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Problem

• Explosion in number & variety of files

• Directories insufficient mechanism

• Applications forced to manage own metadata



A long time ago ...
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... Today
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Metadata Management

• Few files and simple 
conventions

• Many files require 
complex management
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So what?
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Difficult to share
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So what?
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• No standards

• Not portable

• Difficult to share

• Inefficient

• Duplicate effort



Metadata Application?
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LiFS - Linking File System
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What follows ...

• Design

• Implementation

• Evaluation

• Related Work

• Conclusions, Future Work



Design Assumption

DRAM

Disk NVRAM
MetadataData

high latency
high bandwidth

low latency
medium bandwidth



LiFS Design Features

• Files: extended 
attributes

• Directed links 
between files

• Links: attributes

LiFS: Linking File System



Naming in LiFS

name: foo

name: bar
user: lisa

name: zoo
user: peter

foo/bar

foo/zoo

• Directed links 
between files

• Links: attributes

“name” paths:



New System Calls

System CallSystem Call FunctionFunction

rellink create relational link

rmlink remove relational link

setlinkattr set attr on relational link

openlinkset
return handle of 

a source file’s link set

readlinkset
get link name and attrs 
of next link in a link-set



In-Memory Data Structures



Link Set



Attribute Set



String Table

-  no duplicates
- fast equality test
- fast existence test



Implementation
• FUSE: maps VFS calls back to 

user space

• NVRAM: Locked system 
memory in DRAM

• Custom NVRAM allocator with 
fixed-sized pools

• Lookup optimizations:

• String table

• Full path name cache

LiFS



Evaluation

•Goals:

•Traditional FS Ops: speed 
& scalability compared to 
other file systems

•New fs ops: scalability

•FUSE overhead

Setup:

•Sun Workstation running Linux 
2.6.9-ac11

•AMD Opteron 150, 2.4 GHz

•1 GB DRAM
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• Directory Tree: 
k=5, d=5, n=4, 
15,620 files

• Freshly created file 
systems

• LiFS is competitive

Traditional FS Ops



File Attributes
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Create/Remove Dirs

• Directory tree: 
k=10, d=6, n=1, 
111,110 dirs

• LiFS performs 
better than ext2 
with FUSE & 
RAM-disk

Traditional FS Ops
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Create/Delete Rel. Links

• Directory Tree: 
k=5, d=5, n=4, 
15,620 files

• Duration of 
processing 15,620 
random links

• More attributes 
slow down 
identifying link

New FS Ops
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Related Work

• Queryable File Systems

• In-Memory File Systems

• Advanced Commercial File Systems

• The Semantic Web

• Digital Preservation



Queryable File Systems

• Attributes allow expressive queries

• Use secondary storage only 

• No linking mechanism with attributes



In-Memory File Systems

• Lack advanced file system features

• Lots of research to overcome challenges of 
persistent memory

• Database research on utilizing persistent memory



Advanced Commercial File 
Systems

• Microsoft’s WinFS, Apple’s Spotlight, Beagle 
(Linux with Inotify), Sun’s ZFS

• No attributed links

• No metadata management in NVRAM



The Semantic Web

• Links & Attributes same expressiveness

• LiFS as file system or storage layer



Digital Preservation

• Obsolescence by broken data relationships

• Large efforts on institutional level

• Need to also extent to file systems

• LiFS provides infrastructure



Future Work

• More efficient data structures (Workloads?)

• Fault tolerant data structures

• Online file system consistency checker

• Extend to distributed storage

• Explore use of rich metadata structures without 
NVRAM



Conclusions

• Contributions:

• Rich file system metadata via links & attributes

• Common high-performance metadata store for 
applications

• Advantages: performance, simplicity, 
expressiveness
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