
Experiences Building an Object Based
Storage System

David Du, Dingshan He, Changjin Hong,
Jaehoon Jeong, Vishal Kher, Yongdae Kim,
Yingping Lu, Aravindan Raghuveer, Sarah

Sharafkandi

What this talk is about

 DISC implementation of the OSD T-10 standard
– Describe high level details of the implementation

 How we are using it for some current projects and
how we plan to use it in the future.

 How researchers can use it to demonstrate the
capabilities of storage intelligence and the object
interface

Outline
 Background

– Object Based Storage
– Existing Object Interfaces
– Object Based Storage Ecosystem

 Motivation
 The DISC-OSD Implementation

– Overview
– Target
– Client
– Security Model
– Test Suite

 Performance Evaluation
 Future work

Outline
 Background

– Object Based Storage
– Existing Object Interfaces
– Object Based Storage Ecosystem

 Motivation
 The DISC-OSD Implementation

– Overview
– Target
– Client
– Security Model
– Test Suite

 Performance Evaluation
 Future work

Object Based Storage
 What?

– New paradigm of storage devices
– The storage device can store, retrieve objects as against

blocks
– Operations: Read/Write Object, Read/Write Attributes
– The storage device maps an object to the disk location

where it is stored. (instead of filesystem)
 Why?

– More functionality at storage
– Narrow block interface assumes storage devices is dumb?
– Better management at the storage is needed to cope with

the complexity and scale of data
– Fine-grained security

Object Interfaces
 NASD project at CMU
 Panasas and Lustre

– Custom object interfaces
 Standardization efforts

– Standardization of the block interface is essential to enable
early adoption of OSDs

– OSD-T10 was ratified by ANSI in January 2005.
 Reference Implementation Efforts

– Intel
– DISC

• DISC-OSD project started circa summer 2005
– IBM Haifa

• Parallel to DISC-OSD

An Object Based Storage Ecosystem

MDS Policy
 Manager

Client
filesystem OST

 Client contacts the required target with the credential
– Target verifies credential
– Performs command

Shared
keys

Security
Manager

Service
Delivery

Subsystem

 A request must be accompanied by a valid credential
–Credential is generated by Security Manager using key shared between
SM and OST

• Authorizing client
• Operations that the client is allowed to perform (maintained @
policy manager).

 The MDS informs the location of the object

An Object Based Storage Ecosystem

 Target:
– A permanent data store that exposes the object (ex: SNIA T-10)

interface.
 Client File system:

– A client file system that maps a hierarchical namespace to a flat object
namespace.

– Makes the control, data path separation transparent to end user
 Meta Data Server :

– Location tracking of objects
 Policy Manager and Security Manager

– Maintains access permissions on objects

MDS
Security
Manager

Service
Delivery

Subsystem

Policy
 Manager

Client
filesystem OST

SNIA T-10 standard

Motivation for this project

 Two main factors:

 Reference implementation
– Can serve as a single point of interoperability testing for

multiple vendors.
– DISC projects (described later)

 Object based storage ecosystem
– Hands-on experience of a complete object based storage

system
– A platform for developing new ideas to exhibit advantages

of object based storage and storage intelligence.

Outline
 Background

– Object Based Storage
– Existing Object Interfaces
– Object Based Storage Ecosystem

 Motivation
 The DISC-OSD Implementation

– Overview
– Target
– Initiator
– Security Model
– Test Suite

 Performance Evaluation
 Future work

DISC-OSD Implementation Overview
Security
Manager

Policy
 Manager

Client
filesystem OST

 Target:
– iSCSI target
– Exposes the T-10 interface

 Client:
– File-system for OSD target, transparent interaction with the security

modules
 Security:

– Basic security model with policy manager, security manager
implementations

 Testing:
– Rigorous, extensible testing suite for functionality testing.

Test-Suite

Service
Delivery

Subsystem

Overview of OSD target functionality:
 Uses a filesystem as permanent store for objects.

– Objects Files
– Attributes Files
– Partitions Directories

 OSD Command Interpreter to convert
every OSD command into a corresponding
filesystem command

 Commands
– All commands go through 3 phases:

• Retrieval and setting of attributes
• Perform command
• Update attributes affected by this command.

– Commands not supported:
• Perform Task Management Function
• Set Master Key
• Send diagnostic

Service
Delivery

Subsystem

iSCSI Target Driver

OSD command Interpreter

Local File System

Local O
S

 (Linux)

Block based
disk device

OSD Target Contd…

 Sense Data
– Reporting cause of failure of a command (quota

violation etc).

 Attributes
– Attribute pages : Related attributes are grouped

into pages.
– All the mandatory attribute pages
– directory attribute page : per-object index that

points to the various attribute pages of object.
– Sense errors triggered by manipulation of

attributes.

Outline
 Background

– Object Based Storage
– Existing Object Interfaces
– Object Based Storage Ecosystem

 Motivation
 The DISC-OSD Implementation

– Overview
– Target
– Client
– Security Model
– Test Suite

 Performance Evaluation
 Future work

Client

 Two types of clients provided
– User level program that can be used to send a-

command-at-a-time to the target
• Useful to test functionality etc.
• Our test-suite internally uses this.

– OSD File-system
• Provides a hierarchical namespace to use the object

based target
• Tested on Linux kernel 2.4
• Currently can work with one target.
• Transparent interaction with the security manager to

fetch credentials etc.

VFS

osdfs

so: upper level driver

Middle level SCSI driver

iSCSI: low level driver

1cmd

iSCSI target

OSD Command Interpreter

Security
Manager

Policy
ManagerApp.

Detailed Architecture: User Level Client

ACL-D/B

GetCredential()

sendCDB()

response

credential

Kernel space

User space

VFS

osdfs

so: upper level driver

Middle level SCSI driver

iSCSI: low level driver

1cmd

iSCSI target

OSD Command Interpreter

Security
Manager

Policy
ManagerApp.

Detailed Architecture: Filesystem as OSD-Client

ACL-D/B

GetCredential()

credential

sendCDB()

response()

Kernel space

User space

Outline
 Background

– Object Based Storage
– Existing Object Interfaces
– Object Based Storage Ecosystem

 Motivation
 The DISC-OSD Implementation

– Overview
– Target
– Client
– Security Model
– Test Suite

 Performance Evaluation
 Future work

 Hierarchical key model
 Commands between Policy Manager (PM) and Target (OST)

– SET KEY
– SET MASTER KEY

 Credential generation and verification
 Security Methods (client and OST)

– NO SEC: no security
– CAPKEY: validates integrity of capability info
– CMDRSP: validates integrity of CDB, sense
– ALLDATA: validates integrity of all data between client and target

 Out of Scope
– Security Manager and Policy Manager
– Communication between client and Security Manager
– Communication between Security and Policy Manager

Scope of T10 Standard.

MDS Security
Manager

Policy
 Manager

Client

Service
Delivery

Subsystem

OST

DISC Security Implementation
 Supported security methods

– NOSEC
– CAPKEY
– CMDRSP

 Supported security commands
– SET KEY

 Beyond Standard
– Initial prototype of Security and Policy Manager

 Future Work
– Implement SET MASTER KEY command
– Support ALL DATA security method
– Use policy attributes

DISC Security Manager Implementation

 Policy Manager (CGM + ACL DB)
 Security Manager (CG + KMM)
 Currently no communication between Security Manager and

OST

Communication
Module

Credential
Generator

(CG)

Key Manager
Module (KMM)

Capability
Generator Module

(CGM)
MySQL

 ACL DB

Key
repository

 Goal: Provide a generic, extensible framework to automate the
testing of the OSD implementation.

 Used for:
– Regression Testing. [making sure that new code does not break

older/stable code]
– White box Testing

• Currently, we have designed test cases to ensure maximum coverage of
target code.

 Components:
– Batch Execute Tool: Lets the user execute a set of OSD commands

sequentially and collect data on observed behavior of the target
– Oracle: The desired behavior of the target. [currently we generate the

oracle output manually]
– Comparator: Check if the observed behavior as seen by the Batch

execute tool matches the desired behavior as expected by the oracle.

Testing Suite

Testing Suite

 .osd files:
– capture use-cases for various test scenarios.
– code coverage based test generation for target.

 .out files:
– Capture behavior of target into sense data, other command-specific data

returned like objectID, partitionID, attributeValues etc.
 .ora files:

– Represent the desired behavior of target in terms of sense data etc (same
format as .out files)

.osd files Batch
 tester

OSD
Target

.out filesComparator

.ora files

1
2

3
45

55

Test report

Outline
 Background

– Object Based Storage
– Existing Object Interfaces
– Object Based Storage Ecosystem

 Motivation
 The DISC-OSD Implementation

– Overview
– Target
– Client
– Security Model
– Test Suite

 Performance Evaluation
 Future work

Raw Throughput Comparison of OSD and iSCSI

Performance Testing

Latency of OSD Commands

Future Work
 Optimizations:

– Client : The client file system needs more sophisticated
caching techniques for data and security credentials.

– Should credentials always be retrieved on-demand?
– Target: Using a file system as a backing store adds lot of

overhead especially for small files used for attributes
• Hierarchical namespace is not required
• A flat namespace based file system?

 The reference implementation as a :
– Framework for other researchers to build on.
– Tool to demonstrate the advantages of object based

storage:
• Layout/Disk Geometry awareness
• Processing close to data

Current Projects @ DISC
 SQUAD: A unified framework for storing and

querying structured and unstructured data
– Storage perspective on managing heterogeneous data

• Efficient storage
• Querying

 OSD based hierarchical storage management system
– OSD based tape library

 QoS Specification and Enforcement on Storage

Acknowledgements

 Mike Mesnier
 DISC consortium members

– Engenio, SUN, Symantec, ETRI(Korea), ITRI(Taiwan),
 DISC Faculty members
 Testing and Implementation Support

– Girish Moodalbail
– Pramod Mandagere
– Biplob Debnath
– Sojeong Hong

 Logistics and Management support
– Cory Devor

Thank You !
Questions / Comments ?

