance of HPTFS. Tests also show that the HPTFS write
performance is not significantly affected by changing data
buffer sizes allocated for each individual write. However,
if the buffer size is reduced to just one tape data block size,
the system shows wide range of write speeds. In the follow-
ing testing, we fix the buffer size as 40 tape blocks (10MB
within our testings) for each individual write/read session.

Table 2. Tape write performance (MB/s, tape
block size=256KB)

Degree of Setting A rate Setting B rate
concurrency Mean Stdv Mean Stdv

2 24.148 0.433 37.709 0.004
3 24.222 0.392 37.713 0.005
4 24.169 0.373 37.719 0.005

6.2.2. Individual file read performance evaluation
To test the individual file read performance of HPTFS, files
with size of 500MB are first interleaved to tape with in-
terleaving degree as 1, 2, 3 and 4, and then files are read
from tape to memory one by one. The time interval be-
tween two reads are big enough to make sure the tape drive
has been fully stopped. Table 3 shows the tape read perfor-
mance versus data interleaving degree. For a specific file,

the effective data retrieval rate is affected by the degree of
interleaving. The results indicate that there are some im-
provement space for our current implementation to achieve
the rated read speed.

Table 3. Tape read performance (MB/s, tape
block size=256KB)

Degree of Setting A rate Setting B rate
interleaving Mean Stdv Mean Stdv

1 16.170 0.03 31.811 2.896
2 9.097 0.094 15.095 0.665
3 6.391 0.199 11.420 0.657
4 5.104 0.164 8.632 0.379

6.3. System performance results from PostMark

We configured the PostMark to create 1,000 files on
tape and perform 100 read operations. When a file is cre-
ated, a random file length within the given range (256KB
to 30MB) is selected, and text from a generated pool is ap-
pended up to the chosen length. When a file is to be read,
a randomly selected file is opened, and the entire file is
read into memory. For comparison, disk write/read perfor-
mances are listed in Table 4 and Table 5 respectively. As
mentioned before, the table shows the mean value and cor-
responding standard deviation from 20 runs, where each
run writes 1,000 files and reads 100 randomly chosen files.

Table 4. Disk write performance with Post-
Mark(MB/s, write block size=256KB)

Degree of Setting A rate Setting B rate
concurrency Mean Stdv Mean Stdv

1 21.648 0.991 29.483 0.064
2 21.373 0.254 29.781 0.085
3 20.87 0.092 28.922 0.042
4 19.96 0.349 27.263 0.085

Table 6 and Table 7 show HPTFS write performance and
read performance respectively when HPTFS is configured
to write to tape only. Figure 6 shows the relationship be-
tween read performance and batch size for Setting A and
Setting B when read requests are handled in batches. Tape
requests batch operation combined with optimal scheduling
[32, 33] is used to reduce the number of random tape I/O’s.
In the testing, requests are queued until the preset batch



Table 5. Disk read performance with Post-
Mark(MB/s, write block size=256KB)

Degree of Setting A rate Setting B rate
interleaving Mean Stdv Mean Stdv

1 25.903 1.538 17.357 0.566
2 8.827 0.307 12.804 0.339
3 8.232 0.165 11.104 0.212
4 7.433 0.208 10.523 0.566

size is reached. Requests are then ordered based on their
position on the tape and the request positioned closer to the
beginning of the tape is served first. There are many other
scheduling algorithms are described in [34, 35]. Increas-
ing batch size improves tape read performance by reducing
random tape I/O operations.

Table 6. Tape write performance with Post-
Mark(MB/s, tape block size=256KB)

Degree of Setting A rate Setting B rate
concurrency Mean Stdv Mean Stdv

1 15.792 0.019 31.934 0.042
2 17.520 0.113 37.551 0.014
3 16.653 4.831 37.485 0.318
4 12.920 0.057 37.109 0.368

Table 7. Tape read performance with Post-
Mark(MB/s, tape block size=256KB)

Degree of Setting A rate Setting B rate
interleaving Mean Stdv Mean Stdv

1 1.750 0.021 2.975 0.106
2 1.835 0.049 2.754 0.014
3 1.695 0.034 2.265 0.021
4 1.470 0.127 2.085 0.022

6.4. CDP write performance

Table 8 shows the write performance of HPTFS when
HPTFS is configured to write to disk and tape simultane-
ously. The tests are performed using applicationdd as de-
scribed before.
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Table 8. CDP performance(MB/s, write to tape
and disk simultaneously, block size=256KB)

Degree of Setting A rate Setting B rate
concurrency Mean Stdv Mean Stdv

2 12.232 0.704 37.391 0.151
3 12.209 0.901 37.632 0.009
4 11.907 0.680 37.329 0.281

It clearly shows that the write performance of Setting A
degrades significantly compared to write to tape only con-
figuration while the write performance of Setting B does
not nearly change. Comparing the two settings, Setting A
has a really slow single CPU, which leads us to believe the
CPU processing power plays a big role here.

6.5. File operation correctness verification

With HPTFS write to tape is just like to write to disk.
Commandcp can be used to copy data back and forth be-
tween tape and disk. The following series of commands in
Table 9 shows that data can easily and correctly be writ-
ten to tape and read from tape. The digest results of SHA1
indicates the file content of fuse.c remains the same after
being copied from disk to tape and then copied back from
tape to disk.

7. Conclusion

We have described the design and implementation of
HPTFS, a file system that provides a generic file system
interface for applications to access tape data. As a file sys-
tem, it provides a lot of desirable features, such as tape
storage sharing, high performance write, etc. Being simple
and easy to use is the main strength of this system. Within



Table 9. “Screenshot" and annotation
Commands and outputs Notes

oak%./HPTFS /mnt/tape w
Mount tape in
write mode at
/mnt/tape

oak% ls -lt∗.c
-rw-r–r– 1 root root 61725 Jun 2
04:50 fuse.c
-rw-r–r– 1 root root 12461 Jun 2
04:50 helper.c
-rw-r–r– 1 root root 5064 Mar 21
05:37 fusemt.c
-rw-r–r– 1 root root 3045 Feb 2
2005 mount.c

List all C files un-
der current folder
(on disk)

oak% cp∗.c /mnt/tape
Copy all C files
from disk to tape

oak%fusermount -u /mnt/tape
Write out metadata
to tape and umount
tape

oak%./HPTFS /mnt/tape r
Mount tape in read
mode at /mnt/tape

oak%./HPTFS /mnt/tape r
Mount tape in read
mode at /mnt/tape

oak%ls -lt /mnt/tape
-rw-r–r– 1 root root 61725 Aug
15 23:55 fuse.c
-rw-r–r– 1 root root 5064 Aug 15
23:55 fusemt.c
-rw-r–r– 1 root root 12461 Aug
15 23:55 helper.c
-rw-r–r– 1 root root 3045 Aug 15
23:55 mount.c

List all C files on
tape media

oak% cp /mnt/tape/fuse.c
./fuse1.c

Copy fuse.c from
tape to disk as
fuse1.c

oak% openssl
OpenSSL> sha1 fuse.c
SHA1(fuse.c)=
c8ab9be7c2edc1128db66f877b40
ceeafffb74f6
OpenSSL> sha1 fuse1.c
SHA1(fuse1.c)=
c8ab9be7c2edc1128db66f877b40
ceeafffb74f6

Comparing the
original fuse.c on
disk to fuse1.c
copied from tape
with SHA1.

the designed file system, writing to a tape is as easy as
writing to a disk. With memory buffering and data inter-
leaving, backup can be operated with ease as well as high
speed without using intermediate disk storage for data stag-
ing. With the high capacity of modern tape, the number of
tapes used for a mid-scale enterprise within one year can
be dramatically reduced to fit into a mid-scale tape library.
The user perceives “infinite” storage space without worry-
ing about storage quota limitations.

If enough write data is provided, the file system streams
the tape drive; otherwise it will reduce the number of tape
writes by efficiently buffering data in memory. By perform-
ing data buffering at physical memory instead of staging
disk, HPTFS eliminates the cost and provisioning of disk
capacity or the backend complexity of the data to tape later.
With high storage capacity and high write speed, it provides
a good platform for Internet backup applications. Across
the non-secure Internet, users can send their valuable data
to tape using their familiar secure protocols like scp, sftp,
etc. Within such a file system, data from thousands of
users can be supported by just one high performance tape
drive, providing a cost-effective solution for personal data
backup. HPTFS can be configured to allow applications to
write newly created or updated data to disk and tape simul-
taneously for continuous data protection, eliminating the
concept of a backup window and providing data real-time
protection.

Backup software built over a tape file system would
be greatly simplified. By moving tape data management
to the file system, backup software can focus on policy
scheduling and enforcement without going to the details
of tape technology. The performance of such backup soft-
ware would scale better with reduced complexity. A sim-
plified backup process also means higher reliability, better
protection and lower maintenance cost. The success of this
file system motivates us to move the file system stack to
the tape drive, therefore enabling an OSD tape drive. OSD
(object storage device) [38] provides an object interface to
applications and intelligent object management within the
device; OSD enables the creation of self-managed, shared,
and secure storage for storage networks. Backup software
built over such an OSD tape drive would be further sim-
plified with high write performance, better scalability and
reliability.
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