
Renuga Kanagavelu
 Data Storage Institute, Singapore

A Bit –Window based Algorithm for Balanced and
Efficient Object Placement and Lookup in Large-
Scale Object based Storage Cluster

Outline

 Introduction
 Bit-Window based algorithm
 Object Placement
 Object Lookup
 Node Addition
 Node Deletion
 Performance Study
 Conclusions

Introduction

 To develop a novel and efficient method based on Bit-Windows
for object placement and lookup services

• To distribute objects evenly across the storage nodes

• To reduce message overhead and access delay
– No multi-hop messages

• To support node addition and deletion with low number object

migrations

• To be scalable

• To reduce message overhead, no need to maintain information about
neighbor nodes

Bit-Window Based Algorithm

• An m-bit object identifier is produced by hashing the object

• SHA-1 is used as a basic hash function

• N : the total number of storage nodes with index from 0 to N-1

• Bit -window size k =  log2 (N)  . The size of the bit window depends on the
number of the storage nodes. Due to addition or deletion of nodes, bit-window size
may vary.

• The m-bit object identifier is divided into a number of bit windows of size k.

• The bit -windows are labeled starting from 0 from the right end, denoted as BW0,
BW1…BWv-1, where v is the maximum number of windows used

 The Bit-Window algorithm maps objects to storage nodes

Bit-Window Algorithm
 --
 Input: O: Object Key
 v: Number of bit-windows
 N: Number of Storage nodes

Output: A valid node Index

Value  BW0

 If (Value < N) //valid node index

 return Value
i 1
While (i < v)

 {
 Value = BWi

 if (Value < N)
 return Value
 else i i+1
 }
 k =  log2 (N) 
 Value = BW0 - 2k-1

 return Value

Object Placement

1111110110 0

BW0

b0b1b2
...bm-1

1

 (a)

1111110110 0

BW1

b0b1b2
...bm-1

1

 (b)

1111110110 0

BW2

b0b1b2
...bm-1

1

 (c)

Figure : Illustration of Bit –Window algorithm (N=5).
(a) BW0 is searched. (b) BW1 is searched. (c) BW2 is
searched.

Object Placement and Lookup

Object Placement

 X : Total number of objects
 N : The number of (valid) nodes
 k : bit-window size

P = 2 k
 R = P-N : Number of invalid nodes. (R < N)

 Theorem-1: The bit-window algorithm evenly distributes the objects to
nodes with a node having at most additional number of objects than
any other

 node and this number becomes negligibly small when the value of tends to
be large. ÿ

Object Lookup

 The object lookup operation of the bit-window algorithm is similar to the
object placement.

R
P
RX

v








v

Node Addition

Case 1:

 Node addition does not change the bit-window size, i.e., N < 2k
Claim :

When N <2 k , a node addition will result in approximately
objects migrated and this number is the minimum required to ensure
balanced load distribution.ÿ

Case 2:
 An addition of a node needs the bit window to expand .i.e. N = 2 k

 Each node (among N nodes) has approximately 50% of the objects
whose bit k in BW0 is 1. Therefore, in the worst case each node will
migrate objects.

1+N
X

1+N
X

N
X

2

N
X

2

Node Deletion

Case 1:

 The node with the highest index (N-1) is deleted
Claim :

When a node with highest index is deleted, approximately objects

are migrated, which is the minimum required. ÿ
Case 2:

 The node other than the highest index node is deleted

Claim :
 When a node other than the highest indexed node is deleted,

approximately objects are migrated.ÿ

N
X

N
X2

Performance Study

420000
424000
428000
432000
436000
440000
444000
448000
452000
456000
460000
464000
468000
472000
476000
480000

N
um

be
r o

f o
bj

ec
t k

ey
s

pe
r n

od
e

1 2 3 4 5 6 7 8 9 10 11

Node Number

0
0.008
0.016
0.024
0.032
0.04

0.048
0.056
0.064
0.072
0.08

0.088
0.096

Lo
ad

 im
ba

lan
ce

 fa
cto

r

9 10 11 12 13 14 15 16

Number of nodes

Case 1: Small Cluster with 9-16 nodes

Figure . Bit –Window Algorithm: Object placement
in a 11-node cluster

Figure : Bit –Window Algorithm: Load
imbalance Index for varying number of nodes
(small clusters)

0.9998

0.99982

0.99984

0.99986

0.99988

0.9999

0.99992

0.99994

0.99996

0.99998

1

1.00002

9 10 11 12 13 14 15 16

Number of nodes

F
a
ir
n
e
s
s
 I

n
d
e
x

Figure : Bit –Window Algorithm: Fairness Index
for varying number of nodes (small clusters).

Performance Study

Performance Study

1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700

N
um

be
r o

f o
bj

ec
t k

ey
s

pe
r n

od
e

50 300 900 1500 2100 2500

Node number

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Lo
ad

 Im
ba

la
nc

e
In

de
x

1000 1500 2000 2500
Number of nodes

Case 2: Large Cluster with 2500 nodes

Figure : Bit –Window Algorithm: object placement
for a 2500-node cluster

Figure : Bit –Window Algorithm: Load
imbalance Index for varying number of nodes
(large clusters).

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

100 500 1500 2000 2500

Number of nodes

Fa
irn

es
s

In
de

x

Figure : Bit –Window Algorithm: Fairness Index
for varying number of nodes (large clusters).

Performance Study

Conclusions
• Developed a novel and efficient method based on Bit-Windows for object

placement and lookup services in object-based storage clusters

• Ensures even distribution of objects

• Supports node additions and deletions with low number of object migrations

• It does not need to hop through multiple nodes for object placement and
lookup, thus reducing the message overhead

• Studied the performance of the method through theoretical analysis and
simulation results

• Our method is very effective in terms of the performance metrics such as load
imbalance factor and fairness index

