LIFS
An Attribute-Rich
File System for
Storage-Class Memories

Sasha Ames, Nikhil Bobb, Kevin M. Greenan,
Owen S. Hofmann, Mark W. Storer,
Carlos Maltzahn, Ethan L. Miller, Scott A. Brandt
SSRC, UC Santa Cruz

Problem

- Explosion in number & variety of files

- Directories insufficient mechanism

- Applications forced to manage own metadata

A long time ago ...

@ Few filesand ssimple
conventions

Application

Few Files

... Today

Few filesand simple
conventions

Many filesrequire
complex management

Application

Vieiadata

~ et~

Vi@t

Many Files

M etadata M anagement

- Few filesand smple

- Many filesrequire

conventions

Appl Ic2anion

complex management

REI2IGRSAIPS

Many Files

So what?

Applicenon Alppliceaon

User RElONSAIPS RElONSAIPS

System Files Files

Difficult to share

- m:n APIs -
ApplicationJv ApplicationJ
:'r Search }\ :’ }
User i RelalienRships i \i RelalienRships i
E i - i
System: Files | SIS : Files |
Repository | System| Repository

So what?

Application Application
/ 3 / B
| | | |
: I : |
: I ' [
User I | ' |
I | . |
: | : |
Sysem | Files | Gl Crilest
Se—— File System Se——
Repository Repository

No standards
Not portable
Difficult to share
| nefficient

Duplicate effort

Metadata Application?

m:n APIs
Applicatien Applicatien
‘%\'QQ 4 Seareh
User § Relationships
/ -
System File
Sy/Siem

LIFS - Linking File System

Application Application

ALTIIES

RE|AONSAIPS

What follows...

- Design

- Implementation

- Evauation

- Related Work

- Conclusions, Future Work

Design Assumption

DRAM
Disk NVRAM

Data M etadata

high latency low latency
high bandwidth medium bandwidth

LIFS Design Features

+ Files: extended LIFS: Linking File System

attributes

- Directed links
between files

- Links:; attributes

Naming in LIFS

- Directed links

between files

- Links: attributes

name: bar
user: [1sa “name’ paths:

/ \ foolbar

name: foo \ /

Nname:. 200
uSer.

New System Calls

System Call EURCHien
rellink create relational link
rmlink remove relational link

setlinkattr set attr on relational link
. return handle of
openlinkset asource file' slink set
: get link name and attrs
readiinkset of next link in alink-set

superncde |

diskBitmap
stringTable
inocdeTable

freelist

' A

Fﬁi---i-i--i-iifl

srC SIC
dest dest

attribSet attribSet

Attribute Set

y

> anode

key
value

] []
-t?lm "chefsteve" | | "editor"

]

] []

string table

s

String Table

y

> anode

key
value

|mplementation

FUSE: maps VFS calls back to
user space

NVRAM: Locked system
memory in DRAM

* Custom NVRAM allocator with

4

fixed-sized pools
L ookup optimizations:
- String table

Full path name cache

m
. @

Evauation

-Goals: Setup:
‘Traditional FS Ops: speed -Sun Workstation running Linux
& scalability compared to 2.6.9-acll

other file systems
*AMD Opteron 150, 2.4 GHz

‘New fs ops: scalability
‘1 GB DRAM

‘FUSE overhead

Duration (secs)

i

B LiFS w/ FUSE

5~

Al

na

—

0

Files

ext2 w/ FUSE XFS w/ FUSE

Traditional FS Ops

Directory Tree:
k=5, d=5, n=4,

15,620 files

Fresnly created file

Create Files

systems

LIFS is competitive

Read Empty Files

1.500

.
—_
Mo
un

o
~J
un
o

Duration (secs)
o
o
un

™

Traditional FS Ops

File Attributes

B Get 2 Attributes

Set 2 Attributes O ext2 (FUSE) SetAttr

LiFS (FUSE) SetAttr
ext2 (FUSE) GetAttr
LiFS (FUSE) GetAttr

of Attrs

9.500
n 7.125
8
l I — 4.750
O
W G o o 8,375
g 8 g =
L (58 L o w D
S "y - -+ v
Y B L (8 3
- E (W) 5«._1 2 20
.: 5

Traditional FS Ops

Create/Remove Dirs

B Create Dirs Remove Dirs
150.0 * Directory tree:
) k=10, d=6, n=1,
§ 112.5 111,110 dirs
&
.% 75 0 LIFS performs
= better than ext2
O 375 with FUSE &
y g e RAM-disk
& &Y A& o
WV \,g\b & @5
E.-+ {b v ch

New FS Ops

Create/Delete Rdl. Links

B 2 Attrs/Link
30 Attrs/Link

- Directory Tree:
ey k=5, d=5, n=4,
aly. 15,620 files
U') '
g 1 80 Duration of
Cor s :
fe, processing 15,620
*g 0.75 random links
D .
0 More attributes
& & & slow down
o™ & ot identifying link
QF} %‘& &
@ x@ ,Q_ﬂa@

Related Work

* Queryable File Systems
- In-Memory File Systems

- Advanced Commercial File Systems

- The Semantic Web

- Digital Preservation

Queryable File Systems

- Attributes allow expressive queries
- Use secondary storage only

- No linking mechanism with attributes

In-Memory File Systems

- Lack advanced file system features

_ots of research to overcome challenges of
persistent memory

Database research on utilizing persistent memory

Advanced Commercial File
Systems

- Microsoft’ s WInFS, Apple s Spotlight, Beagle
(Linux with Inotify), Sun’s ZFS

- No attributed links

- No metadata management in NVRAM

The Semantic Web

- Links & Attributes same expressiveness

- LIFS asfile system or storage layer

Digital Preservation

» Obsolescence by broken data relationships

- Large efforts on institutional level

- Need to also extent to file systems

- LIFS provides infrastructure

Future Work

- More efficient data structures (Workloads?)

- Fault tolerant data structures

- Online file system consistency checker

- Extend to distributed storage

- Explore use of rich metadata structures without

NVRAM

Conclusions

- Contributions;

- Rich file system metadata vialinks & attributes

- Common high-performance metadata store for
applications

- Advantages. performance, ssmplicity,
expressiveness

Thanks to:

- Faculty and students of the SSRC

- NSF grant 0306650

- SSRC sponsors. Hewlett Packard Laboratories,
Hitachi Globa Storage Technologies, IBM
Research, Intel, Microsoft Research, Network
Appliance, Rocksoft, Symantec, and Y ahoo.

Thank Y ou!

UCSC Storage Systems Research Center

http://www.ssrc.ucsc.edu
mailto:carlosm@soe.ucsc.edu

