
Experiences Building an Object Based
Storage System

David Du, Dingshan He, Changjin Hong,
Jaehoon Jeong, Vishal Kher, Yongdae Kim,
Yingping Lu, Aravindan Raghuveer, Sarah

Sharafkandi

What this talk is about

 DISC implementation of the OSD T-10 standard
– Describe high level details of the implementation

 How we are using it for some current projects and
how we plan to use it in the future.

 How researchers can use it to demonstrate the
capabilities of storage intelligence and the object
interface

Outline
 Background

– Object Based Storage
– Existing Object Interfaces
– Object Based Storage Ecosystem

 Motivation
 The DISC-OSD Implementation

– Overview
– Target
– Client
– Security Model
– Test Suite

 Performance Evaluation
 Future work

Outline
 Background

– Object Based Storage
– Existing Object Interfaces
– Object Based Storage Ecosystem

 Motivation
 The DISC-OSD Implementation

– Overview
– Target
– Client
– Security Model
– Test Suite

 Performance Evaluation
 Future work

Object Based Storage
 What?

– New paradigm of storage devices
– The storage device can store, retrieve objects as against

blocks
– Operations: Read/Write Object, Read/Write Attributes
– The storage device maps an object to the disk location

where it is stored. (instead of filesystem)
 Why?

– More functionality at storage
– Narrow block interface assumes storage devices is dumb?
– Better management at the storage is needed to cope with

the complexity and scale of data
– Fine-grained security

Object Interfaces
 NASD project at CMU
 Panasas and Lustre

– Custom object interfaces
 Standardization efforts

– Standardization of the block interface is essential to enable
early adoption of OSDs

– OSD-T10 was ratified by ANSI in January 2005.
 Reference Implementation Efforts

– Intel
– DISC

• DISC-OSD project started circa summer 2005
– IBM Haifa

• Parallel to DISC-OSD

An Object Based Storage Ecosystem

MDS Policy
 Manager

Client
filesystem OST

 Client contacts the required target with the credential
– Target verifies credential
– Performs command

Shared
keys

Security
Manager

Service
Delivery

Subsystem

 A request must be accompanied by a valid credential
–Credential is generated by Security Manager using key shared between
SM and OST

• Authorizing client
• Operations that the client is allowed to perform (maintained @
policy manager).

 The MDS informs the location of the object

An Object Based Storage Ecosystem

 Target:
– A permanent data store that exposes the object (ex: SNIA T-10)

interface.
 Client File system:

– A client file system that maps a hierarchical namespace to a flat object
namespace.

– Makes the control, data path separation transparent to end user
 Meta Data Server :

– Location tracking of objects
 Policy Manager and Security Manager

– Maintains access permissions on objects

MDS
Security
Manager

Service
Delivery

Subsystem

Policy
 Manager

Client
filesystem OST

SNIA T-10 standard

Motivation for this project

 Two main factors:

 Reference implementation
– Can serve as a single point of interoperability testing for

multiple vendors.
– DISC projects (described later)

 Object based storage ecosystem
– Hands-on experience of a complete object based storage

system
– A platform for developing new ideas to exhibit advantages

of object based storage and storage intelligence.

Outline
 Background

– Object Based Storage
– Existing Object Interfaces
– Object Based Storage Ecosystem

 Motivation
 The DISC-OSD Implementation

– Overview
– Target
– Initiator
– Security Model
– Test Suite

 Performance Evaluation
 Future work

DISC-OSD Implementation Overview
Security
Manager

Policy
 Manager

Client
filesystem OST

 Target:
– iSCSI target
– Exposes the T-10 interface

 Client:
– File-system for OSD target, transparent interaction with the security

modules
 Security:

– Basic security model with policy manager, security manager
implementations

 Testing:
– Rigorous, extensible testing suite for functionality testing.

Test-Suite

Service
Delivery

Subsystem

Overview of OSD target functionality:
 Uses a filesystem as permanent store for objects.

– Objects  Files
– Attributes  Files
– Partitions  Directories

 OSD Command Interpreter to convert
every OSD command into a corresponding
filesystem command

 Commands
– All commands go through 3 phases:

• Retrieval and setting of attributes
• Perform command
• Update attributes affected by this command.

– Commands not supported:
• Perform Task Management Function
• Set Master Key
• Send diagnostic

Service
Delivery

Subsystem

iSCSI Target Driver

OSD command Interpreter

Local File System

Local O
S

 (Linux)

Block based
disk device

OSD Target Contd…

 Sense Data
– Reporting cause of failure of a command (quota

violation etc).

 Attributes
– Attribute pages : Related attributes are grouped

into pages.
– All the mandatory attribute pages
– directory attribute page : per-object index that

points to the various attribute pages of object.
– Sense errors triggered by manipulation of

attributes.

Outline
 Background

– Object Based Storage
– Existing Object Interfaces
– Object Based Storage Ecosystem

 Motivation
 The DISC-OSD Implementation

– Overview
– Target
– Client
– Security Model
– Test Suite

 Performance Evaluation
 Future work

Client

 Two types of clients provided
– User level program that can be used to send a-

command-at-a-time to the target
• Useful to test functionality etc.
• Our test-suite internally uses this.

– OSD File-system
• Provides a hierarchical namespace to use the object

based target
• Tested on Linux kernel 2.4
• Currently can work with one target.
• Transparent interaction with the security manager to

fetch credentials etc.

VFS

osdfs

so: upper level driver

Middle level SCSI driver

iSCSI: low level driver

1cmd

iSCSI target

OSD Command Interpreter

Security
Manager

Policy
ManagerApp.

Detailed Architecture: User Level Client

ACL-D/B

GetCredential()

sendCDB()

response

credential

Kernel space

User space

VFS

osdfs

so: upper level driver

Middle level SCSI driver

iSCSI: low level driver

1cmd

iSCSI target

OSD Command Interpreter

Security
Manager

Policy
ManagerApp.

Detailed Architecture: Filesystem as OSD-Client

ACL-D/B

GetCredential()

credential

sendCDB()

response()

Kernel space

User space

Outline
 Background

– Object Based Storage
– Existing Object Interfaces
– Object Based Storage Ecosystem

 Motivation
 The DISC-OSD Implementation

– Overview
– Target
– Client
– Security Model
– Test Suite

 Performance Evaluation
 Future work

 Hierarchical key model
 Commands between Policy Manager (PM) and Target (OST)

– SET KEY
– SET MASTER KEY

 Credential generation and verification
 Security Methods (client and OST)

– NO SEC: no security
– CAPKEY: validates integrity of capability info
– CMDRSP: validates integrity of CDB, sense
– ALLDATA: validates integrity of all data between client and target

 Out of Scope
– Security Manager and Policy Manager
– Communication between client and Security Manager
– Communication between Security and Policy Manager

Scope of T10 Standard.

MDS Security
Manager

Policy
 Manager

Client

Service
Delivery

Subsystem

OST

DISC Security Implementation
 Supported security methods

– NOSEC
– CAPKEY
– CMDRSP

 Supported security commands
– SET KEY

 Beyond Standard
– Initial prototype of Security and Policy Manager

 Future Work
– Implement SET MASTER KEY command
– Support ALL DATA security method
– Use policy attributes

DISC Security Manager Implementation

 Policy Manager (CGM + ACL DB)
 Security Manager (CG + KMM)
 Currently no communication between Security Manager and

OST

Communication
Module

Credential
Generator

(CG)

Key Manager
Module (KMM)

Capability
Generator Module

(CGM)
MySQL

 ACL DB

Key
repository

 Goal: Provide a generic, extensible framework to automate the
testing of the OSD implementation.

 Used for:
– Regression Testing. [making sure that new code does not break

older/stable code]
– White box Testing

• Currently, we have designed test cases to ensure maximum coverage of
target code.

 Components:
– Batch Execute Tool: Lets the user execute a set of OSD commands

sequentially and collect data on observed behavior of the target
– Oracle: The desired behavior of the target. [currently we generate the

oracle output manually]
– Comparator: Check if the observed behavior as seen by the Batch

execute tool matches the desired behavior as expected by the oracle.

Testing Suite

Testing Suite

 .osd files:
– capture use-cases for various test scenarios.
– code coverage based test generation for target.

 .out files:
– Capture behavior of target into sense data, other command-specific data

returned like objectID, partitionID, attributeValues etc.
 .ora files:

– Represent the desired behavior of target in terms of sense data etc (same
format as .out files)

.osd files Batch
 tester

OSD
Target

.out filesComparator

.ora files

1
2

3
45

55

Test report

Outline
 Background

– Object Based Storage
– Existing Object Interfaces
– Object Based Storage Ecosystem

 Motivation
 The DISC-OSD Implementation

– Overview
– Target
– Client
– Security Model
– Test Suite

 Performance Evaluation
 Future work

Raw Throughput Comparison of OSD and iSCSI

Performance Testing

Latency of OSD Commands

Future Work
 Optimizations:

– Client : The client file system needs more sophisticated
caching techniques for data and security credentials.

– Should credentials always be retrieved on-demand?
– Target: Using a file system as a backing store adds lot of

overhead especially for small files used for attributes
• Hierarchical namespace is not required
• A flat namespace based file system?

 The reference implementation as a :
– Framework for other researchers to build on.
– Tool to demonstrate the advantages of object based

storage:
• Layout/Disk Geometry awareness
• Processing close to data

Current Projects @ DISC
 SQUAD: A unified framework for storing and

querying structured and unstructured data
– Storage perspective on managing heterogeneous data

• Efficient storage
• Querying

 OSD based hierarchical storage management system
– OSD based tape library

 QoS Specification and Enforcement on Storage

Acknowledgements

 Mike Mesnier
 DISC consortium members

– Engenio, SUN, Symantec, ETRI(Korea), ITRI(Taiwan),
 DISC Faculty members
 Testing and Implementation Support

– Girish Moodalbail
– Pramod Mandagere
– Biplob Debnath
– Sojeong Hong

 Logistics and Management support
– Cory Devor

Thank You !
Questions / Comments ?

