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Problem

- Explosion in number & variety of files

- Directories insufficient mechanism

- Applications forced to manage own metadata
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M etadata M anagement
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So what?
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Difficult to share
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So what?
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No standards
Not portable
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Metadata Application?
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LIFS - Linking File System
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What follows...

- Design

- Implementation

- Evauation

- Related Work

- Conclusions, Future Work



Design Assumption

DRAM
Disk NVRAM

Data M etadata

high latency low latency
high bandwidth medium bandwidth



LIFS Design Features

+ Files: extended LIFS: Linking File System

attributes

- Directed links
between files

- Links:; attributes




Naming in LIFS

- Directed links

between files

- Links: attributes

name: bar
user: [1sa “name’ paths:

/ \ foolbar

name: foo \ /

Nname:. 200
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New System Calls

System Call EURCHien
rellink create relational link
rmlink remove relational link

setlinkattr set attr on relational link
. return handle of
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Attribute Set
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|mplementation

FUSE: maps VFS calls back to
user space

NVRAM: Locked system
memory in DRAM

* Custom NVRAM allocator with

4

fixed-sized pools
L ookup optimizations:
- String table

Full path name cache

m
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Evauation

-Goals: Setup:
‘Traditional FS Ops: speed -Sun Workstation running Linux
& scalability compared to 2.6.9-acll

other file systems
*AMD Opteron 150, 2.4 GHz

‘New fs ops: scalability
‘1 GB DRAM

‘FUSE overhead
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Directory Tree:
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15,620 files

Fresnly created file

Create Files

systems

LIFS is competitive

Read Empty Files
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Traditional FS Ops

Create/Remove Dirs
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New FS Ops

Create/Delete Rdl. Links
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Related Work

* Queryable File Systems
- In-Memory File Systems

- Advanced Commercial File Systems

- The Semantic Web

- Digital Preservation



Queryable File Systems

- Attributes allow expressive queries
- Use secondary storage only

- No linking mechanism with attributes



In-Memory File Systems

- Lack advanced file system features

_ots of research to overcome challenges of
persistent memory

Database research on utilizing persistent memory



Advanced Commercial File
Systems

- Microsoft’ s WInFS, Apple s Spotlight, Beagle
(Linux with Inotify), Sun’s ZFS

- No attributed links

- No metadata management in NVRAM



The Semantic Web

- Links & Attributes same expressiveness

- LIFS asfile system or storage layer



Digital Preservation

»  Obsolescence by broken data relationships

- Large efforts on institutional level

- Need to also extent to file systems

- LIFS provides infrastructure



Future Work

- More efficient data structures (Workloads?)

- Fault tolerant data structures

- Online file system consistency checker

- Extend to distributed storage

- Explore use of rich metadata structures without

NVRAM



Conclusions

- Contributions;

- Rich file system metadata vialinks & attributes

- Common high-performance metadata store for
applications

- Advantages. performance, ssmplicity,
expressiveness
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