

RobuSTore

Distributed Storage System Providing Robust, High Performance

Huaxia Xia and Andrew Chien University of California, San Diego Mar 16, 2006

1

Motivation

Large-Scale Scientific Applications

Large data sets: TB~PB Large size per access: GB ~ 10s GB Large number of distributed users: 100s Want: Distributed Storage with User **High Bandwidth** For Large-Size Data Accesses (Read-Dominated) High Robustness - Robustness: Low Variability on Access Waite Area Network User storage Challenge: storage High Variability of Individual Disk Performance Disk Rotation storage Data Source
Disk Heterogeneity storage Network Heterogeneity User Dynamic Shared Accesses User Data Source

Why Existing Systems Cannot?

Our Approach: RobuSTore

• Key Idea: Erasure Codes + Speculative Accesses

- Erasure Codes
 - Tolerate the Late Arrived Blocks
 - Considering late arrived blocks as lost blocks
 - Allow to Reconstruct the Original Data from the First Returned Subset of Blocks

 \rightarrow Reduce the dependence of the request on any individual disk

- Speculative Accesses
 - Request Redundant Data Blocks
 - Once Received Enough Blocks, Cancel the Ongoing Requests

RobuSTore Improves Bandwidth and Robustness

Compare RobuSTore and Traditional Parallel Storage

For > 8 Disks

- RobuSTore Achieves Highest Bandwidth and Best Robustness
 - On 64 disks, RAID-0, RRAID-S, RRAID-A and RobuSTore deliver 31, 117, 228, 459
 MBps bandwidth, with STDEV of latency of 1.9, 7.3, 1.9, and 0.5 seconds respectively
 - RobuSTore has ~1.5 Disk IO Overhead

Thank You!