Multilevel RAID for Very Large Disk Arrays - VLDAs

Alexander Thomasian

athomas@cs.njit.edu Integrated Systems Laboratory Computer Science Dept. New Jersey Institute of Technology – NJIT Newark, NJ 07102

Overview of Presentation

- Storage nodes SNs or bricks under study at HP, IBM, ..., as a replacement for RAID.
- Multilevel RAID MRAID for higher reliability than RAID, since tape backup not feasible fot high data volume and very large capacity disks.
- The need for storage transactions in MRAID.
- Performance and reliability issues

Coding Inside Storage Nodes

- d data, k check, and s spare disks: n = d + k + s (n=12).
- Spare disk bandwidth wasted: use distributed sparing.
- SNs closed units a failed disk cannot be replaced.
- Bricks constitutes smallest replaceable unit SRU, i.e., SNs repaired by reconstructing contents on a spare SN.
- Starting with RAID6 (P+Q) use Q parities as spare areas to
- reconstruct a failed disk, converting to RAID5.
- Further conversion from RAID5 to RAID0 possible, use P parities as spare areas.

Organization of the VLDA

- Disk requests arrive at CNs communication nodes.
- CNs forward requests to DRNs data router nodes.
- Data partitioned into fragments assigned to DRNs.
- **DRNs hole relationships among SNs.**

A DRN may in fact be a cluster of DRNs for load-sharing, scalability, and especially fault-tolerance.

Replication or erasure coding across SNs provides data protection for SNs as well as their disks.

Possible relationship among SNs held by DRNs.

Internode Replication - r=2 way

Basic mirroring – BM or data replication.

Request routing to improve performance, e.g., D-SPTF.

With BM when SN fails read load at mirroring SN doubled.

Other mirroring methods to solve this problem.

¹st assume c clusters with M = N/c SNs per cluster.

Group rotate declustering. Striped data on primary SNs is allocated in a rotated manner at secondary SNs.

Interleaved declustering. Data at each SN allocated uniformly across M-1 SNs in cluster

Chained declustering. One half of the data at each SN is allocated as the secondary data of the next SN.

Multilevel Erasure Coding

Partition N SNs into c clusters of M SNs each.

Each SN a RAID5 (with parity P).

- I out of M SNs dedicated to parity ($I = 1 \Rightarrow RAID4$).
- Disadvantage 1: Check SN not used by read requests.

Disadvantage 2: Bottleneck for write intensive workloads.

A single disk failure or unreadable block at the check SN can be handled by reading corresponding blocks from remaining M-1 SNs.

The approach used by us:

Q parities not used to protect P parities. Space which becomes available at check SN allocated to P parities to protect local Q parities.

-I.e, P parities protect Q parities, but not vice-versa.

Allocating Q parities across *M* **SNs results in RAID5/5.**

Example 1: RAID5(4)/RAID5(4) One disk per SN dedicated to P and another to Q parities.

Node 1				Node 2				Node 3				Node 4			
$d_{1,1}^1$	$d_{1,2}^1$	$p_{1,3}^1$	$q_{1,4}^1$	$d_{1,1}^2$	$p_{1,2}^2$	$q_{1,3}^2$	$d_{1,4}^2$	$p_{1,1}^3$	$q_{1,2}^3$	$d_{1,3}^3$	$d_{1,4}^3$	$q_{1,1}^4$	$d_{1,2}^4$	$d_{1,3}^4$	$p_{1,4}^4$
$d_{2,1}^1$	$p_{2,2}^1$	$q_{2,3}^1$	$d_{2,4}^1$	$p_{2,1}^2$	$q_{2,2}^2$	$d_{2,3}^2$	$d_{2,4}^2$	$q_{2,1}^3$	$d^3_{2,2}$	$d^{3}_{2,3}$	$p_{2,4}^3$	$d_{2,1}^4$	$d_{2,2}^4$	$p_{2,3}^4$	$q_{2,4}^4$
$p_{3,1}^1$	$q_{3,2}^1$	$d^{1}_{3,3}$	$d^{1}_{3,4}$	$q_{3,1}^2$	$d^2_{3,2}$	$d^2_{3,3}$	$p_{3,4}^2$	$d^3_{3,1}$	$d_{3,2}^3$	$p_{3,3}^3$	$q_{3,4}^3$	$d_{3,1}^4$	$p_{3,2}^4$	$q_{3,3}^4$	$q_{3,4}^4$
$q_{4,1}^1$	$d^{1}_{4,2}$	$d^{1}_{4,3}$	$p_{4.4}^1$	$d_{4,1}^2$	$d_{4,2}^2$	$p_{4,3}^2$	$q_{4.4}^2$	$d_{4,1}^3$	$p_{4,2}^3$	$q_{4,3}^3$	$d^3_{4,4}$	$p_{4,1}^4$	$q_{4,2}^4$	$d_{4,3}^4$	$d_{4,4}^4$

d data, (p;q) parity blocks, superscript disk number. To update $d_{4\,1}^2$:

$$\begin{aligned} d_{4,1}^{2diff} &= d_{4,1}^{2new} \oplus d_{4,1}^{2old} \,. \\ p_{4,3}^{2new} &= p_{4,3}^{2old} \oplus d_{4,1}^{2diff} \,. \\ q_{4,1}^{1new} &= q_{4,1}^{1old} \oplus d_{4,1}^{2diff} \,. \\ q_{4,1}^{1diff} &= q_{4,1}^{1new} \oplus q_{4,1}^{1old} \,. \\ p_{4,4}^{1new} &= p_{4,4}^{1old} \oplus q_{4,1}^{2diff} \,. \end{aligned}$$

Failure of SN₁: Reconstructing first row.

$$\begin{aligned} d_{1,1}^1 &= d_{1,1}^2 \oplus q_{4,1}^4. \\ d_{1,2}^1 &= q_{1,2}^3 \oplus d_{1,2}^4. \\ q_{1,4}^1 &= d_{1,4}^2 \oplus d_{1,4}^3. \\ p_{1,3}^1 &= d_{1,1}^1 \oplus d_{1,2}^1 \oplus q_{1,4}^1. \end{aligned}$$

Storage Transactions – 2PL and 2PC

	Node 1				Node 2				Node 3				Node 4			
$-d_{1}^{1}$	$d_{1,1} = d_1^1$,2	$p_{1,3}^1$	$q_{1,4}^1$	$-d_{1,1}^2$	$p_{1,2}^2$	$q_{1,3}^2$	$d_{1,4}^2$	$p_{1,1}^3$	$q_{1,2}^3$	$d_{1,3}^3$	$d_{1,4}^3$	$q_{1,1}^4$	$d_{1,2}^4$	$d_{1,3}^4$	$p_{1,4}^4$
$-d_2^1$	$p_{2,1}^1 = p_2^1$	2,2	$q_{2,3}^1$	$d_{2,4}^1$	$p_{2,1}^2$	$q_{2,2}^2$	$d_{2,3}^2$	$d_{2,4}^2$	$q_{2,1}^3$	$d_{2,2}^3$	$d_{2,3}^3$	$p_{2,4}^3$	$d_{2,1}^4$	$d_{2,2}^4$	$p_{2,3}^4$	$q_{2,4}^4$
p_{3}^{1}	$q_{3,1}^1 = q_3^1$,2	$d_{3,3}^1$	$d_{3,4}^1$	$q_{3,1}^2$	$d^2_{3,2}$	$d^2_{3,3}$	$p_{3,4}^2$	$d_{3,1}^3$	$d^{3}_{3,2}$	$p_{3,3}^3$	$q_{3,4}^3$	$d_{3,1}^4$	$p_{3,2}^4$	$q_{3,3}^4$	$q_{3,4}^4$
$-q_{4}^{1}$	$d_{4,1} = d_4^1$	1,2	$d_{4,3}^1$	$p_{4.4}^1$	$-d_{4,1}^2$	$d_{4,2}^2$	$p_{4,3}^2$	$q_{4.4}^2$	$-d_{4,1}^3$	$p_{4,2}^3$	$q_{4,3}^3$	$d^{3}_{4,4}$	$p_{4,1}^4$	$q_{4,2}^4$	$d_{4,3}^4$	$d_{4,4}^4$

When $d_{1,1}^1$ and $d_{1,2}^1$ are updated at the same time. $p_{1,3}^{1new} = d_{1,1}^{1old} \oplus d_{1,1}^{1new} \oplus p_{1,3}^{1old}$ $p_{1,3}^{1new} = d_{1,2}^{1old} \oplus d_{1,2}^{1new} \oplus p_{1,3}^{1old}$ While $p_{1,3}^{1new}$ should reflect both updates: $p_{1,3}^{1new} = d_{1,1}^{1new} \oplus d_{1,2}^{1new}.$ Transaction (update $d_{1,1}^{1new}$) = { $1 - Read(d_{11}^{1old}),$ $2 - Write(d_{11}^{1new}),$ $3 - d_{11}^{1diff} = d_{11}^{1new} \oplus d_{11}^{1old},$ $4 - Read(p_{1,3}^{1old}), Read(q_{1,1}^{4old}),$ $5-p_{1,3}^{1new} = d_{1,1}^{1diff} \oplus p_{1,3}^{1old}, q_{1,1}^{4new} = d_{1,1}^{1diff} \oplus q_{1,1}^{4old}, Write(p_{1,3}^{1new}),$ $6 - q_{1,1}^{4diff} = q_{1,1}^{4new} \oplus q_{1,1}^{4old}, Read(P_{1,4}^{4old}),$ $7 - p_{1\,4}^{4new} = p_{1\,4}^{4old} \oplus q_{1,1}^{4diff},$ $8 - Write(p_{1,4}^{4new})\}.$

Transactions in Presence of Failures

Assume that D_1 at SN_1 has failed

Solution 1: (Amiri et al. 2000) DRN notified of failure and issues new transaction, which is a fork-join request to reconstruct missing block.

 $d_{1,1}^1 = d_{1,2}^1 \oplus p_{1,3}^1 \oplus q_{1,4}^1$

Solution 2: (Our solution).

The fork-join requests (subtraction) is generated locally at the SN.

Example 2: RAID6(5)/RAID5(5) M = 5 SNs and each SN a RAID5 with n = 5 disks. Across SNs RAID6 with 1 = 2 and Q and S parities. Only the first row is shown for brevity.

 $(d_{1,1}^{1}, d_{1,2}^{1}, p_{1,3}^{1}, q_{1,4}^{1}, s_{1,5}^{1}),$ $(d_{1,1}^{2}, p_{1,2}^{2}, q_{1,3}^{2}, s_{1,4}^{2}, d_{1,5}^{2}),$ $(p_{1,1}^{3}, q_{1,2}^{3}, s_{1,3}^{3}, d_{1,4}^{3}, d_{1,5}^{3}),$ $(q_{1,1}^{4}, s_{1,2}^{4}, d_{1,3}^{4}, d_{1,4}^{4}, p_{1,5}^{5}),$ $(s_{1,1}^{5}, d_{1,2}^{5}, d_{1,3}^{5}, p_{1,4}^{5}, q_{1,5}^{5}),$

RAID6(5)/RAID5(5) (cont'd)

Assume that SN1 and SN2 have failed. Reconstruct $d_{1,1}^1$ and $d_{1,1}^2$ using $q_{1,1}^4$ and $s_{1,1}^5$. $d_{1,2}^1$ can be reconstructed as $d_{1,2}^1 \oplus d_{1,2}^5 = q_{1,2}^3$, $s_{1,2}^4$ could also be used for this purpose. We similarly note that $d_{1.5}^2 \oplus d_{1.5}^3 = q_{1.5}^5$.

Update Cost Functions in RAIDX(M)/Y(N)

RAID5/RAID 6 with $\delta = 0/1$ respectively.

 $C_{R\$R6}^{\text{write}} = (2 + \delta) D_{\text{RMW.}} \qquad (1)$

For MRAID5/5 we update the P parity at node leveland Q parity at internode level(internode message).

 $C_{R\$R6F0}^{\text{write}} = 4D_{\text{RMW}} + D_{\text{T}}.$ (2)

For MRAID5/6 we update the paritier P and Q locallyand parity S remotely. This requires the updating S parities.

 $C_{R5R6F0}^{\text{write}} = 5D_{\text{RMW}} + D_{\text{T}}.$ (3)

For MRAID5/6 we update the parity P locallyand parities Q and S remotely.

 $C_{R6R5F0}^{\text{write}} = 6D_{\text{RMW}} + 2D_{\text{T}}.$ (4)

The cost function in degraded mode of operation can be expressed similarly.

Further Work

Specification of alternative MRAID organizations Analytic/simulation studies of reliability and performance.

Questions and comments please!