
LiFS
An Attribute-Rich

File System for
Storage-Class Memories

Sasha Ames, Nikhil Bobb, Kevin M. Greenan,
Owen S. Hofmann, Mark W. Storer,

Carlos Maltzahn, Ethan L. Miller, Scott A. Brandt
SSRC, UC Santa Cruz

Problem

• Explosion in number & variety of files

• Directories insufficient mechanism

• Applications forced to manage own metadata

A long time ago ...

Few files and simple
conventions

ApplicationApplication

Few Files

... Today

• Few files and simple
conventions

• Many files require
complex management

ApplicationApplication

Metadata Metadata
MgmtMgmt

Many Files

Metadata Management

• Few files and simple
conventions

• Many files require
complex management

ApplicationApplication

AttributesAttributes

RelationshipsRelationships

SearchSearch

Many Files

So what?

ApplicationApplication ApplicationApplication

User

System File File
SystemSystem

FilesFiles

AttributesAttributes

RelationshipsRelationships

SearchSearch

AttributesAttributes

RelationshipsRelationships

SearchSearch

Difficult to share

ApplicationApplication ApplicationApplication

User

System File File
SystemSystem

Files

Repository

Files

Repository

AttributesAttributes

RelationshipsRelationships

SearchSearch

AttributesAttributes

RelationshipsRelationships

SearchSearch

m:n APIs

So what?

ApplicationApplication ApplicationApplication

User

System
File SystemFile System

Files

Repository

Files

Repository

AttributesAttributes

RelationshipsRelationships

SearchSearch

AttributesAttributes

RelationshipsRelationships

SearchSearch

• No standards

• Not portable

• Difficult to share

• Inefficient

• Duplicate effort

Metadata Application?

ApplicationApplication ApplicationApplication

User

System File File
SystemSystem

AttributesAttributes

RelationshipsRelationships

SearchSearch

m:n APIs

no
tif

ic
at

io
n

LiFS - Linking File System

ApplicationApplication ApplicationApplicationUser

System File File
SystemSystem

AttributesAttributes

RelationshipsRelationships

SearchSearch

What follows ...

• Design

• Implementation

• Evaluation

• Related Work

• Conclusions, Future Work

Design Assumption

DRAM

Disk NVRAM
MetadataData

high latency
high bandwidth

low latency
medium bandwidth

LiFS Design Features

• Files: extended
attributes

• Directed links
between files

• Links: attributes

LiFS: Linking File System

Naming in LiFS

name: foo

name: bar
user: lisa

name: zoo
user: peter

foo/bar

foo/zoo

• Directed links
between files

• Links: attributes

“name” paths:

New System Calls

System CallSystem Call FunctionFunction

rellink create relational link

rmlink remove relational link

setlinkattr set attr on relational link

openlinkset
return handle of

a source file’s link set

readlinkset
get link name and attrs
of next link in a link-set

In-Memory Data Structures

Link Set

Attribute Set

String Table

- no duplicates
- fast equality test
- fast existence test

Implementation
• FUSE: maps VFS calls back to

user space

• NVRAM: Locked system
memory in DRAM

• Custom NVRAM allocator with
fixed-sized pools

• Lookup optimizations:

• String table

• Full path name cache

LiFS

Evaluation

•Goals:

•Traditional FS Ops: speed
& scalability compared to
other file systems

•New fs ops: scalability

•FUSE overhead

Setup:

•Sun Workstation running Linux
2.6.9-ac11

•AMD Opteron 150, 2.4 GHz

•1 GB DRAM

Files
D

ur
at

io
n

(s
ec

s)

• Directory Tree:
k=5, d=5, n=4,
15,620 files

• Freshly created file
systems

• LiFS is competitive

Traditional FS Ops

File Attributes

D
ur

at
io

n
(s

ec
s)

D
ur

at
io

n
(s

ec
s)

of Attrs

Traditional FS Ops

Create/Remove Dirs

• Directory tree:
k=10, d=6, n=1,
111,110 dirs

• LiFS performs
better than ext2
with FUSE &
RAM-disk

Traditional FS Ops
D

ur
at

io
n

(s
ec

s)

Create/Delete Rel. Links

• Directory Tree:
k=5, d=5, n=4,
15,620 files

• Duration of
processing 15,620
random links

• More attributes
slow down
identifying link

New FS Ops
D

ur
at

io
n

(s
ec

s)

Related Work

• Queryable File Systems

• In-Memory File Systems

• Advanced Commercial File Systems

• The Semantic Web

• Digital Preservation

Queryable File Systems

• Attributes allow expressive queries

• Use secondary storage only

• No linking mechanism with attributes

In-Memory File Systems

• Lack advanced file system features

• Lots of research to overcome challenges of
persistent memory

• Database research on utilizing persistent memory

Advanced Commercial File
Systems

• Microsoft’s WinFS, Apple’s Spotlight, Beagle
(Linux with Inotify), Sun’s ZFS

• No attributed links

• No metadata management in NVRAM

The Semantic Web

• Links & Attributes same expressiveness

• LiFS as file system or storage layer

Digital Preservation

• Obsolescence by broken data relationships

• Large efforts on institutional level

• Need to also extent to file systems

• LiFS provides infrastructure

Future Work

• More efficient data structures (Workloads?)

• Fault tolerant data structures

• Online file system consistency checker

• Extend to distributed storage

• Explore use of rich metadata structures without
NVRAM

Conclusions

• Contributions:

• Rich file system metadata via links & attributes

• Common high-performance metadata store for
applications

• Advantages: performance, simplicity,
expressiveness

Thanks to:

• Faculty and students of the SSRC

• NSF grant 0306650

• SSRC sponsors: Hewlett Packard Laboratories,
Hitachi Global Storage Technologies, IBM
Research, Intel, Microsoft Research, Network
Appliance, Rocksoft, Symantec, and Yahoo.

Thank You!

UCSC Storage Systems Research Center

http://ssrc.cse.ucsc.edu

carlosm@soe.ucsc.edu

http://www.ssrc.ucsc.edu
mailto:carlosm@soe.ucsc.edu

